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BRIEF EXPLANATION OF THE LAGRANGE 

METHOD FOR DYNAMIC OPTIMIZATION 

 
1. Start with the constrained maximization problem of 

max r(x,u) subject to the constraint x=f(u) using the 
Lagrange expression L = r(x,u) - λ[x-f(u)].  First-order 
conditions for max are obtained by setting to zero the 
derivatives of L with respect to x, u and λ. The 
resulting equations are solved for the three variables.   

 
2. Easy to generalize this procedure to the case of many 

periods when the objective function is a weight sum of 
r(x(t), u(t)) over time t and the constraints are 
x(t+1)=f(x(t), u(t)) where we call x the state variable 
and u the control variable.  We can set up the same 
Lagrange expression L using a multiplier λ(t+1) 
associated with the constraint x(t+1)-f(x(t), u(t))=0, 
t=1, …. Express optimum u(t) as a “policy function” 
g(x(t)). 

 
3. Also straight-forward to generalize the above to the 

stochastic case with  x(t+1)= f(x(t), u(t), ε(t)), ε(t) 
stochastic.  We now have an expectation operator 
before the objective function and before the sum of all 
the products of λ(t+1) and the constraints.  The first 
order conditions can still be obtained by 
differentiation after the summation sign. 













Characteristics of the Lagrange Method 
 
1. No Bellman equation is required because the value 
function is not used in deriving the optimal policy. 
 
2. Since L evaluated at the optimal policy equals the value 
function, and λ is the partial of L with respect to y, it is the 
partial of the value function with respect to y. 
 
3. In my book Dynamic Economics, I have shown that in 
many examples the Lagrange method gives a simpler 
(algebraically and/or computationally) solution than 
dynamic programming.  The main reason is that dynamic 
programming seeks the value function which contains more 
information than is required – it asks us to do extra work.  
To see this point, why not apply dynamic programming to 
solve a deterministic control problem in continuous time – 
in the latter case the Lagrange method is reduced to the 
Maximum Principle which is widely used instead of 
dynamic programming. 
 
4. Dynamic programming fails if the model consists of 
expectations of future variables.  M. Woodford, “Optimal 
monetary inertia:” x= output gap (deviation of log real 
output from trend minus “natural rate” of output; r= 
deviation of interest rate (control variable) from a steady 
state value; rn= natural rate of interest; π= inflation rate. 
Model consists of two equations for xt and πt in which Etxt+1 
and Etπt+1 appear.  The Lagrange method is applicable, but 
dynamic programming is not. 
 



Optimization for Stochastic Models in Continuous Time 
 
We start with an intuitive explanation first.  Consider a 
small time interval dt and treat the stochastic constraint 
as dx =x(t+dt)-x(t) = f(x(t), u(t))dt + Sdz(t), where z(t) is 
a Brownian motion.  Its increment dz(t)=z(t+dt)-z(t) has 
a variance proportional to dt.  Since successive 
increments are statistically independent, the variance of 
the increment for three unit time intervals is the sum of 
the three variances, or three times the variance for one 
unit time interval.  dz is of order √dt, much smaller than 
dt when dt is small and can be ignored when we deal 
with terms of order dt.  We replace the sum in the 
Lagrange expression over the constraints at all time t by 
an appropriate integral as in the above expression for L 
in our problem.  Then proceed to differentiate L with 
respect to the state and control variables at each t and set 
the derivatives equal to zero.  This is the method.  One 
has to be more precise in defining the integral in this 
Lagrange expression L.  To make the definition 
consistent with stochastic calculus, all one needs to do is 
to replace λ(t+dt) by the sum λ(t)+dλ and to break up the 
integral into the two parts, with the second involving the 
quadratic variation [dλ, dz]. 
 
Merton (1969): To determine consumption c and fraction 
wi of total wealth W to be invested in asset i with mean 
rate of return αi and instantaneous standard deviation si. 
 
L = ∫Et{e-βtu(c)dt –e-β(t+dt)λ(t+dt) [dW-(WΣiwiαi-c)dt–
WΣiwisidzi]} 



 
Problems and Economic Applications 
 
Problems on the Lagrange method.  Chapter 2, Problems 
1-5, 9. 
 
Applications to models of economic growth.  Chapter 3, 
Problems 5 (growth model based on human capital and 
fertility), 6 (growth model based on technology) and 7 
(growth model based on research and development). 
 
Theories of market equilibrium.  Economic examples 
drawn from Stokey and Lucus,  Recurve Methods in 
Dynamic Economics. Chapter 4. 
 
Business Cycles.  Chapter 5. 
 
Dynamic Games, Chapter 6. 
 
Applications to financial economics. Chapter 7. 
 
Models of Investment.  Chapter 8.   
 
Numerical Methods.  Chapter 9.  
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Assume that there are two assets in the financial market: a stock and a 

bond. Let  be a vector of returns to these two assets, meaning 

that one dollar invested in asset i at the beginning of period t will result in 

 dollars at the end of period t. The covariance matrix of  will be 

denoted by 
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First-order conditions are obtained by setting to zero the partial derivatives 

of L with respect to the control variables Ct    and   wt and    the state variable 

Zt.                                          .                                                                                                                                                                      
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