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DISSIPATED ENERGIESAND STABILITIESOFAXIAL AND LATERAL
DEFORMATIONS OF ROCK SPECIMENSIN UNIAXIAL COMPRESSION

WANG Xue-bin
(Department of Mechanics and Engineering Sciences  Liaoning Technical University Fuxin 123000 China)

Abstract Firstly the dissipated energies induced by axial and lateral plastic deformations of rock specimens under
uniaxial compression and the relation between them are analysed. Based on gradient-dependent plasticity in which
the thickness of shear band is determined by characteristic length of rock analytical solutions of dissipated
energies in axial and latera directions of rock specimens in uniaxial compression are derived respectively. The
presented theoretical results show that dissipated energy consumed by shear band is composed of two parts  axial
and lateral dissipated energies. Dissipated energy due to axia plastic deformation is proportional to that of lateral
plastic deformation and the proportional coefficient is dependent on inclination angle of shear band. According to
the actual measured value of shear band inclination the dissipated energy of axial plastic deformation is greater
than that of lateral plastic deformation. As flow compressive stress approaches zero  the dissipated energy by shear
band the dissipated energies of axial and lateral plastic deformations attain their maxima. Bigger inclination angle

2003- 10- 27 2003- 12— 24
(50309004)
(1975-) 1998
E-mail wxbbb@263.net



24 5 . e 847 o

of shear band leads to bigger dissipated energy of lateral plastic deformation and smaller dissipated energy of
lateral plastic deformation. Secondly shear instabilities of axial and lateral deformations of rock specimens in
uniaxial compression are investigated. Shear stress between shear band and elastic rock outside the band is
decomposed to horizontal and vertical shear stresses. Similarly  plastic shear deformation of shear band is divided
into axial and lateral deformations. Relation between the horizontal shear stress and latera plastic deformation and
relation between the vertical shear stress and axial plastic deformation are presented  respectively. It is shown that
the dope of horizontal shear stress-lateral plastic deformation curve is equal to that of vertical shear stress-axial
plastic deformation curve. The two curves are dependent on the structural size therefore the slope cannot be taken
as a congtitutive parameter of rock materials. Based on theory of stiffness instability criterions of specimens
composed of shear band and elastic rock outside the band in the axial and lateral directions are proposed
anaytically. The two criterions areidentical  which depend on constitutive relation of rock materials and structural
size of rock specimens.

Key words rock mechanics gradient-dependent plasticity localization inclination angle of shear band axial
plastic deformation lateral plastic deformation  dissipated energy  instability
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(5 1] 1 Fig.1 Specimensin uniaxial compression subjected to shear
failure and softening constitutive relation as well as
shear displacement
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Fig.2 Plastic shear strain energy density
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Fig.3 Two kinds of complete stress-strain curvesin uniaxial
compression of rock specimens
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Fig.4 Shear force and its decomposition
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Fig.7 Relation between shear force and plastic deformation
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Fig.8 Relation between shear stress and plastic deformation
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Fig.10 Relation between shear stress and deformation
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Fig.11 Schematic of axial and lateral deformation instabilities
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