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Abstract: We study the step criteria of numerical methods for delay differential equations. Based on the
criteria, we define the concept of stiffness of a class of delay differenttal equations. We also give a
numerical example which illustrates the difficulty for solving stiff delay differential equations with large rate
pe
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1 Introduction

Apply a numerical method to the following delay differential equation
U@)=aUQ@) + U@ — 1), t >0, (1)
U@) = e(t), t <0, (2>
U (¢) is the unknown function to be solved for £ >> 0,7 >> 0 denotes a constant delay, a,b & C(C is the
complex number set) are given constants, ¢(¢) is a given continuous function (¢ <X 0).
Definition 1. 1'¥ A numerical method for DDEs is said to be P-stable if for all coefficients of
equations (1), (2), in which
{6} <<— Re(a), 3
@(t) is a continuous function, the numerical solution {U,} at the mesh points z, = nA(n = 0,4 > 0)
satisfies

limU, = 0, (4>

n—o0

for every step size - > 0 such that mh = r, where m is a positive integer.

Definition 1. 223 A numerical method for DDEs is called GP-stable if under condition (3), (4)
holds for every stepsize A > Q.

Many papers discuss the P-stability and the GP-stability of the ~-method, linear multistep method
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and the Runge-Kutta method!®:#%:6:91112131 ' 4 has been proved that these methods are GP-stable if
and only if they are A-stablet**!2), As we know, the maximum accessible order of the linear multistep
method that is A-stable is 2. Although there is no obstacle to the order of the Runge-Kutta method,
not all implicit Runge-Kutta methods are A-stable 1. Additionally, in many practical cases, e. g.
when dealing with real-time control computations, we hope the numerical method is fast and allows to
parallel computations. Then the explicit linear multistep method or the Runge-Kutta method will be
considered firstly.

For the explicit method, there exists a step restricted problem. Though some papers have
discussed the step restricted problem for DDEs, many problems need to be investigated {or a class of
stiff delay differential equations. The purpose of this paper is to investigate the step criteria of
numerical methods for DDEs. Based on the criteria, we define the concept of stiffness of a class of
delay differential equations, and point out that we have to use the numerical method that is GP-stable

or the method whose stability is better.

2 The step criteria of the numerical method

Definition 2. 1" The delay differential equation (1) is said to be asymptotically stable if every
solution U (¢) of (1) satisfies imU (¢) = 0.

1—co

The characteristic equation of (1) is;

OO =8 —a—be™ = 0. (5)
Now we introduce some known results;
Theorem 2. 1) 1f the coefficients a,b € C of (1) satisfy the condition (3), then all zero points

of equation (5) have negative real parts. Thus (1) is asymptotically stable.
Theorem 2. 2!2)  The following three statements are equivalent ;
(A) |6 <— Re(a), (B) Re(a+ b)) <<0,¥EEC, |6 <1,
(C) Rela + 66 <0,V €€ C, €| =1.

Theorem 2. 3"} For any a,b € C that satisfy the condition (3), the characteristic equation (5)

has countably infinite zero points &,,&,,+:+,€,,++, and there exists a positive number ¢ such that

Re(¢)<— 6 << 0,i= 1,2, 6>
Besides, there exists a subsequence {€,}, that is denoted by {£,}, satisfies
limRe(&) = — oo, N

1—=00

Corollary 2.4 For zero points {§,;} of the characteristic equation (5), we have

sup|Re(£) 1/ inf|Re(§) | = oo,
We apply the following linear multistep method to (1) and (2) .
k k
EajUn+J=hZﬁjfn+J’ (8>
=0 j=0
where f, = f(1,,U,),U, is the approximation of U(¢,) ,¢, = nh,h > 0, we get
k k
EajUn+j = hEﬁj[aUn+j + Ui mmrs ] 9
j=0 i=0

where (m — A =7,0<C 8 <1,m > 11is a natural number. If § 5% 0, (9) can not be calculated, so

we have to interpolate U, ;.. s:
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Uniyomis = D3 LolOU i i ps (10)
p=—r

L,(8) = ]'[ O =41 (1D

- b= —rdep P k’ = '

iy AN
Substituting (10) into (9), we get
EaUm = hZﬂ [y + 63 LUty ey T (2
p=—r

In order to obtain the characterlstlc equation of (12), let U, = =" and substitute it into the abovc

formula. Then we get the characteristic polynomial
P.(2) = Qz)=z"* — p(z,6), kD)

where

*
Q(z) = p(2) — as(z), p(z,8) = bY(2,8)0(2), p(z) = >, a,
=9

o(z) = Eﬂz, Y(2,8) = VL (&),
p=—r

a = ha,b = hb. Obviously, the dlfference equation (12) is stable, or we can say that the linear
multistep method (8) is GP-stable for DDEs if and only if P,.(2) is a Schur polynomial, that is
P.(z) =0= |z| <.

Lemma 2. 511 (i) Whenever |2| = land 0 << 8 < 1, |7(2,6)| < 1 holds if and only if the
relationshipr << s <Cr 4+ 2isvalid. GO Hs+r>0,r<s<<r+ 2,2z =1, 0<<6<C1, then |7z,
&) = 1if and only if z = 1.

Rewrite P,,(z) as

P.(2) = p(z) — (a+ BY(2,8)2™"""Yo(2) = p(z) — (a + bR(z,8))o(z), (14>
where
R(z,8) = 7(z,8)z~ """,
By lernma 2.5, when |z] = 1, for any 0 << 6 <{ 1, we have |R(2,0)| << 1. Sincem = {s + 1), we

know

R(o0,6) = limR(z,8) = 0.

zr—>00

By themaximum modulus principle about unbounded region for analytic functions, for any = € C,
when |z| = 1, we have
[R(z, )| <1, ¥ =€ Cy(z| =1,V 0<<&<1. (15
As is known to all, the stable region of the linear multistep method (8) for the initial problem of
ODEs is defined as )
So.m = {h € C.Re(h) << 0,0(z) — ha(z) is a Schur polynomial}
So we have
Theorem 2.6 Let
(a) Re(a+ 88 <o, VéEe 6 <1
(b) hla+ 68 € Souw» VYV EEC, € K1
Then P,,(z) defined by (14) is a Schur polynomial.
The stable region of the Runge-Kutta method for DDEs is defined as
So.rx = {h € C:Re(R) <0, [r(R)| < 1)
where

r(h)y =14+ R 6" — RA)!
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A,b are corresponding coefficients of the method, e = (1,1,+,1)7.
Theorem 2.7 Let
(A) Re(a+ &) <0, Yée o, |f <1,
(B)Y ACa+ &) € So.rks Ve |8 <.
then the Runge-Kutta method for DDEs (1) and (2) is asymptotically stable, i.e. U, = 0(n— o0).
Remark The stable region of many well—known methods has been given. Under the unknown
conditions, So,a50.z¢ can be obtained by the tracking descriptive method, so theorem 2. 6 and
theorem 2. 7 are practical step criteria. Generally speaking, So,7s,S0.rx are irregular region3, so it is
difficult to determine the stepsize & by the condition (b) in thecrem 2. 6 or the condition {B) in
theorem 2. 7. Now we consider the regular region contained in S,z or So. rx » such as a circular disc,
an elliptic disc and a rectangle. In this paper,we only consider circular discs, other cases can be solved
similarly.
Let So.rm or So re contain a circular disc Cx: |z + R| << R, where R > 0 is the radius of the
circular disc. We want to prove h(a + ) € Cr, ¥ € € C, |€]| < 1, that is
|h(a + 68 + R| <R,V &€ C, |&| <1. (16>
Letd = [b6]e?,& = re?, 0 < r<C1, 0<C @< 2m. (16) is equivalent to
(hRe(a) + h|blrcos(d 4+ @) + R)? + (hlm(a) + A|b|rsin(@ 4+ ¢))? < R2,
Unwinding it and applying the Schwartz inequality to {Re(a)cos(8 4+ @) + Im(a)sin(d + @)}, we get
Re(a)cos(d + @) + Im(a)sin(@ + ¢ < |a|. Then the inequality of A is obtained

— 2R(Re(a) + |6])
(la] + [&]>?

This shows that when |a| and |&] is large and |Re(a) + |&| | is small, the step size A will be restricted

h <

17

severely.

3 The concept of stiffness of delay differential equations

As we all know, for ODEs

where A € C™?, Uty = (U, () ,U, ), U (e))". The stiff rate of (18) is defined as
r = max |Re(A(A)) |/ min|Re(A (A, 19

where A;:(A) denotes the eigenvalue of A, which is a zero point of the characteristic equation of (18)
det[§] — A] = 0. (20)
Obviously, if we define the stiff rate for DDEs (1) as that in (19), then by the result of corollary
2. 4, they are all + oo. But we analyze from (19) that if 3> 1, the general solution of (18) contains
not only a fast decreasing component, but also a slow decreasing component, whose corresponding
eigenvalues are denoted by A, and A, respectively. To ensure the stability of the numerical method, let
hdr € So.:1mCSo.rx). U So,1m(So.2¢) is a small bounded region in the left semi-plane, the step size A
will be restricted severely. On the other hand, to obtain the stable solution of the initial problem, we
let ¢ ~ 0. Since |Re(4,)| is relatively very smatl, the steps of calculation will be excessive. In the
next section we will explain it further with a numerical example.
Next, we consider the conditions that coefficients a,b of equation (1) are real numbers, and a <C

0,6 > 0,a + 6 <C 0. Consider the characteristic equation (5) of (1) again, and let £ = z + yi.
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E—a—be =0 21
is equivalent to
xr — a = be “cos(— TYy), = be "sin(— Ty), 22>
Obviously y = 0 satisfies the second {ormula of (22). The corresponding « must satis{y
T — a = be ™, 23>
Let g(x) = x — a — be™ ™. Note that a < 0,6 > 0,a + & < 0. By the intermediate value theorem,
we know g(x) has an unique zero point on the left real axis. From (23), we know r = a + be ™ =
a + &. By this, we get there exists a zero point &, of characteristic equation (22) such that &, = a +
. U |a+&| ~ 0, then €' is a slow component. And if |a — &| 3> 1, the stepsize A will be restricted
severely. This {ollows from theorem 2. 6, theorem 2. 7 and (17).
Definition 3.1 For DDE (1), coefficients a,& are real numbers, and a << 0,6 >> 0,a - b <C 0.
Besides, we define rp, = sup |a + &&|/ ;i|n<{1|a + 68| = |la— &|/|la+ b, i rp, > 1, the equation

HES]

(1) is said to be stiff.
By definition 3.1, if (1) is stiff, it is difficult to calculate the initial problem of (1) just as that of
stiff ODEs. Now we should use the numerical method which is GP-stable . In the next section, the

numerical example will {urther explain the above analysis .

4 A numerical example

Consider the delay differential equation
U'(t) =— 1000U ) + 999.9UC¢ — 1D, t >0, U@) = &, t <L 0, 21
where & is the solution of .23). So the true solution of (24) is e, t € (— oo,0). Applying the
explicit Euler method to (24), we get

U =U, + h[aUn + bUn*m]’ (25)
where mh = 1. The characteristic equation of (24) is
2" = 2" + haz" + hb. 26>

It is too strict to determine the step size h with (17), since the reasoning of this formula is about

complex coefficients @ and 4. Thus we can rewrite (26) as
Pm(2) = 2"(z — (1 + ah)) — hé. 27
The polynomial p,,(z) defined by (27) is a Schur polynomial if and only iff®?(1) = — (1 + Aa) is a
Schur polynomial, (2) A6 |z — A +ha) |, ¥ 2€C, 2| =1,(3) p. ()70, V¥ 2€C, =] = 1.
Supposing that a, & satisfy the conditions in definition 3.1, we can verily that condition (1)~

(3) hold if and only if
1 + ha = 0. (28
1

Therefore, we get A <{— - = 0. 001. Using the implicit Euler method, which is GP-stable (see [9]

and [12]), step size & is an arbitrary positive number. We let A = 0.1 and the result of calculation is
listed in the {ollowing table (&, = 0. 99905 X 107%).

method step size number of iteration numerical solution true solution

explicit Euler 0. 001 2.3X107 0. 10025 0.10048
implicit Euler 0.1 2.3X10° 0.10049 0.10048
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From the table we see that when the stiff raterp, = |a — 6|/]a + &| = 19999, it is difficult to
use the explicit Euler method, and the number of iterations reaches 2. 3 X 107. While the step size A of
the implicit Euler method can be chosen arbitrarily, computational formulas can use variant step
formats, and the number of iterations can be reduced. What more important is that when we apply
the explicit formula to stiff delay differential equations, step size & should be very small, since mh = r,
for large 7y > 1. From the formula (25), we see that while calculating U,,,, we must use I/, _,.,

which makes the attenuation of the iteration much slower.
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