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INTRODUCTION

e [ hroughout the paper, we consider the fol-
lowing linear regression model:

Yit = T + Ui, (1)
where 1 = 1,...,N and t = 1,...,7T, T > 2,
x;¢+ 1S a kxl-vector while both y; and u; are
scalars.

e In fact, this is a typical panel data model.

e [ hough, as one can tell from the title, our
focus is the time series properties.

e More precisely, we are interested, with panel
data, in investigating the time series proper-
ties, with a low time-series dimension (T is
fixed) but a high cross-sectional dimension (N —



INTRODUCTION (cont’d)

e On major drawback in making inference on
the parameter 8 in Equation (1) is to model
and estimate the cross-sectional correlations.

e More precisely, for statistical inference, one
may need to model and estimate, fort=1,...,T,
the following N(N —1)/2 cross-product terms:

Elziuiujert], (2)

where 1 < j3,and ¢,5=1,...,N.

e [his is not easy when N, the number of
cross-sectional units, is large.



INTRODUCTION (cont’d)

e In the literature, there are at least four ways
to tackle this issue.

e (i) Assuming away the cross-sectional corre-
lations. That is, in Equation (2) above:

e See, for instance, Anderson (1978) JASA,
Anderson and Hsiao (1981) JASA, Holz-Eaken,
Newey and Rosen (1988) Ec., Quah (1994)
EL, and Phillips and Moon (1999) Ec.

e [ his assumption may not be justifiable.



INTRODUCTION (cont’d)

e (ii) Assuming T, the number of time-series
units, is also large. In one way or the other, one
may estimate the N(N — 1)/2 cross-product
terms in Equation (2) with T time-series units.

e See, for instance, Kao (1999) JOE, Bai and
Ng (2003) Ec. and Bai (2003) Ec. and a sur-
vey paper by Choi (2005).

e [ he assumption of large T is justifiable in
many cases but it may not be justifiable in the
so-called short panel data.



INTRODUCTION (cont’d)

e (iii) Using the geographical distance or the
economic distance to model the cross-sectional
correlations.

e (Geographical distance is commonly used in
the field of spatial statistics/econometrics. See,
for instance, Kelejian and Prucha (1999) IER.

e [ he interesting idea of economic distance is
first introduced by Conley (1999) JOE. Since
then it attracts a lot of attention from econo-
mists.

e However, the concept geographical distance
may not be applicable to some if not all eco-
nomic data while the concept economic dis-
tance is a bit controversial.



INTRODUCTION (cont’d)

e (iv) Pesaran (2006) Ec.: A special case.



INTRODUCTION (cont’d)

e In this paper, we first follow the lines in Con-
ley (1999) and prove the +/N- consistency of
our OLS estimator.

e [ hen we use the T time-series unit to cap-
ture the cross-sectional correlations. I' can be
small as long as 1" > 2.

e In fact, for sake of theoretical simplicity, we
assume that T is fixed while N — oco.
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OLS : DISJ

e For the disjoint case, we split the time-series
units into two parts, one with 77 observations
and the other with T'— T7 observations.

e T he T7 observations are for estimating g
while the remaining T'—T7 observations are for
estimating the " variance-covariance’” matrix of

3.
e More precisely:

— (Z Z xzsw ) 1( Z Z TisYis)- (3)

s=1:=1 s=1:1=1

Note the time-series units go from 1 to 77 only.
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Assumptions : DISJ

Assumption (a). N — oo and T is fixed.

Assumption (b). For¢t=1,...,T,

N
N—1/2 > myuy —p rwf,
i=1
where T is a positive definite matrix and W}

iIs a kK — dimenstonal standard normal random
vector.

Assumption (c¢). Fort=1,...,T,
N
N7t Z fUith{it — Ma.s.,

i=1
where M is an kxk- invertible constant matrix.
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Theorem : DISJ

Theorem 2.1. Suppose Assumptions (a)-(c)
hold.

Ty

VN(B—-B) —p M~ 1r<—ZW§>. (4)

1 s=1

e [ he proof of Theorem 2.1 follows the lines
in Conley (1999). In fact Conley (1999) gives
us some primitive assumptions to assume As-
sumption (b). The difference is on the " variance-
covariance’” matrix:

o

)

Z (N~ 1/2 Z it ) (N~ 1/2 Z CCztuzt) :

t=T71+1 1=1
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Wald Test : DISJ

Assumption (d). . .

/ /
Z%F:T1+1(Wtk—Ti1 Sl W (W —Til S W)
IS p.d. a.s.

e Assumption (d) is non-trivial. Consider the
simple case that Ty = T, = 1. If WF = Wk

T o
a.s., the term (WF — T%Zsl:l WFE) is identically
zero a.s.

e The Wald test for g = (p:
W =VN(B - 60)' V" VN(B - Bo),

Theorem 2.2. Suppose Assumptions (a)-(d) hold. W
converges in distribution to:

S WELY (W S WHOVE - 23 WIS W (9)



OLS : OVER

e For the overlapping case, we use the all T
observations are for both estimating g and es-
timating the "variance-covariance’” matrix of

-~

3.

e More precisely:

— (Z Z xzsw ) 1( Z Z TisYis)- (6)

s=1:1=1 s=1:1=1

Note the time-series units go from 1 to T'.
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Theorem : OVER

Theorem 2.1’. Suppose Assumptions (a)-(c)
hold (as in Theorem 2.1).

1
?ZWS) (7)

s=1

VN(B —B) —p M1 (

e [ he "variance-covariance’ matrix:

Vv = AlBA-

)
I
=
E
M=
8
&

we)
I

d 1/2 N 1/2 N
Y (NT / Y @ity ) (N / ) Titliz) .
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Wald Test : OVER

Assumption (d’). / /
SE W - A5 whwE — 25T, wE) s
p.d. a.s.

e T he Wald test for 8 = (3p:
W = VN(B - B0)' V" VN(B - Bo),

Theorem 2.2’. Suppose Assumptions (a)-(d) hold. W
converges in distribution to:

T

T / T 1 / 1 T / T
D WER W= WHWE = WO Y WE (8)
t=1

s=1 s=1 s=1 s=1

e Remarks:

(i) It is not difficult to generalize the Wald
tests to the case that Hg : RG = rg.

(ii) The distribution in Theorem 2.2’ is obvi-
ously different from that in Theorem 2.2. Both
of them can be simulated though.
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OVER vs 2z — test

e Our OVER is analogous to the classical z-
test for the population mean.

e Consider a special case in Equation (1):

yit = B+ ujt. (9)

e Suppose we want to test Hg : VNGB =V Np.

e If we sum all the terms in Equation (9) against
i and multiply them by N—1/2 we will get:

N
one = VNB+ N2 5wy, (10)
1=1

where vy = N"1/2 5N Ly
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OVER vs 2z — test

e Our OVER in Theorem (2.1") will give:

VT(vn — vV Nfp)
\/Zle(’vm — Uy)?

_ T (on — VNBo)
T=1/5T  (vye — o8)2/(T — 1)
T

1, 11
L\ A1 (11)

where zp_q1 denotes a random variable which
is ¢ distributed with T'— 1 degrees of freedom.
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Application : Unit Root Test

e Assuming an AR(k+4+1) model, we consider
the linear regression model:

Awy = Ty + uy, (12)

where z;; = (wip—1, Awip_1,. .., Awy_py1), t =
1. Tandi=1,... N.

e [ he Augmented Dickey-Fuller test in this
setting is simply testing Hp : 51 = 0.
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Application : Cointegration Test

e Presumably all the elements of w;; are I1(1).
We consider the following linear regression model:

wito = TieB + wiy, (13)

where x;; = (witl,...,witk)/, t=1,...,7 and
i=1,....N.

e One form of testing for no cointegration can
be cast as Hgp : 8 = 0.

e [ here should not be a problem of " spurious
regression” (see Granger and Newbold (1973)
JOE and Phillips (1986) JOE) as we assume
T is fixed.
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Generalization of OLS

e Define 7 = {1,...,T}. Consider two subsets
of 7, 71 and 7».

e Consider the general version of OLS:

- N N
8= Z Z mz’sx;js)_l( Z Z TisYis). (14)

s€7y1=1 s€771=1

Theorem 4.1. Suppose Assumptions (a)-(c)
hold.

= -1 1 k
VN(B=B) —r M7 (g 3 Wi,

lsey

e VV can be defined accordingly, with the time-
series observations in the subset 75,

e [ he Wald test can also be constructed ac-
cordingly.
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Extenstion to Instrumental Variable Estimation

e Define 7 = {1,...,T}. Consider two subsets
of 7, 71 and 7».

e Suppose we have an instrument z;, which
is also a kxl-vector. Define the following IV
(instrumental variable) estimator:

_ N N
B =( Z Z Zz'sx;js)_l( Z Z ZisYis). (15)

s€7y1=1 s€71=1

e Assumption (b’). Fort=1,...,T,

N
—1/2 k
N~/ > ziguyy —p TWY,
i=1

where I is a positive definite matrix and W}

IS a kK — dimenstonal standard normal random
vector.
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Extenstion to Instrumental Variable Estimation

e Assumption (c’). Fort=1,...,T,

N
Nt Z Zz'tw;t — Ma.s.,
i=1
where M is an kxk- invertible constant matrix.

e Theorem 4.3. Suppose Assumptions (a),
and Assumptions (b')-(c’) hold.

VNG —B) —p M~ 1r(— S wh).

367'1

e VV can be defined accordingly, with the time-
series observations in the subset 75,

e [ he Wald test can also be constructed ac-
cordingly.
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Simulating Critical Values
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TABLE 5.1

Quantiles of the Limiting Distribution in (5) or (8), k = 1.

a—th simulated quantiles

T ro 800 .900 950 980 .990
2 DISJ 2806 10.502 40.500  267.384 1063.563
OVER 18948 79.502 320.144 2118.335 8564.449

227 18.948 79.733 322.885 2025.152 8104.427

3 DISJ 9273 36.517 147.250  947.310 3452.401
OVER 5375 12882 27.866  74.468 151.616

323 5335 12.790 27774 72767  147.758

4 DISJ 1.775 3593 7110  17.652  35.444
OVER 3579 7.386 13491  27.004  44.591

323 3577  7.382 13500  27.494  45.490

5 DISJ 3225 6918 14.079  34.709  70.060
OVER 2927 5680  9.597  17.531  26.328

524 2938 5.682  9.633  17.550  26.496

6 DISJ 1639 2906  4.834 9.117  14.410
OVER 2625 4.853 7914  13.631  19.782

SZ2 2614 4872 7.932 13588  19.508

7 DISJ 2423 4411 7426  14.067  22.642
OVER 2412 4410 6974  11.525  15.841

Iz 2419 4404 6986  11.525  16.032

8 DISJ 1.627 2719  4.119 7.006  10.005
OVER 2233 3978  6.058  10.145  13.845

822 2288 4104 6392 10272 13.992

9 DISJ 2156  3.693  5.742 9.869  15.029
OVER 2177 3827 5812 9.132  12.295

924 2195 3.892  5.982 8.858  12.663

10 DISJ 1615 2637  3.957 6.100 8.419
OVER 2090 3.694  5.617 8.636  11.601

022 2125 3733  5.685 8.842  11.736

20 DISJ 1.614 2570  3.607 5.020 6.104
OVER 1835 3.073 4518 6.654 8.273

223,  1.856  3.147 4.611 6.786 8.616

30 DISJ 1600 2560  3.577 4.964 6.215
OVER 1761 2963  4.232 6.082 7.589

3023, 1778 2986  4.326 6.270 7.857

50 DISJ 1602 2572  3.676 5.066 6.084
OVER 1.715 2.854  4.108 5.852 7.247

2023 1722 2868  4.121 5.902 7.329

100 DISJ  1.627 2.643  3.732 5.208 6.266
OVER 1667 2782  3.981 5.692 6.824

W23, 1.681  2.785  3.977 5.648 6.968

121 DISJ 1643 2721  3.846 5.249 6.173
OVER 1670 2792  4.023 5.702 7.004

223, 1652 2772 3.953 5.606 6.906

% 1.642  2.706 3.841 5.412 6.635




Monte — Carlo Experiements
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TABLE 6.1(a)

Rejection Percentage under Hy : 81 =0, p = 0.

Size

T Test 10% 5% 1%
2 DISJ 10.00 4.65 0.75
OVER 9.85 4.65 0.70

WHITE 11.45 6.95 1.75

10 DISJ 10.00 5.05 1.00
OVER 10.15 4.80 0.90

WHITE 10.65 4.80 1.25

50 DISJ 10.45 5.15 0.90
OVER 10.05 4.25 1.05

WHITE 9.95 5.15 0.75

TABLE 6.1(b)
Rejection Percentage under Hy : 51 = 0, p = 0.5.
Size

T Test 10% 5% 1%
2 DISJ 9.75 5.60 1.35
OVER 9.65 5.35 1.35
WHITE 22.35 15.85 5.80

10 DISJ 10.80 5.65 1.05
OVER 10.40 5.60 1.55
WHITE 20.65 13.20 4.55

50 DISJ 11.25 5.75 1.45
OVER 11.30 5.20 1.25
WHITE 20.80 13.55 4.85

TABLE 6.1(c)

Rejection Percentage under Hy : 81 =0, p=0.9.

Size

T Test 10% 5% 1%
2 DISJ 12.45 6.45 1.10
OVER 11.85 6.05 1.00
WHITE 62.05 55.45 44.30

10 DISJ 12.10 7.40 2.25
OVER 11.35 5.85 1.65
WHITE 58.00 51.70 39.60

50 DISJ 11.05 6.10 2.10
OVER 10.75 5.80 1.35
WHITE 57.30 49.70 36.70




TABLE 6.2(a)

Rejection Percentage under H, : 5, = 0.1, p = 0.

Size

T Test 10% 5% 1%
2 DISJ 15.10 7.35 1.35
OVER 14.60 7.15 1.40
WHITE 29.50 20.00 7.80

10 DISJ 49.25 37.65 14.95
OVER 67.70 52.80 24.35
WHITE 73.50 62.65 39.40

50 DISJ 95.70 92.90 83.75
OVER 99.95 99.90 98.65
WHITE 99.95 99.95 99.20

TABLE 6.2(b)

Rejection Percentage under H, : 81 = 0.5, p = 0.

Size

T Test 10% 5% 1%
2 DISJ 56.05 31.45 5.60
OVER 57.20 31.15 5.45
WHITE 99.95 99.65 99.05

10 DISJ 100.00 100.00 99.50
OVER 100.00 100.00 100.00
WHITE 100.00 100.00 100.00

50 DISJ 100.00 100.00 100.00
OVER 100.00 100.00 100.00
WHITE 100.00 100.00 100.00

TABLE 6.2(c)
Rejection Percentage under H, : 5, = 0.9, p = 0.
Size

T Test 10% 5% 1%
2 DISJ 80.25 52.60 11.50
OVER 83.80 53.30 11.20
WHITE 100.00 100.00 100.00

10 DISJ 100.00 100.00 100.00
OVER 100.00 100.00 100.00
WHITE 100.00 100.00 100.00

50 DISJ 100.00 100.00 100.00
OVER 100.00 100.00 100.00
WHITE 100.00 100.00 100.00




Conclusions and Discussions

e We propose a Wald test for the parameter
in a linear regression model, in which there are
cross-sectional correlations among the N units,
where N goes to infinity.

e Unlike the existing literature,

(i) We do not assume away the cross-sectional
correlations.

(ii)) We do not assume the number of time-
series units, denoted as T is large, as long as
T > 2.

(iii) We do not rely on the definition of eco-
nomic distance.

(iv) Our approach is applicable to a general
linear regression model.

e In one of the sections, we also consider a unit
root test and a test for cointegration.
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e In future research:

(i) We will consider the case where, possibly,
T — .

(ii) The optimal choice of #77 and/or #7>.



