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BRIEF EXPLANATION OF THE LAGRANGE
METHOD FOR DYNAMIC OPTIMIZATION

1. Start with the constrained maximization problem of
max 1(X,u) subject to the constraint x=f(u) using the
Lagrange expression L = r(x,u) - A[x-f(u)]. First-order
conditions for max are obtained by setting to zero the
derivatives of L with respect to x, u and A. The
resulting equations are solved for the three variables.

2. Easy to generalize this procedure to the case of many
periods when the objective function is a weight sum of
r(x(t), u(t)) over time t and the constraints are
x(t+1)=f(x(t), u(t)) where we call x the state variable
and u the control variable. We can set up the same
Lagrange expression L using a multiplier A(t+1)
associated with the constraint x(t+1)-f(x(t), u(t))=0,
t=1, .... Express optimum u(t) as a “policy function”

g(x(1)).

3. Also straight-forward to generalize the above to the
stochastic case with x(t+1)= f(x(t), u(t), &(t)), &(t)
stochastic. We now have an expectation operator
before the objective function and before the sum of all
the products of A(t+1) and the constraints. The first
order conditions can still be obtained by
differentiation after the summation sign.
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(2.4), the choice is between (2.10) and (2.7). Equation (2.7) could be obtained
by differentiating (2.10) with respect to x;. To obtain the optimal control i, =
- &(xy), (2.7) is preferable because by both methods knowledge of V, is unnec-
essary in obtaining g,(x,) from (2.9) but dV,/dx, or A, is required. For each -
period ¢, to seek the value function V,,;, either analytically or numerically, and
then differentiate it to find the optimal u, is an uneconomical method, as I
pointed out in section 1.2. After the optimization problem is solved by the
Lagrange method, one can obtain the value function by substituting the opti-
mal control function into the dynamic model to evaluate the objective function
or by integrating the Lagrange function.

2.3 Solution of a Standard Dynamic Opfimization Problem .

A standard dynamic optimization problem is .
max E [ZB ( )J, o (2.12)
{"’}g:(‘) . =0 . '

subject to

X = f(xn ut)+8t+l? (213)

in which E, is expectation given information at time 0, and €. IS an inde-
pendent and identically distributed (i.i.d.) random vector with mean zero and
covariance matrix X. As in section 2.1, this problem is solved by introducing
the p x 1 vector A, of Lagrange multlphers and setting to zero the derivatives
- of the Lagrangean expressmn : :

=0

2-E, [Z{B’;(xr, u)—B"lm[xu—f(x, u,)—e,+1]}] - '(2.14).

with respect to i; (t =0, 1...) and x, (¢ = 1, 2...). The first-order conditions
analogous to (2.4) and (2.7) are

;.a%.r(x. u)+j3——f (x,, u )E km =0, 3 | | (2.15)

(2.16)

To Justlfy this method of solution, four observations can be made. First, if
the problem were nonstochastic, that is, if E, were absent and €,; Were con-
stants, the use of Lagrange multipliers is justified because variables in different
time periods are simply treated as different variables, and the constraint

Xy = fl,, u) = €, = 0 for each period requires a separate (vector) multiplier
B!, The factor B! is used to discount the marginal value A,,, of x,,, dated at
t+1. Second, if the problem were stochastic but unconstrained, the procedure
is also justified, because the expectation to be maximized is a function of the
variables u, x,, and A, and first-order conditions can be obtained by differen-
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tiation with respect to these variables, with the order of differentiation and
taking expectation interchanged under suitable regularity conditions. Third,
the method of Lagrange multipliers is to convert a constrained maximization
problem to an unconstrained one by introducing the additional variables 2, as
is done above. Fourth, note that the problem is not to choose u,, u, . . . all at
once in an open-loop policy, but to choose u, sequentially given the informa-
tion x, at time ¢ in a closed-loop policy. Because x, is in the information set
when , is to be determined, the expectations in equations (2.15) and (2.16) for
the determination of «, and A, at period ¢ are E, and not E,. As in section 2.1,
I suggest using equation (2.16) instead of the Bellman equation (2.11), with E,
inserted before V,,;, to obtain the optimal control function u, = g,(x,). In the
next section, I present a well-known numerical method to solve (2.15) and
(2.16) for a pair of functions u, = g(x,) and A, = A(x,) when the functions g and
A are time invariant in an infinite horizon dynamic optimization problem.

2.4 Numerical Solution by Linear Approximations for A and g

To solve the first-order conditions (2.15) and (2.16) for u and A, one can
approximate the function A(x) by a linear function

A(x)=Hx +h 2.17)

One can also approximate dr/dx, dr/du, and f by linear functions

%r(x, u) =K, x+K,u+k, (2.18)

N |

—a—;r(x, u) =Ky x +Kpu+k, (2.19)
fx, u)= Ax+Cu+b (2.20)

The linear functions are obtained by first-order Taylor expansion about some
(%, ). The values (¥, &) might be the sample means of the state and control
variables in an econometric application. They may be the steady-state values
of these variables under optimal control for the nonstochastic version of the
optimal problem obtained by setting €, = 0. These values are obtained by
solving equations (2.13), (2.15), and (2.16) as algebraic equations for x, u and
A omitting all time subscripts and the expectation sign (see problem 5).

In the first step of the solution procedure, the right-hand sides of (2.19) for
or/du and of A,; = Hx,,, + k are substituted into (2.15) to yield

Orfou+BC'E,,, = Kyu+Kyx +k, +BC'H(Ax + Cu+b)+BC’h=0. (2.21)
Solving (2.21) for u gives u = Gx + g, in which
G =~(K,, +BC'HC) " (K, +BC’HA), (2.22)

g =~ (K, +BCHC)" [k, +BC'(Hb+h)| @23)
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In thé next step, observe
Ehy =H(Ax+Cu+b)+h
. = [(A+CG)x+Cg+b]+h
Wthh is lmear in x‘ Subst;tutmg (2. 24) for EA,,, and (2.18) for 0r/ox in' (2.16), |

(224)

h=A(x )=Hx+h= Kyyr+Kp(Gr+g)+h, +BA'{H[(A+CG)x+Cg+b]+A}.
Equating coefﬁ01ents on both sides gives '

H=K, +K,G+BA'H(A+CG), . . - . @25)

h“(K12+BA’HC)g+k +BA?(Hb"+h) e

Equations (2.22) and (2.25) are used to solve for G and H. Given H and G,
© (2.23) and (2.26) are used to solve for g and k. Equations (2.22) and (2.25) can
be combined to yield the following equation in H alone:

H =K, +BA'HA -(K,, +BA’HC)(K,, +BC’HC) (K, +BC'HA).  (2.27)

Equation (2.27) is known as the matrix Riccati equation. It can be solved
iteratively. Given H, one can find G by using (2.22).

The method just described is an example of the method of undetermined
coefficients. To solve two functional equations (2.15) and (2.16) for u = g(x)
and A = A(x), assume both to be linear with coefficients (G, g, H, k). Substitute
the linear functions into the equations. Equate the coefficients on bothsidesto .
- solve for the unknown coefficients. The above method yields the same answer -

“as given by the solution to the well-known linéa quadratic optimal control

problem. The latter problem assumes the function f to be linear and the
function r to be quadratic and, hence, dr/dx and d#/du to be linear. Under these
assumptions the optimal control function g and the Lagrange function A will be

linear, and the value function V will be quadratic. When fis nonlinear and ris -

not quadratic, one may linearize f, 9r/ox, and dr/du about a certain point (%, iz)
and solve equations (2.22), (2.23), (2.25), and (2.26) to find a linear control
function Gx + g together with a linear Lagrange function A = Hx + h. '
The first-order conditions (2.15) and (2.16) may have no solution when
linear approximations are used for A and g. Assuming that solutions for linear
A and g exist and that (2.27) can be solved for H and, hence, (2.22) can be
“solved for G, one finds an approximately optimum control function u = g + Gx.
If a time-invariant linear control function g + Gx is found, the steady-state
value for x, if it exists, can be found by solving «

-x=f(x g+Gx)

Note that a time-invariant optimal control function does not necessanly :
produce a steady state for x,, depending on the dynamic model specified by
f(x, u). For example, if there are two explosive roots in the 2 x 2 matrix A in
a linear f,



CHAPTER THREE

Economic Grow’rh'

3.1 The Brock-Mirman Growth Model

Consider a very simple optimal growth model

max » Ep‘Inc, (3.1)
{e:} =0 '
subject to
ki =kiz,—c, (3.2)

in which consumption c, is the control variable, and capital stock k, and
random shock z, are state variables. By using dynamic programming, set up the
Bellman equation '

V(x,) = muax{r(x,, u,) + [3E,V(x,+1 )} 3.3)

for this problem and solve for the value function. Assuming, in favor of
Bellman, that I conjecture correctly that the value function takes the form

V(k,, z,)=a+blnk, +clnz, (3.4)

where a, b, and ¢ are three parameters to be determined. Evaluating V,,, =

V(k..1» 2.41) by using the dynamic constraint and taking its conditional expecta-

tion E, give .
V(km’ Z:+l) =a+ bln(k,“z, - Cl) +clnz

41
EV(k., 2,4)=a+bIn(k¥z, ~c,)+cE, Inz,,,

where E|lnz,, is assumed to be zero. Maximizing the expression in curly
brackets in (3.3) by differentiation with respect to c,, one obtains

G 5 b et —Bb(ksz, ~¢,)” =0

t
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yielding the optimal control function
' x|
c, =(1+Bb) koz,.

Substituting this optimal ¢, into the expression in curly brackets, one obtains

mf,lx{ } = —ln(l + ﬁb) +Ba+Bb ln( 1 El[)ibJ + a(l + Bb)ln k, + (1 + ﬁb)ln 2

(3-5)

which, by the Bellman equation (3.3), equals the value function (3.4). By
equating coefficients of (3.4) and (3.5), one solves for the unknown parameters
of the value function and obtains, after some algebraic manipulations,

a=[1-B]" [1“(1 o) +po1-cB)” ln(aﬂ)]
b= oc(l - 05[3)-1

c= (1 - aB)—l.‘

The method of Lagrange multipliers is simpler than dynamic programming
because it does not seek the value function. By this method, solve the first-
order conditions given by (2.15) and (2.16) of chapter 2, or

¢! -BEA, =0 (3.7)

(3.6)

7\'t = BaktunlzzEt}"Hl (38)

If the time horizon is T and kr,, = 0, the optimal cr is k§z, which suggests the
function ¢, = dk?z,, d being a parameter to be determined. By using this
conjecture for ¢, and combining conditions (3.7) and (3.8), one obtains A, =
d-'ok;l. By using this to evaluate A,,; = d-o(kez, — dk?z,)™ on the right side of
(3.8) and equating coefficients on both sides of equation (3.8), one obtains
d=1- ap. Thus, easily obtained are the optimal control function for c, and the
Lagrangean function A,, namely, ‘

¢, =(1-oB)kez,

A, =(1-0p) ok (39)

Only one unknown parameter d =1 - off is required, rather than three in the -
case of solving the Bellman equation (3.3). Note that A, = dV/ok,

This example demonstrates that, as pointed out in sections 1.2 and 2.2, to
obtain the optimal control function, it is unnecessary to seek the value func-
tion, because the first-order condition (3.7) involves only A1 = OV(X,9)/0x,,,
and not V(x,,,) itself. The method of Lagrange multipliers is simpler in this
example also because only the partial derivative of V with respect to the state
variable k, subject to constraint is required.



Characteristics of the Lagrange Method

1. No Bellman equation is required because the value
function is not used in deriving the optimal policy.

2. Since L evaluated at the optimal policy equals the value
function, and A is the partial of L with respect to y, it is the
partial of the value function with respect to y.

3. In my book Dynamic Economics, I have shown that in
many examples the Lagrange method gives a simpler
(algebraically and/or computationally) solution than
dynamic programming. The main reason is that dynamic
programming seeks the value function which contains more
information than 1s required — it asks us to do extra work.
To see this point, why not apply dynamic programming to
solve a deterministic control problem in continuous time —
in the latter case the Lagrange method is reduced to the
Maximum Principle which is widely used instead of
dynamic programming.

4. Dynamic programming fails if the model consists of
expectations of future variables. M. Woodford, “Optimal
monetary inertia:” x= output gap (deviation of log real
output from trend minus “natural rate” of output; r=
deviation of interest rate (control variable) from a steady
state value; r'= natural rate of interest; n= inflation rate.
Model consists of two equations for x, and m,in which EX;
and Et.. appear. The Lagrange method 1s applicable, but
dynamic programming is not.



Optimization for Stochastic Models in Continuous Time

We start with an intuitive explanation first. Consider a
small time interval dt and treat the stochastic constraint
as dx =x(t+dt)-x(t) = f(x(t), u(t))dt + Sdz(t), where z(t) is
a Brownian motion. Its increment dz(t)=z(t+dt)-z(t) has
a variance proportional to dt. Since successive
increments are statistically independent, the variance of
the increment for three unit time intervals 1s the sum of
the three variances, or three times the variance for one
unit time interval. dz is of order Vdt, much smaller than
dt when dt 1s small and can be ignored when we deal
with terms of order dt. We replace the sum in the
Lagrange expression over the constraints at all time t by
an appropriate integral as in the above expression for L
in our problem. Then proceed to differentiate L with
respect to the state and control variables at each t and set
the derivatives equal to zero. This is the method. One
has to be more precise in defining the integral in this
Lagrange expression L. To make the definition
consistent with stochastic calculus, all one needs to do is
to replace A(t+dt) by the sum A(t)+dA and to break up the
integral into the two parts, with the second involving the
quadratic variation [dA, dz].

Merton (1969): To determine consumption ¢ and fraction
w; of total wealth W to be invested in asset 1 with mean
rate of return a; and instantaneous standard deviation s;.

L = [E{ePu(c)dt —e PO\ (t+dt) [dW-(WZwio-c)dt—
WZiWiSidZi] }



Problems and Economic Applications

Problems on the Lagrange method. Chapter 2, Problems
1-5, 9.

Applications to models of economic growth. Chapter 3,
Problems 5 (growth model based on human capital and
fertility), 6 (growth model based on technology) and 7
(growth model based on research and development).
Theories of market equilibrium. Economic examples
drawn from Stokey and Lucus, Recurve Methods in
Dynamic Economics. Chapter 4.

Business Cycles. Chapter 5.

Dynamic Games, Chapter 6.

Applications to financial economics. Chapter 7.

Models of Investment. Chapter 8.

Numerical Methods. Chapter 9.
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Assume that there are two assets in the financial market: a stock and a

bond. Let R, = [RLt qut]T be a vector of returns to these two assets, meaning

that one dollar invested in asset i at the beginning of period t will result in

R, dollars at the end of period t. The covariance matrix of R, will be
denoted by X =(oy),,,. The consumer-investor is assumed to construct a self-
financing portfolio with the two assets and consume C, during period t. Let
w, be the proportion of wealth invested in the stock. Following Samuelson

(1969), the beginning-of-period value Z, of such a portfolio is governed by

Zt+l = (Zt - Ct)[Wt 1- Wt]Rt (1)

00

L= ZEtﬂt{u(Ct)—ﬂﬂm [Zt+1 - (Zt _Ct)[Wt 1_Wt ](Rt )]} (3)

t=0

First-order conditions are obtained by setting to zero the partial derivatives
of L with respect to the control variables C; and w;and the state variable

Zy.



