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Abstract

Solution uniqueness is an important property for a bargaining model. Rubinstein’s
(1982) seminal 2-person alternating-offer bargaining game has a unique Subgame
Perfect Equilibrium outcome. Is it possible to obtain uniqueness results in the
much enlarged setting of multilateral bargaining with a characteristic function? In
an exploratory effort, this paper investigates a model first proposed in Okada (1993)
in which each period players have equal probabilities of being selected to make a
proposal and bargaining ends after one coalition forms. Focusing on transferable
utility environments and Stationary Subgame Perfect Equilibria (SSPE), we find
ex ante SSPE payoff uniqueness for large classes of characteristic functions. This
study includes as a special case a variant of the legislative bargaining model in Baron
and Ferejohn (1989), and our results imply (unrestricted) SSPE payoff uniqueness
in this case.
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1 Introduction

Solution uniqueness is an important property for a bargaining model. Rubin-

stein’s (1982) seminal 2-person alternating-offer bargaining game has a unique

Subgame Perfect Equilibrium outcome. A considerable literature exists that

generalizes Rubinstein (1982) to the n-person dividing-a-pie problem, produc-

ing equilibrium uniqueness results of various strengths. Noteworthy studies

include Merlo and Wilson (1995) and Krishna and Serrano (1996), and a brief

survey can be found in the introduction of Chatterjee and Sabourian (2000).

Is it possible to obtain uniqueness results in the still richer setting of bargain-

ing with a characteristic function (i.e. coalitional bargaining), which, unlike

the dividing-a-pie problem where only the grand coalition has a positive pie,

allows subsets of players to have positive pies as well? This question motivates

this exploratory study.

It turns out that there is little in the dividing-a-pie literature that we can

build upon, because in our setting, coalition formation plays an important role

in determining payoffs from bargaining. Previous studies in this setting either

seek to support all core allocations as equilibrium outcomes (see Yan (2003)

for a brief review) or focus on the efficiency properties of the proposed bar-

gaining models (Chatterjee et al. (1993), Okada (1993) and Okada (1996)).1

1Although Chatterjee et al. (1993) focuses on efficiency, one of their results shows the
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This paper studies the same, one-stage stationary stochastic bargaining model

as Okada (1993), and reports strong uniqueness results regarding (ex ante)

equilibrium payoffs for a considerable range of games, including simple games,

symmetric games, convex games and strictly monotone games that admit an

efficient equilibrium. Naturally, payoff uniqueness restricts the equilibrium

pattern of coalition formation. For Okada’s (1993) model, except when players

are indifferent about which coalition to nominate, equilibrium payoff unique-

ness implies a unique profile of (possibly identical) coalitions formed with equal

probabilities.

1.1 The Model (Okada (1993))

An unusual feature of Okada’s (1993) model is that bargaining ends after

one coalition forms, and players excluded from the coalition get their autarky

payoffs. This one-stage model is worth studying as a starting point, and it is

reasonable when the one-stage property holds, that is, when no coalition and

its complement both have strictly positive worths. The multi-stage extension

of this model is studied in Okada (1996). As discussed later, the main result of

Okada (1996) has positive implication for extending our results to the multi-

stage model.

uniqueness of the cutoff values players use when responding to proposals. However, unlike

in our paper, the cutoff values typically do not correspond to equilibrium payoffs.
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We now describe the model informally. We assume that the underlying

cooperative game is of transferable utility, essential, monotone, and zero-

normalized. Bargaining proceeds as follows. Each period one player is ran-

domly selected with equal probablities from all n players to make a proposal.

In her proposal the selected player nominates a coalition and announces a

feasible allocation for that coalition. The coalition members then respond se-

quentially. The proposal passes if and only if it is accepted by all the members

of the nominated coalition. If the proposal passes, the game ends, the pro-

posed allocation is realized and each player excluded from the coalition gets

zero payoff. Otherwise, the game continues into the next period with payoffs

discounted by δ ∈ [0, 1), and the same bargaining procedure is followed as in

the previous period. We call this game the random-proposer game.

For the rest of the paper we suppress references to the cooperative game, to

the properties of which we refer instead as those of the characteristic function,

so the term “symmetric game”, for instance, refers to random-proposer games

with symmetric characteristic functions.

1.2 SSPE PayoffUniqueness in the Variant Baron-FerejohnModel

This paper makes an indirect contribution to the legislative bargaining lit-

erature building on Baron and Ferejohn (1989) (henceforth BF). When the
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characteristic function assigns worth 1 to all majority coalitions and 0 to the

rest the random-proposer game becomes, with nonsubstantive differences2, a

variant of the BF model, for which we obtain a stronger uniqueness result than

BF.

More precisely, BF first shows that with 5 or more players any allocation

can be supported in a Subgame Perfect Equilibrium (SPE) for high enough δ.

This result, typical of multilateral bargaining models, has an obvious analogue

(which we omitted) in the random-proposer game. BF, as do we and most of

the literature, addresses such multiplicity by restricting attention to Stationary

Subgame Perfect Equilibria (SSPE). BF shows payoff uniqueness within the

class of SSPE restricted in the following ways: i) players do not play weakly

dominated strategies and ii) they play the “simplest” SSPE satisfying i), where

simplicity is made precise by Baron and Kalai (1993), whose result implies that

of all the SSPE in which players do not play weakly dominated strategies,

those in BF require the least number of states if executed by automata.3 In
2In the original BF model, all players respond to the proposed allocation. The proposal

passes if accepted by a majority. This difference in response procedure proves nonsubstantive

as the analyses of the two models are similar and they produce identical allocations in

equilibrium.
3In fact Baron and Kalai (1993) show a stronger result: of all the SPE in which players

do not play weakly dominated strategies the BF type SSPE require the fewest automaton

states.
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this paper, using simple techniques that exploit subgame perfection we show

that for every general SSPE there exists a BF type SSPE that generates the

same outcome; and this result, Proposition 2, can be easily adapted to the

original BF model.4 Moreover, the proof of Proposition 2 does not depend on

the proposing probabilities, the discount factors, or on the size of the minimum

winning coalition, consequently it can be extended to obtain unrestricted SSPE

payoff uniqueness for the generalized BF model studied in Eraslan (2002).5

4The adaptation is straightforward and not included in this paper.
5In Eraslan (2002), although the SSPE is defined the same way as the general SSPE

in this paper, it is clear from the analysis that only the BF class of SSPE are considered.

For instance, an assumption is made in footnote 3 to the effect that a player is to accept

a proposal if the offer to her equals her continuation payoff. This assumption effectually

prevents a player from conditioning her response on the identity of the proposer, or on

offers made to the other players, or on prior responses made by other players. Moreover, it

is assumed implicitly that players do not play weakly dominated strategies, as the arguments

in Eraslan (2002) ignore the possibility that a player may reject (accept) an offer strictly

higher (lower) than her continuation payoff because her vote is not pivotal. Finally, no delay

is assumed implicitly, since there is no arguments ruling out those SSPE in which a proposer

finds it optimal to make a proposal that she knows will be rejected as she expects to receive

higher payoff when other players make proposals.
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1.3 Results

We focus on SSPE, and we call the ex ante payoff profile generated by an

SSPE an SSPE payoff profile.

We first demonstrate the outcome-equivalence between general SSPE and

the simple, BF type SSPE, which we call the cutoff strategy SSPE . We then

establish the existence of (mixed) SSPE in the general random-proposer game,

although pure SSPE do not always exist.

Our uniqueness results vary in strength depending on the characteristic

function. For simple games we show that all pure SSPE must be payoff equiv-

alent. For symmetric games we show that there is a unique SSPE payoff pro-

file. For convex games we focus on the inclusive SSPE , namely those SSPE in

which proposers nominate, roughly speaking, the “largest” payoff maximizing

coalitions. It is shown that all inclusive SSPE of a convex game must be pure

and payoff equivalent. Our last result concerns efficient SSPE. As shown in

Okada (1993), an efficient SSPE exists for all δ ∈ [0, 1) if and only if equal

division is a core allocation. Our last result shows for strictly monotone games

that an efficient cutoff strategy SSPE, if it exists, is the unique cutoff strategy

SSPE of the game.
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1.4 Organization

The rest of the paper is organized as follows: Section 2 describes the model;

Section 3 establishes the existence of SSPE and the outcome equivalence be-

tween general SSPE and cutoff strategy SSPE; Section 4 contains the main

technical results used in the uniqueness proofs; Section 5 presents the unique-

ness results; Section 6 discusses extensions; the appendix collects the long and

the purely technical proofs.

2 The Random-Proposer Game

Let N denote the set of all players, and let n = |N |. A coalition is a non-

empty subset of players. A characteristic function v maps each coalition S

to an element in <+, and v(S) is called the worth of S, which may be inter-

preted as the size of the surplus available for division among members of S.

An allocation for a coalition S is an element in <|S|+ , written as w = (wi)i∈S;

it is feasible if
P
i∈S wi ≤ v(S). w = (wi)i∈N is efficient if Pi∈N wi = v(N).

v is monotone if v(T ) ≤ v(S) for any T ⊂ S, strictly monotone if the

inequality is strict; v is essential if v(S) > 0 for some S; v is 0-normalized if

v({i}) = 0 for all i. We maintain throughout that v is monotone, 0-normalized

and essential, and we require v to be strictly monotone for the last result,
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Proposition 7.

The random-proposer game is as follows. Bargaining proceeds in periods

1, 2, 3, . . ., until an agreement is reached. At the beginning of each period, one

player is randomly selected to be the proposer . Every player has probability

1
n
of being selected in any period. Suppose in period t player i is selected.

i then makes a proposal that consists in the nomination of a coalition S –

we allow i /∈ S, although i ∈ S in equilibrium – and the announcement of

a feasible allocation for S, w = (wj)j∈S. Let (S,w) denote the proposal. We

will sometimes abuse terminology and say that i “nominates j” if j ∈ S. The

proposal passes immediately if S = {i}. If S\{i} 6= ∅, sequentially all the

players in S\{i} respond by accepting or rejecting the proposal. The exact

order of responses is exogenous and, as can be seen shortly, immaterial to

our model. If all in S\{i} accept, the proposal passes, the game ends, and

each j ∈ S gets δt−1wj, where δ ∈ [0, 1), while each j ∈ N\S gets v({j}),

which equals 0 due to 0-normalization. If at least one player in S\{i} rejects,

bargaining proceeds into period t + 1 and the same bargaining procedure is

repeated. If no agreement is ever reached, every player gets zero payoff.

Except Proposition 3 the results in the next two sections have been gen-

eralized in Yan (2003),6 nevertheless we produce the proofs for the reader’s
6The results in the next two sections first appeared in the working paper version of this
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convenience.

3 The SSPE

A strategy in a random proposer game is called stationary if it is independent

of the history of past periods.7 A Stationary Subgame Perfect Equilibrium

(SSPE) is a Subgame Perfect Equilibrium in which players use stationary

strategies. As we will discuss later, an SSPE may be “complicated” despite

its stationarity. Fortunately, Proposition 2 shows that for every SSPE there

exists an outcome-equivalent, “simple” SSPE.8 Let us first define the “simple”

stationary strategy profiles, which we call the cutoff strategy profiles because

an important feature of these strategy profiles is that each player accepts a

proposal if and only if she herself is offered at least a certain cutoff value.

Formally, let Fi = {S|i ∈ S}, let Pi denote the set of probability distributions

over Fi, and let P = Πi∈NPi. Define a (possibly mixed) cutoff strategy profile

paper, which has fallen behind Yan (2003) in the publication process. We decide to claim

credits to these results here instead of in Yan (2003).
7Here to save space we do not give a formal definition of stationarity.
8Here we refer to the complexity or simplicity of a strategy profile rather than that of

a strategy in the same spirit as Baron and Kalai (1993), who measure the complexity of

a strategy profile using the number of automaton states needed when it is executed by an

automaton.
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σc by a pair (p, x), where p ∈ P and x ∈ <n+, such that player i when proposing

nominates coalition S with probability pi(S), offers xj to each j ∈ S\{i}, and

when responding i accepts a proposal if and only if the offer to her is at least

xi. p is called the coalitional profile and x the vector of cutoff values. For

each i and S ∈ Fi, let gi(S, x) be the payoff to i of nominating S, that is,

gi(S, x) = v(S) −Pj∈S\{i} xj. We will write gi(S) in place of gi(S, x) when x

is clear. Let πi be i’s expected payoff when selected to propose, termed her

proposer payoff , given by πi =
P
S∈Fi pi(S)gi(S). Let q

j
i be the probability of

i receiving an offer from j conditional on j being selected,

qji =
X
S∈Fj

pj(S)Ii(S)

where j 6= i, and Ii(S) = 1 if i ∈ S and 0 otherwise. Let qi be the ex ante

probability of i receiving an offer from another player,

qi =
1

n

X
j 6=i
qji

qi is called i’s nomination probability. Note that by definition qi ≤ 1− 1
n
. Let

y be the ex ante payoff function that maps each strategy profile to the induced

ex ante payoff profile, an element in <n+. It is easy to see that

yi =
1

n
πi + qixi. (1)

Note that because σc is stationary, player i’s continuation payoff in any

period t, which is defined to be her expected payoff (discounted to period t)
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in any subgame that begins with a proposal being rejected by some player in

period t, is δyi.

The equilibrium conditions for a cutoff strategy SSPE are straightforward.

Proposition 1 (Okada (1993)) σc = (p, x) is an SSPE if and only if

i) x = δy;

ii) pi ∈ argmaxp̃i∈Piπi(p̃i, x) for all i.

Proof: The “only if” direction is obvious. For the “if”direction, the only

nontrivial step is to verify that proposers do not prefer being rejected, that is

πi(pi) ≥ δyi. To see this, substitute δyi for xi on the right hand side of (1), we

have

yi =
1
n
πi

1− qiδ (2)

Because 1 − qiδ ≥ 1
n
, it follows that πi ≥ yi ≥ δyi since we know πi ≥ 0 as i

can get 0 by nominating {i}.

Before we state Proposition 2, which shows the outcome equivalence be-

tween cutoff strategy SSPE and general SSPE, it is useful to note how the

general stationary strategy profile is more complicated than the cutoff strat-

egy profile. First, in a (mixed) general stationary strategy profile the proposing
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behavior may be given by an arbitrary probability measure over the proposal

space ∪S∈2N\∅ {S}×<|S|+ , allowing among other things offering the same player

different values depending on the coalition nominated as well as nominating

a coalition of which the proposer is not a member. Second, our definition of

stationarity allows strategies to condition on the history within the current

period, so when responding to a proposal a player may condition her response

not only on the offer to herself but also on the identity of the proposer, on the

coalition nominated, on offers made to the other coalition members, and on re-

sponses made by players preceding her. Finally, a player when responding may

randomize between acceptance and rejection in a (mixed) general stationary

strategy profile.

We now prepare to state Proposition 2. Given a general stationary strategy

profile, consider for each player her possibly randomized proposing behavior

and focus on the induced marginal distribution over the set of coalitions 2N\∅.

We call the collection of these marginal distributions the coalitional profile,

in keeping with the terminology used for cutoff strategy profiles. For each

player i, let Fi+ denote the set of coalitions player i nominates with positive

probabilities, and let Ci be the union of these coalitions.

Proposition 2 For any SSPE σ with a coalitional profile p the cutoff strategy

profile σc = (p, δy(σ)) generates the same outcome and is an SSPE.
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Proof: See the appendix.

From now on we only consider cutoff strategy SSPE, which we simply call

SSPE.

Next we show the existence of (mixed) SSPE for the general random-

proposer game. However, pure SSPE do not always exist.9

Proposition 3 The random-proposer game has an SSPE.

Proof: For any x ∈ [0, v(N)]n, let P ∗(x) = Πi∈NP ∗i (x), where P
∗
i (x) =

argmaxp̃i∈Piπi(p̃i, x). P
∗ is convex-valued and upper-hemicontinuous by the

Theorem of Maximum. Consider the correspondence B from [0, v(N)]n,

B(x) = {b|b = δy(σc(p
∗, x)), where p∗ ∈ P ∗(x)}

9Here is an example of inexistence of pure SSPE for δ close enough to 1. Consider a

3-player game in which the characteristic function is zero-valued except for v ({1, 2, 3}) = 1

and v ({1, 2}) = 0.8. In pure SSPE a player when selected to propose chooses one coalition

with probability 1. It is easy to see that player 1 and 2 must include each other in their

chosen coalitions and player 3 must choose N . This leaves us 3 possibilities: both, one or

neither of 1 and 2 choose N . The first can be ruled out as follows: the payoff profile, which

can be solved for from the simultaneous equations provided by (2), is yi = 1/3 for all i; this

implies that 3 is too “expensive” to be nominated when δ is high enough since 3 increases

the worth by only v({1, 2, 3})− v ({1, 2}) = 0.2 < 1/3. In the other two possibilities player

3 is too “cheap” not to be nominated as her payoffs turn out to be less than 0.2.
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To see B(x) ∈ [0, v(N)]n, note that for any i ∈ N , 0 ≤ πi(p
∗
i , x) ≤ v(N).

Hence, 0 ≤ bi(x) = δ 1
n
πi(p

∗
i , x) + δqi(p

∗)x ≤ 1
n
v(N) + n−1

n
v(N) = v(N).

We will show that B is convex-valued and upper-hemicontinuous. To see

convexity, consider any b1, b2 ∈ B(x). By definition there exist p1, p2 ∈ P ∗(x)

s.t. b1 = δy(σc(p
1, x)), b2 = δy(σc(p

2, x)). Note that y is linear in p. Hence,

for any α ∈ [0, 1], αb1 + (1− α)b2 = δy(σc(αp
1 + (1− α)p2), x)). Since P ∗(x)

is convex, αp1 + (1− α)p2 ∈ P ∗(x). Therefore αb1 + (1− α)b2 ∈ B(x). Hence

convexity is established.

Suppose to the contrary that B is NOT upper-hemicontinuous. Then there

exists a sequence xn → x̄ and a sequence bn → b̄, s.t. bn ∈ B(xn) for all n, but

b̄ /∈ B(x̄). By definition there exists a sequence {pn} s.t. pn ∈ P ∗(xn) ⊆ P

for all n, and bn = δy(σc(p
n, xn)). Since P is compact, {pn} has a subse-

quence {pnk} that converges to a point p̄ in P . Since the subsequence {xnk}

converges to x̄, and since P ∗ is upper-hemicontinuous, p̄ ∈ P ∗(x̄). Note that

b̄ 6= δy(σc(p̄, x̄)) since we assumed b̄ /∈ B(x̄). Since y is continuous, for large

k, bnk 6= δy(σc(p
nk , xnk)), a contradiction.

By Katutani’s Fixed Point Theorem, x ∈ B(x) for some x ∈ [0, v(N)]n.

Therefore, there exists p∗ ∈ P ∗(x) s.t. x = δy(σc(p
∗, x)). Then σc(p

∗, x) is an

SSPE.
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4 Intermediate Results

The fact that we prove the existence of SSPE for general random-proposer

games using Katutani’s fixed-point theorem might suggest that uniqueness

may also be demonstrated through familiar theorems such as the contraction

theorem. Instead we find it more fruitful to use tactics often seen in the discrete

branch of mathematics. The overall structure of our demonstration is that we

first exhibit the pattern that must be obeyed by two payoff-nonequivalent

SSPE in a general random-proposer game, then we exploit the different traits

of different classes of characteristic functions and show how in each case the

afore-mentioned pattern cannot hold true.

Lemma 1 below describes the pattern followed by two payoff-nonequivalent

SSPE. Note from (2) that a player’s SSPE payoff is determined by, and in-

creasing in, her proposer payoff and her nomination probability. Informally,

Lemma 1 i) states that players’ payoffs and nomination probabilities change

from one SSPE to the other in (weakly) opposite directions on the whole.

The intuition for this is that if a player has a payoff increase (decrease), she

raises (lowers) her cutoff value and hence, other things equal, makes herself

less (more) attractive to the proposers. Lemma 1 ii) considers those players

whose only source of payoff increase is the increase in their proposer payoffs.
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Roughly speaking, it states that their payoff increases do not exceed the payoff

decreases of their coalition members, because the increases in their proposer

payoffs come from the coalition members’ lowering the cutoff values. Lemma

1 iii) is similar to Lemma 1 i) in spirit: for at least one player, her payoff and

nomination probability must change in strictly opposite directions.

The following notation scheme is adopted for the rest of the paper when

comparing two SSPE σ and σ0: let y = y(σ), y0 = y(σ0), ∆y = y0 − y, and

similarly for the other variables, and we also find it useful to define Y++ =

{i|∆yi > 0}, Y−− = {i|∆yi < 0}, and Q− = {i|∆qi ≤ 0}.

To see what contributes to a payoff change, we obtain from (2)

∆yi =
1
n
∆πi +∆qiδyi
1− q0iδ

. (3)

One can see that a player’s payoff change has two sources: one is the change

in her proposer payoff, ∆πi, and the other is the change in her nomination

probability, ∆qi.

Lemma 1 If two SSPE σc and σ0c are such that y 6= y0, we have

i)
P
i∈N ∆qi∆yi ≤ 0;

ii) if Y++ ∩Q− 6= ∅, then for any nonempty T ⊆ Y++ ∩Q−, we have T̂ 6= ∅,

where T̂ = (∪i∈TC 0i) ∩ Y−−, and
X
i∈T

∆yi <
X
j∈T̂
(−∆yj);
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iii) ∆qj∆yj < 0 for some j.

Proof: See the appendix.

Corollary For any coalitional profile p ∈ P , there is at most one y ∈ Rn

such that the cutoff strategy profile (p, δy) is an SSPE.

Proof: Suppose to the contrary that (p, δy) is an SSPE for two different values

of y, then we have two payoff-nonequivalent SSPE and Lemma 1 iii) implies

∆qj 6= 0 for some j, which is impossible since the two SSPE have a common

coalitional profile.

Next we define, for want of a better term, the proposer surplus, denoted by

π̄i, which as we shall see is equal to the proposer payoff minus the proposer’s

own cutoff value. Formally, define ḡ(S) = v(S) − P
j∈S xj, and define π̄i =

P
S∈Fi pi(S)ḡ(S). It is easy to see that ḡ(S) = gi(S) − xi, and π̄i = πi − xi.

We can express yi in terms of π̄i,

yi =
1
n
π̄i

1− qiδ − 1
n
δ

(4)

More importantly,

Lemma 2 If σc = (p, δy) is an SSPE,

i) pi ∈ argmaxp̃i∈Piπ̄i(p̃i, δy) for all i;
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ii) π̄i ≤ π̄j if j ∈ Ci;

iii) π̄i ≤ πj for any i and j.

Proof:

i) This follows directly from the fact that πi is maximized in equilibrium.

ii) j ∈ Ci means that for some S ∈ Fi+, j ∈ S. So just like i, j could also

nominate S, hence π̄j ≥ ḡ(S) = π̄i.

iii) Pick any S ∈ Fi+, we have π̄j ≥ ḡ(S ∪ {j}) since j could nominate

S∪{j}. Since v(S∪{j}) ≥ v(S) by monotonicity, we have ḡ(S ∪{j}) ≥

ḡ(S)− δyj = π̄i − δyj. Hence π̄j ≥ π̄i − δyj, or πj ≥ π̄i.

5 Uniqueness Results

In this section we present the uniqueness results for simple games, symmet-

ric games, convex games and strictly monotone games that admit efficient

equilibria.

Call a random-proposer game simple if for any S ⊆ N , either v(S) = 1 or

v(S) = 0.
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Proposition 4 The pure SSPE of a simple game, if they exist, must be payoff

equivalent.

Proof: We first assert that in a simple game the ex post SSPE payoffs always

add up to 1. This is because the proposer always nominates a coalition of

worth 1, since otherwise she gets zero proposer payoff and hence by (2) zero

ex ante payoff, contradicting Claim 3 in the proof of Proposition 2, which

states that yi > 0 for all i. It then follows that the ex ante payoffs which

are simply averages of the ex post payoffs must add up to 1 as well. We now

invoke a technical result, which, shown in two steps, Claim 1 and Claim 2,

states that if two pure SSPE produce different ex ante payoff profiles, then

the two payoff profiles must add up to different sums. Incidentally, Claim 1

and 2 are valid for general random-proposer games and their proofs below do

not use properties of simple games.

Claim 1 Given two pure SSPE σc and σ0c such that y(σc) 6= y(σ0c), if Y++ ∩

Q−− 6= ∅, we must have Pi∈N yi(σc) <
P
i∈N yi(σ0c).

Proof of Claim 1: See the appendix.

Claim 2 If y(σc) 6= y(σ0c) for two pure SSPE σc and σ0c, we must haveP
i∈N yi(σc) 6=

P
i∈N yi(σ0c).
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Proof of Claim 2: Recall Lemma 2 iii): ∆yi∆qi < 0 for some i. So either Y++∩

Q−− 6= ∅ or Y−−∩Q++ 6= ∅. In the first case, Claim 1 applies immediately. In

the second case, if we reverse the labelings of σc and σ0c (so that Y−− becomes

Y++ and Q++ becomes Q−−), Claim 1 still applies.

The proposition then follows immediately.

Next we turn to symmetric games. Call two players i and j symmetric if

for any S ⊆ N\{i, j}, v(S∪{i}) = v(S ∪{j}); call the random-proposer game

symmetric if all players are pairwise symmetric. It follows from the definition

that in a symmetric game v(S) = v(S0) if |S| = |S0|.

Proposition 5

i) If players i and j are symmetric, yi(σc) = yj(σc) in any SSPE σc;

ii) if the random-proposer game is symmetric, there exists a unique SSPE

payoff profile.

Proof:

i) Suppose to the contrary yi > yj, then

Claim 1 π̄j ≥ π̄i
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Proof of Claim 1: This follows directly from Lemma 2 ii) if j ∈ Ci. If

j /∈ Ci, then fix any S ∈ Fi+. By Lemma 2 i) and the symmetry of i and

j, we have π̄j ≥ ḡ((S\{i}) ∪ {j}) = ḡ(S) + δyi − δyj > ḡ(S) = π̄i.

Claim 2 qj ≥ qi

Proof of Claim 2: First, consider any k 6= i, j. For any S ∈ Fk+, i ∈ S

implies j ∈ S because i and j are symmetric and δyi > δyj. Hence

qkj ≥ qki . Next we will show that qij ≥ qji . Suppose to the contrary that

qij < q
j
i . Then q

i
j < 1 and q

j
i > 0. So there exist Si ∈ Fi+, Sj ∈ Fj+, such

that i ∈ Sj but j /∈ Si. We have gi(Si) ≥ gi(Sj) = gj(Sj)− δyj + δyi >

gj(Sj). On the other hand, gj(Sj) ≥ gj[(Si\{i})∪{j}] and the symmetry

of i and j implies that gj[(Si\{i}) ∪ {j}] = gi(Si), so gj(Sj) ≥ gi(Si), a

contradiction. Hence qij ≥ qji . It follows that qj ≥ qi.

Claims 1 and 2 together imply that yi ≤ yj , contradicting our assump-

tion. Therefore yi = yj.

ii) Suppose to the contrary that σc and σ0c are two payoff-nonequivalent

SSPE. Since the game is symmetric, it follows from i) that payoffs are

symmetric for all players in either SSPE. Assume w.l.g. y0i > yi for all

i. Fix any i. We have ∆πi ≤ P
j 6=i qi

0
j (−δ∆yj) ≤ 0, where the first
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inequality is by (7) in the appendix. Since ∆yi > 0, by (3) we must have

∆qi > 0. So ∆qi∆yi > 0. Since this is true for all i, Lemma 1 iii) is

violated. The proof is then complete by contraposition.

Proposition 5 has implication for the uniqueness of equilibrium coalition

size in symmetric games. Call an SSPE inclusive if for any i and S ∈ Fi+,

S ⊂ T implies gi(T ) < gi(S). Intuitively, in inclusive SSPE players when

proposing nominate, roughly speaking in general but literally for symmetric

games, the largest payoff-maximizing coalitions. If we restrict attention to

inclusive SSPE, then, since the equilibrium payoff profile is unique and sym-

metric by Proposition 5 and hence so is the cutoff value profile, the equilibrium

coalition size must also be unique.

Next we consider convex games, for which we focus on inclusive SSPE.

Formally, the random-proposer game is convex if for any S, T ⊆ N , v(S∪T )+

v(S∩T ) ≥ v(S)+v(T ). As shown below, convexity together with inclusiveness

induces structure in the equilibrium coalitional profile, which we exploit to

show payoff uniqueness. However, inclusive SSPE do not always exist: an

inclusive SSPE must be pure for a convex game and as mentioned before pure

SSPE may not exist.
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Proposition 6 In a convex game, if σc is an inclusive SSPE,

i) σc is pure;

ii) for each player i let Si denote the coalition nominated by i when i pro-

poses,

a. for any i and j such that j ∈ Si, we have Sj ⊆ Si and yj ≥ yi;

b. ∩i∈NSi 6= ∅, and for any j ∈ ∩i∈NSi, Sj = ∩i∈NSi;

iii) if σ0c is another inclusive SSPE, y(σc) = y(σ
0
c).

Proof: First note that convexity implies that for any S, T ⊆ N , ḡ(S ∪ T ) +

ḡ(S ∩ T ) ≥ ḡ(S) + ḡ(T ).

i) σc being pure means that Fi+ is a singleton for all i. Suppose to the

contrary {S1, S2} ⊆ Fi+ for some i. Assume w.l.g. S2 6⊆ S1. Since

ḡ(S1 ∪ S2) + ḡ(S1 ∩ S2) ≥ ḡ(S1) + ḡ(S2), it follows that ḡ(S1 ∪ S2) −

ḡ(S1) ≥ ḡ(S2)− ḡ(S1 ∩ S2) ≥ 0, where the second “≥” follows from the

optimality of nominating S2. On the other hand, ḡ(S1 ∪ S2)− ḡ(S1) =

gi(S
1 ∪S2)− gi(S1) < 0, where the inequality follows from S1 ⊂ S1 ∪S2

and the inclusiveness of σc, a contradiction. Therefore σc must be pure.

ii) a. First, fix any j ∈ Si, we will show Sj ⊆ Si by an argument similar

to that in i). Suppose to the contrary Sj 6⊆ Si. Since ḡ(Si ∪

24



Sj) + ḡ(Si ∩ Sj) ≥ ḡ(Si) + ḡ(Sj), we have ḡ(Si ∪ Sj) − ḡ(Si) ≥

ḡ(Sj) − ḡ(Si ∩ Sj) ≥ 0, where the second inequality follows from

the optimality of nominating Sj. On the other hand, ḡ(Si ∪ Sj)−

ḡ(Si) = gi(Si ∪ Sj)− gi(Si) < 0, where the inequality follows from

Si ⊂ Si ∪ Sj and the inclusiveness of σc, a contradiction. So we

must have Sj ⊆ Si.

It follows that for any i and j such that j ∈ Si, i ∈ Sk implies

j ∈ Sk for any k. Therefore qj ≥ qi. Since in addition π̄j ≥ π̄i by

Lemma 2 ii), we must have, recalling (4), yj ≥ yi.

b. We will show ∩i∈NSi 6= ∅ first.

Note first that for any i, yi > 0 by Claim 3 in the proof of Propo-

sition 2, and hence ḡ(Si) = π̄i > 0.

To show ∩i∈NSi 6= ∅, we do induction on the number of players.

Suppose to the contrary that for some i and j, Si ∩ Sj = ∅, then

ḡ(Si∪Sj) ≥ ḡ(Si)+ ḡ(Sj) > ḡ(Sj), which contradicts the optimality

of Sj. Hence we conclude for any two players i and j, Si ∩ Sj 6= ∅.

Suppose we have shown for any m-players i1, i2, . . . , im, ∩mj=1Sij 6=

∅. Consider any m + 1 players l1, l2, . . . , lm+1. ∩mj=1Slj 6= ∅ by

assumption. Fix any k ∈ ∩mj=1Slj . By Statement a., Sk ⊆ ∩mj=1Slj .

Since Slm+1 ∩ Sk 6= ∅, we have ∩m+1j=1 Slj 6= ∅. Therefore ∩i∈NSi 6= ∅.
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To see the second part of Statement b., note that for any k ∈

∩i∈NSi, Sk ⊆ ∩i∈NSi by Statement a. Since obviously ∩i∈NSi ⊆ Sk,

we have Sk = ∩i∈NSi.

iii) Suppose to the contrary y(σc) 6= y(σ0c) and apply the notation scheme

introduced in Section 4, that is, let ∆y = y0−y, Y++ = {i|∆yi > 0} and

so on. By Lemma 1 iii), ∆yi∆qi < 0 for some i ∈ N . Assume w.l.g. that

∆yi > 0 and ∆qi < 0. Note for later use that ∆qi < 0 implies ∆qi ≤ − 1
n

due to the pureness of the two SSPE. Consider any j ∈ ∩k∈NS0k, we will

show ∆π̄j > 0 and ∆yj > 0. By definition j ∈ S0i, hence π̄0i ≤ π̄0j by

Lemma 2 ii). It follows that∆π̄i−∆π̄j = (π̄
0
i−π̄0j)+(π̄j−π̄i) ≤ π̄j−π̄i ≤

πi − π̄i = δyi, where the last inequality is due to Lemma 2 iii). Hence

∆π̄i ≤ ∆π̄j + δyi. Now we want to show ∆π̄i > δyi. To see this, note

first for any k ∈ N we can derive from (3)10,

∆yk =
1
n
∆π̄k +∆qkδyk
1− q0kδ − 1

n
δ

(5)

It follows that ∆yi =
1
n
∆π̄i+∆qiδyi

1−q0iδ− 1
n
δ
≤ 1

n
∆π̄i− 1

n
δyi

1−q0iδ− 1
n
δ
. Since ∆yi > 0 by as-

sumption, 1
n
∆π̄i − 1

n
δyi > 0, hence ∆π̄i > δyi, as desired. Since we

proved earlier that ∆π̄i ≤ ∆π̄j + δyi, we must have ∆π̄j > 0. Note

in addition j ∈ ∩k∈NS0k implies ∆qj ≥ 0. Hence ∆yj > 0 by (5). So
10This step uses the fact that ∆π̄k = ∆πk − δ∆yk and that d = a

b implies d =
a+cd
b+c for

any a, b, c, d such that b+ c 6= 0.
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we have shown ∆π̄j > 0 and ∆yj > 0 for all j ∈ ∩k∈NS0k . Fix some

j ∈ ∩k∈NS0k. Note that S0j = ∩k∈NS0k by Statement b. of ii). Hence

∆π̄j = ∆πj − δ∆yj ≤ P
k∈S0j(−δ∆yk) < 0, where the first inequality

follows from (7) in the appendix, a contradiction. The proof is then

complete by contraposition.

Our last result concerns efficient SSPE in strictly monotone games. An

SSPE σc is efficient if
P
i∈N yi(σc) = v(N). We show that in a strictly

monotone game, an efficient cutoff strategy SSPE, if it exists, is the unique

cutoff strategy SSPE of the game. Note that uniqueness of the cutoff strat-

egy SSPE implies that the general SSPE is unique up to off-equilibrium-path

response behavior.

Proposition 7 In a strictly monotone game, an efficient cutoff strategy SSPE,

if it exists, is the unique cutoff strategy SSPE of the game.

Proof: Let σc denote the efficient SSPE. Since the game is strictly monotone,

efficiency implies that every player when proposing nominates N with prob-

ability 1, because otherwise the ex ante payoffs, being averages of ex post

payoffs, would not add up to v(N). Hence by (4) we have yi =
ḡ(N)
1−δ for all

i. It follows that yi =
v(N)
n
for all i. Next we will show that if σ0c is also an
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SSPE, we must have y(σ0c) = y(σc). Suppose to the contrary y(σc) 6= y(σ0c) and

apply the notation scheme introduced in Section 4, that is, let ∆y = y0 − y,

Y++ = {i|∆yi > 0} and so on. We will show that
P
i∈N ∆qi∆yi > 0, which

contradicts Lemma 1 i). Since obviously ∆qi ≤ 0 for all i, we only need to

show
P
Y++ |∆qi||∆yi| <

P
Y−− |∆qj||∆yj|. For this we need the following

technical observation:

Claim 1 We have
P
i∈I aibi <

P
j∈J ajbj, where I, J are finite sets and ai, bi, aj, bj

are nonnegative for all i ∈ I and j ∈ J, if there exists a correspondence

B : I → J such that:

a) ai < aj for any j ∈ B(i);

b)
P
T bi <

P
B(T ) bj for any T ⊆ I.

Proof of Claim 1: See the appendix.

Note that since ∆qi ≤ 0 for all i, by Lemma 1 iii) Y++ 6= ∅. Let B be a

correspondence from Y++ to Y−− such that B(i) = C 0i ∩ Y−−. B(i) 6= ∅ by

Lemma 1 ii).

Claim 2

i) |∆qi| < |∆qj| for any i and j such that j ∈ B(i);
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ii)
P
T |∆yi| <

P
B(T ) |∆yj| for any T ⊆ Y++.

Proof of Claim 2: See the appendix.

It follows immediately
P
Y++ |∆qi||∆yi| <

P
Y−− |∆qj||∆yj|, contradicting

Lemma 1 i). So y(σ0c) = y(σc) by contraposition. Hence σ0c is also efficient.

Hence in σ0c every player when proposing must also nominate N . So σ0c and

σc have the same cutoff values and coalitional profile. Therefore σ0c = σc.

As shown in Okada (1993), the payoff profile generated by an efficient SSPE

is equal division, namely that each player gets 1
n
v(N), and an efficient SSPE

exists for all δ ∈ [0, 1) if and only if equal division is in the core, or equivalently

if and only if v(S)|S| ≤ v(N)
n
for all S ⊂ N .11

11It may be interesting to note the efficiency conditions obtained in Okada (1996) and

Chatterjee et al. (1993), both studying multi-stage bargaining models in which after the

first coalition forms and leaves bargaining continues until at most one player is left. Okada

(1996) studies the multi-stage random-proposer game, for which equal division being in the

core is still necessary but no longer sufficient for the existence of efficient SSPE. Okada

(1996) provides a sufficient condition: there exists an SSPE for all δ ∈ [0, 1) in which at

every stage of the game all remaining players form a single coalition without delay if and

only if for every subset of players S equal division of v(S) cannot be blocked by any subset

of S. In Chatterjee et al. (1993), players follow a deterministic order in making proposals

and counterproposals, and it is shown that there exists an efficient SSPE for all δ ∈ [0, 1)

and regardless of the order of proposal making if and only if equal division is in the core.
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6 Extension

Naturally one would like to extend the uniqueness results in this paper to

the multi-stage random-proposer game. Okada (1996) shows for superaddi-

tive characteristic functions that in an SSPE of the multi-stage game there

is no delay in any subgame. In the literature, delay is often associated with

multiplicity, in view of which Okada’s (1996) result is encouraging.

Another direction for extension is to allow asymmetric proposing prob-

abilities. Yan (2003) explores this direction and shows, interestingly, that

each core allocation can be realized as the unique SSPE payoff profile of the

random-proposer game with the proportionate proposing probabilities.

7 Appendix

Proof of Proposition 2: We proceed by proving a few claims about σ.

Claim 1 Following any history that ends with a proposal (S,w) being made

by player j, the outcome prescribed by σ is such that

a) the proposal passes if wi > δyi(σ) for all i ∈ S\ {j};

b) the proposal is rejected if wi < δyi(σ) for some i ∈ S\ {j}.
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Proof of Claim 1:

a) Given such a proposal, following a history in which all but the last player

in S\ {j} have responded and all responses were acceptances, the last

player will accept. Suppose we have shown that following a history in

which all but the last m players in S\ {j} have accepted the proposal,

the last m players will all accept. Then following a history in which all

but the last m + 1 players have accepted, the first of the last m + 1

players will accept. By mathematical induction, in the subgame where

no one has responded, all in S\ {j} will accept.

b) If in the subgame that begins with i accepting the proposal there is a

positive probability according to σ of the proposal being passed, then

i’s strategy must prescribe that i reject the proposal. So if i accepts the

proposal, with probability 1 some subsequent player must reject it.

Claim 2

a) Any proposal that passes with positive probability must offer to all the

nominated players except the proposer exactly their continuation payoffs;
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b) if yi(σ) > 0, there is no delay in the subgame where i is selected to

propose; moreover, i ∈ S for any S ∈ Fi+.

Proof of Claim 2:

a) It follows directly from Claim 1.

b) Let yri denote i’s expected payoff conditional on her being selected. It

follows from a) that player i’s expected payoff conditional on her not

being selected is no greater than δyi. Hence, yi ≤ 1
n
yri + (1 − 1

n
)δyi =

1
n
(yri − δyi) + δyi, or

yi ≤
1
n
(yri − δyi)

1− δ
(6)

Since yi > 0, yri > δyi. This implies that any proposal i makes with

positive probability brings her strictly higher payoff than δyi. This in

turn implies that any proposal i makes with positive probability must

pass, because δyi would be what she gets if her proposal were rejected.

It follows that i ∈ S for any S ∈ Fi+ because otherwise i gets v({i}) = 0

implying yri = 0 ≤ δyi, a contradiction.

Claim 3 yi(σ) > 0 for all i.
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Proof of Claim 3: Obviously
P
i∈N yi(σ) ≤ v(N). Hence

P
i∈N δyi(σ) < v(N),

so any player can get a positive payoff by nominating N and offering each

player ² more than her continuation payoff.

It follows from Claims 2 and Claim 3 that in σ a proposer always includes

herself in the nominated coalition and offers the other coalition members their

continuation payoffs, and that her proposal always passes. Hence σ produces

the same outcome as σc = (p, δy(σ)). To see that σc is an SSPE, note that

condition i) of Proposition 1 holds obviously and it follows from Claims 1, 2

and 3 that p must be optimal with respect to the cutoff values δy(σ) and hence

condition ii) of Proposition 1 is also satisfied. This completes the proof.

Proof of Lemma 1:

i) For any S ∈ Fi+, S0 ∈ F 0i+, we have gi(S, δy) = πi ≥ gi(S
0, δy) and

gi(S
0, δy0) = π0i ≥ gi(S, δy0). It follows that ∆πi ≥ gi(S, δy0)−gi(S, δy) =

P
j 6=i Ij(S)(−δ∆yj). Since this is true for all S ∈ Fi+, ∆πi ≥

P
S∈Fi+ pi(S)

P
j 6=i Ij(S)(−δ∆yj) =

P
j 6=i qij(−δ∆yj). Similarly,

∆πi ≤
X
j 6=i
qi
0
j (−δ∆yj) (7)

So
P
j 6=i qi

0
j (−δ∆yj) ≥

P
j 6=i qij(−δ∆yj), or

P
j 6=i∆qij(−δ∆yj) ≥ 0. Since
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this is true for all i,

0 ≤ 1

n

nX
i=1

X
j 6=i

∆qij(−δ∆yj) =
nX
j=1

X
i6=j

1

n
∆qij(−δ∆yj)

=
nX
j=1

(−δ∆yj)
X
i6=j

1

n
∆qij =

nX
j=1

(−δ∆yj)∆qj ≤
nX
j=1

(−∆yj)∆qj

therefore
Pn
j=1∆yj∆qj ≤ 0.

ii) It follows from (3) that for any i ∈ T , since ∆qi ≤ 0 by assumption, we

have 0 < ∆yi ≤
1
n
∆πi

1−q0iδ . It follows that
12

∆yi ≤
1
n
∆πi +

³P
j∈T\{i}

1
n
qj

0
i

´
δ∆yi

1− q0iδ +
³P

j∈T\{i}
1
n
qj

0
i

´
δ

Note that

1 − q0iδ +
³P

j∈T\{i}
1
n
qj

0
i

´
δ = 1 −

³P
j∈N\{i}

1
n
qj

0
i

´
δ +

³P
j∈T\{i}

1
n
qj

0
i

´
δ

= 1 −
³P

j /∈T
1
n
qj

0
i

´
δ ≥ 1 −

³P
j /∈T

1
n

´
= |T |

n
. Together with (7) this

implies that

∆yi ≤
1
n

P
j 6=i qi

0
j (−δ∆yj) +

P
j∈T\{i}

1
n
qj

0
i δ∆yi

|T |
n

Summing this over all i ∈ T ,
X
i∈T

∆yi ≤
P
i∈T

P
j 6=i

1
n
qi
0
j (−δ∆yj) +

P
i∈T

P
j∈T\{i}

1
n
qj

0
i δ∆yi

|T |
n

=

P
i∈T

P
j 6=i

1
n
qi
0
j (−δ∆yj) +

P
i∈T

P
j∈T\{i}

1
n
qi
0
j δ∆yj

|T |
n

=

P
i∈T

P
j /∈T qi

0
j (−δ∆yj)

|T |
12This step uses the following fact: d ≤ a

b implies d ≤ a+cd
b+c for any nonnegative a, b, c

and d.
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Note that
P
i∈T ∆yi > 0 implies that

P
i∈T
P

j /∈T q
i0
j (−δ∆yj)

|T | is strictly posi-

tive. This term can be positive only if T̂ is non-empty, because T̂ consists

precisely of those j for which qi
0
j (−δ∆yj) is positive. Having thus estab-

lished that T̂ is non-empty,

X
i∈T

∆yi ≤
P
i∈T

P
j∈T̂ q

i0
j (−δ∆yj)

|T |

≤
P
i∈T

P
j∈T̂ (−δ∆yj)
|T |

=
|T |Pj∈T̂ (−δ∆yj)

|T |
<

X
j∈T̂
(−∆yj)

iii) First we claim that ∆qi∆yi > 0 for some i. Suppose to the contrary

∆qi∆yi ≤ 0 for all i. Assume w.l.g. that Y++ 6= ∅. We have

X
i∈Y++

∆yi =
X

i∈Y++∩Q−
∆yi <

X
j∈(∪i∈Y++∩Q−C0i)∩Y−−

(−∆yj) ≤
X

j∈Y−−
(−∆yj)

where the strict inequality is by ii). From this we draw two conclusions:

Y−− 6= ∅, and Pi∈N ∆yi < 0 or equivalently
P
i∈N y0i <

P
i∈N yi. Since

Y−− 6= ∅ , by a symmetric argument (through redefining ∆yi = yi − y0i,

∆qi = qi−q0i and so on) we can show
P
i∈N yi <

P
i∈N y0i, a contradiction.

Therefore, the claim is true. Then iii) follows from i).
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Proof of Claim 1 in the proof of Proposition 4: We focus on pure

SSPE in this proof and need some notation to utilize this fact. Given a pure

SSPE, let Si denote the coalition player i nominates with probability 1 when

proposing and let q̂i be the number of other players nominating i. Note that

q̂i =
P
j∈N\{i} q

j
i = nqi.

Using q̂i instead of qi we rewrite two previous results. (4) is rewritten as

yi =
π̄i

n− q̂iδ − δ
(8)

Note for later use that for any i ∈ N , n − q̂iδ − δ > 0 since q̂i ≤ n − 1 by

definition, and hence π̄i > 0 since yi > 0 by Claim 3 in the proof of Proposition

2.

Next, equation (3) is rewritten and used in three equivalent forms,

∆yi =
∆πi +∆q̂iδyi
n− q̂0iδ

=
∆π̄i +∆q̂iδyi
n− q̂0iδ − δ

=
∆π̄i +∆q̂iδy

0
i

n− q̂iδ − δ
(9)

We prove Claim 1 in three steps.

Step 1 Assume w.l.g. that 1 ∈ Y++ ∩Q−−. Then ∆q̂1 ≤ −1.

Obvious, since q̂i and q̂0i are integers for all i.

Step 2 ∆yi ≤ 0 implies ∆q̂i ≤ 0 for any i ∈ N , and ∆yi ≤ 0 implies ∆q̂i < 0

if i ∈ S0j for some j ∈ Y++ ∩Q−−.
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To show the first part of the statement, consider any j ∈ Y++ ∩Q−−. We

have 0 < ∆yj =
∆π̄j+∆q̂jδyj
n−q̂0jδ−δ ≤ ∆π̄j−δyj

n−q̂0jδ−δ . It follows that

∆π̄j − δyj > 0 (10)

By Lemma 2 iii), for all i 6= j, ∆π̄j = π̄0j − π̄j ≤ (π̄0i + δy0i) − (π̄i − δyj) =

∆π̄i + δy0i + δyj. Hence,

∆π̄j − δyj ≤ ∆π̄i + δy0i (11)

So ∆π̄i + δy0i > 0. Hence, recalling (9), ∆q̂i ≥ 1 implies ∆yi > 0, or equiv-

alently, ∆yi ≤ 0 implies ∆q̂i ≤ 0. To see ∆qi < 0 for i ∈ S0j, note that

π̄0j ≤ π̄0i by Lemma 2 ii) and π̄j = πj − δyj ≥ π̄i − δyj by Lemma 2 iii). Then

∆π̄j ≤ π̄0i − (π̄i − δyj) = ∆π̄i + δyj. So ∆π̄i ≥ ∆π̄j − δyj > 0. Hence ∆q̂i ≥ 0

implies ∆yi > 0; or equivalently, ∆yi ≤ 0 implies ∆q̂i < 0.

Step 3
P
i∈N ∆yi < 0.

We will first show

X
i∈N

∆q̂iyi < 0

We proceed as follows. Since 1 ∈ Y++ ∩Q−− by assumption, S01 ∩ Y−− 6= ∅

by Lemma 1 ii). For any j ∈ S01 ∩ Y−−, j ∈ Q−− by Step 2. Hence,

Y−− ∩Q−− 6= ∅ (12)
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Since in addition Y−−∩Q++ is empty by Step 2, it follows thatPi∈Y−− ∆q̂i∆yi >

0. Recalling Lemma 1 i), which implies
P
i∈N ∆q̂i∆yi ≤ 0, we have

X
i∈Y++

∆q̂i∆yi =
X
i∈N

∆q̂i∆yi −
X
i∈Y−−

∆q̂i∆yi < 0 (13)

From this we will show
P
i∈Y++ ∆q̂iyi < 0. Note from (9) that ∆π̄i +

∆q̂iδyi = (n− q̂0iδ − δ)∆yi for any i ∈ N . Pick

k ∈ argmaxi∈Y++∩Q−−∆π̄i +∆q̂iδyi

Then for any i ∈ Y++ ∩Q−−,

∆yi =
∆π̄i +∆q̂iδyi
n− q̂0iδ − δ

≤ ∆π̄k +∆q̂kδyk
n− q̂0iδ − δ

=
n− q̂0kδ − δ

n− q̂0iδ − δ
∆yk ≤ n− q̂

0
kδ − δ

n− q̂iδ ∆yk

(14)

where the second inequality follows from the obvious fact that q̂0i ≤ q̂i−1 since

i ∈ Q−−.

If Y++∩Q++ = ∅, obviouslyPi∈Y++ ∆q̂iyi < 0. So suppose Y++∩Q++ 6= ∅.

For any i ∈ Y++ ∩Q++, ∆q̂i ≥ 1, and hence by (11) and (9)

∆π̄i +∆q̂iδy
0
i ≥ ∆π̄i + δy0i ≥ ∆π̄k − δyk ≥ ∆π̄k +∆q̂kδyk = (n− q̂0kδ − δ)∆yk.

Therefore,

∆yi =
∆π̄i +∆q̂iδy

0
i

n− q̂iδ − δ
≥ n− q̂

0
kδ − δ

n− q̂iδ − δ
∆yk (15)

Then it follows from (13), (14), and (15) that

0 >
X
i∈Y++

∆q̂i∆yi =
X

i∈Y++∩Q−−
∆q̂i∆yi +

X
i∈Y++∩Q++

∆q̂i∆yi
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≥ X
i∈Y++∩Q−−

∆q̂i
n− q̂iδ (n− q̂

0
kδ − δ)∆yk +

X
i∈Y++∩Q++

∆q̂i
n− q̂iδ − δ

(n− q̂0kδ − δ)∆yk

=

⎧⎨⎩ X
i∈Y++∩Q−−

∆q̂i
n− q̂iδ +

X
i∈Y++∩Q++

∆q̂i
n− q̂iδ − δ

⎫⎬⎭ (n− q̂0kδ − δ)∆yk

Since both (n− q̂0kδ − δ) and ∆yk are positive,

X
i∈Y++∩Q−−

∆q̂i
n− q̂iδ +

X
i∈Y++∩Q++

∆q̂i
n− q̂iδ − δ

< 0 (16)

Consider m ∈ argmaxi∈N{π̄i}. For any j ∈ N , yj = π̄j
n−q̂jδ−δ ≤ π̄m

n−q̂jδ−δ .

Note also πj ≥ π̄m by Lemma 2 iii), hence yj =
πj

n−q̂jδ ≥ π̄m
n−q̂jδ . Then mul-

tiplying both sides of (16) by π̄m, which must be positive as argued at the

beginning of the proof of Claim 1, we have

0 >
X

j∈Y++∩Q−−

∆q̂j
n− q̂jδ π̄m +

X
j∈Y++∩Q++

∆q̂j
n− q̂jδ − δ

π̄m

≥ X
j∈Y++∩Q−−

∆q̂jyj +
X

j∈Y++∩Q++
∆q̂jyj =

X
j∈Y++

∆q̂jyj

Since Y− = Y−∩Q− by Step 2, Pi∈N ∆q̂iyi =
P
i∈Y++ ∆q̂iyi+

P
i∈Y− ∆q̂iyi < 0,

which ends the first part of Step 3.

To complete Step 3 we will show that n
P
i∈N ∆yi ≤ δ

P
i∈N ∆q̂iyi.

Note that for any i ∈ N ,

gi(Si, δy) = πi ≥ gi(S0i, δy)

It follows that

X
j∈S0i\Si

δyj ≥ v(S0i)− v(Si) (17)
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Summing (17) over all i,

X
i∈N

X
j∈S0i\Si

δyj ≥
X
i∈N
v(S0i)−

X
i∈N

v(Si) (18)

The left hand side of (18) equals δ
P
i∈N ∆q̂iyi, which is negative since we

showed
P
i∈N ∆q̂iyi < 0, and the right hand side equals n

P
i∈N y0i−n

P
i∈N yi =

n
P
i∈N ∆yi. Thus we conclude

P
i∈N ∆yi < 0.

Proof of Claim 1 in the proof of Proposition 7: Assume w.l.g. that

I = {1, 2, ..., |I|} and for any m,n ∈ I, am ≥ an if m > n. For notational

convenience let a0 = 0. If a0 = a|I|, the claim holds obviously. Suppose

a0 < a|I|. It follows from condition ii) that

|I|X
i=1

(ai − ai−1)
|I|X
h=i

bh <
|I|X
i=1

(ai − ai−1)
X

j∈B({h|h≥i})
bj (19)

The left hand side of (19) may be rewritten as

|I|X
i=1

|I|X
h=i

(ai − ai−1)bh =
|I|X
h=1

hX
i=1

(ai − ai−1)bh =
|I|X
h=1

bh
hX
i=1

(ai − ai−1) =
|I|X
h=1

bhah

For notational convenience, let amax(∅) = 0. The right hand side of (19) may

be rewritten as

|I|X
i=1

X
j∈B({h|h≥i})

(ai − ai−1)bj =
X
j∈J

max(B−1(j))X
i=1

(ai − ai−1)bj

=
X
j∈J
bj

max(B−1(j))X
i=1

(ai − ai−1)

=
X
j∈J
bjamax(B−1(j))

<
X
j∈J
bjaj
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where the last inequality is due to condition i).

Proof of Claim 2 in the proof of Proposition 7:

i) Since B is defined on Y++, ∆yi > 0, which implies 1
n
∆π̄i +∆qiδyi > 0

by (5) in the proof of Proposition 6. It follows that, since yi = 1
n
v(N),

|∆qi| < ∆π̄i
δv(N)

. Similarly, one can show |∆qj| > ∆π̄j
δv(N)

since by assumption

∆yj < 0. Note that π̄i = ḡ(N) = π̄j and that j ∈ C 0i implies π̄0j ≥ π̄0i by

Lemma 2 ii). It follows that ∆π̄j ≥ ∆π̄i. Therefore |∆qi| < |∆qj|.

ii) It follows directly from Lemma 1 ii).
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