Capturing Cross-Sectional Correlation with Time Series: with an Application to Unit Root Test

Chor-yiu SIN (CY)
Wang Yanan Institute for Studies in Economics (WISE)
Xiamen University, Fujian, P.R.China
Email: cysin@xmu.edu.cn

Friday, May 9, 2007

China Center for Economic Research
Peking University

Preliminary draft. Comments are much appreciated.

INTRODUCTION

• Throughout the paper, we consider the following linear regression model:

$$y_{it} = x'_{it}\beta + u_{it}, \tag{1}$$

where $i=1,\ldots,N$ and $t=1,\ldots,T$, $T\geq 2$, x_{it} is a kx1-vector while both y_{it} and u_{it} are scalars.

- In fact, this is a typical panel data model.
- Though, as one can tell from the title, our focus is the time series properties.
- More precisely, we are interested, with panel data, in investigating the time series properties, with a **low** time-series dimension (T is fixed) but a **high** cross-sectional dimension $(N \to \infty)$.

- On major drawback in making inference on the parameter β in Equation (1) is to *model* and *estimate* the cross-sectional correlations.
- ullet More precisely, for statistical inference, one may need to model and estimate, for $t=1,\ldots,T$, the following N(N-1)/2 cross-product terms:

$$E[x_{it}u_{it}u_{jt}x'_{jt}], (2)$$

where i < j, and $i, j = 1, \dots, N$.

ullet This is not easy when N, the number of cross-sectional units, is large.

- In the literature, there are at least *four* ways to tackle this issue.
- (i) Assuming away the cross-sectional correlations. That is, in Equation (2) above:

$$E[x_{it}u_{it}u_{jt}x'_{jt}] = 0.$$

- See, for instance, Anderson (1978) *JASA*, Anderson and Hsiao (1981) *JASA*, Holz-Eaken, Newey and Rosen (1988) *Ec.*, Quah (1994) *EL*, and Phillips and Moon (1999) *Ec.*
- This assumption may not be justifiable.

- (ii) Assuming T, the number of time-series units, is also large. In one way or the other, one may estimate the N(N-1)/2 cross-product terms in Equation (2) with T time-series units.
- See, for instance, Kao (1999) *JOE*, Bai and Ng (2003) *Ec.* and Bai (2003) *Ec.* and a survey paper by Choi (2005).
- ullet The assumption of large T is justifiable in many cases but it may not be justifiable in the so-called *short* panel data.

- (iii) Using the *geographical* distance or the *economic* distance to model the cross-sectional correlations.
- Geographical distance is commonly used in the field of *spatial statistics/econometrics*. See, for instance, Kelejian and Prucha (1999) *IER*.
- The interesting idea of economic distance is first introduced by Conley (1999) *JOE*. Since then it attracts a lot of attention from economists.
- However, the concept *geographical* distance may not be applicable to some if not all economic data while the concept *economic* distance is a bit controversial.

• (iv) Pesaran (2006) Ec.: A special case.

- \bullet In this paper, we first follow the lines in Conley (1999) and prove the \sqrt{N} consistency of our OLS estimator.
- Then we use the T time-series unit to cap-ture the cross-sectional correlations. T can be small as long as $T \geq 2$.
- ullet In fact, for sake of theoretical simplicity, we assume that T is fixed while $N \to \infty$.

OUTLINE OF THE TALK

- (1) Introduction
- (2) Two OLS estimators and two Wald tests
- The disjoint case (DISJ)
- The *overlapping* case (OVER) and its similarity with the classical *z-test*
- (3) Two applications: Testing for unit root and testing for cointegration
- (4) Generalizing and extending (2)
- (5) Simulating the critical values
- (6) Monte Carlo Experiments
- Comparing DISJ and OVER with another test that ignores cross-sectional correlations
- (7) Conclusions and Discussions

OLS: DISJ

- ullet For the disjoint case, we split the time-series units into two parts, one with T_1 observations and the other with $T-T_1$ observations.
- The T_1 observations are for estimating β while the remaining $T-T_1$ observations are for estimating the "variance-covariance" matrix of $\widehat{\beta}$.
- More precisely:

$$\widehat{\beta} = (\sum_{s=1}^{T_1} \sum_{i=1}^{N} x_{is} x'_{is})^{-1} (\sum_{s=1}^{T_1} \sum_{i=1}^{N} x_{is} y_{is}).$$
 (3)

Note the time-series units go from 1 to T_1 only.

Assumptions: DISJ

Assumption (a). $N \to \infty$ and T is fixed.

Assumption (b). For t = 1, ..., T,

$$N^{-1/2} \sum_{i=1}^{N} x_{it} u_{it} \longrightarrow_{\mathcal{L}} \Gamma W_t^k,$$

where Γ is a positive definite matrix and W_t^k is a k-dimensional standard normal random vector.

Assumption (c). For t = 1, ..., T,

$$N^{-1} \sum_{i=1}^{N} x_{it} x'_{it} \to Ma.s.,$$

where M is an kxk- invertible constant matrix.

Theorem: DISJ

Theorem 2.1. Suppose Assumptions (a)-(c) hold.

$$\sqrt{N}(\widehat{\beta} - \beta) \longrightarrow_{\mathcal{L}} M^{-1} \Gamma(\frac{1}{T_1} \sum_{s=1}^{T_1} W_s^k). \tag{4}$$

• The proof of Theorem 2.1 follows the lines in Conley (1999). In fact Conley (1999) gives us some *primitive* assumptions to assume Assumption (b). The difference is on the "variance-covariance" matrix:

$$\hat{V} = \hat{A}^{-1}\hat{B}\hat{A}^{-1},
\hat{A} = N^{-1}\sum_{s=1}^{T_1}\sum_{i=1}^{N}x_{is}x'_{is}
\hat{B} = \sum_{t=T_1+1}^{T}(N^{-1/2}\sum_{i=1}^{N}x_{it}\hat{u}_{it})(N^{-1/2}\sum_{i=1}^{N}x_{it}\hat{u}_{it})'.$$

Wald Test: DISJ

Assumption (d).
$$\sum_{t=T_1+1}^T (W_t^k - \frac{1}{T_1} \sum_{s=1}^{T_1} W_s^k) (W_t^{k'} - \frac{1}{T_1} \sum_{s=1}^{T_1} W_s^{k'})$$
 is p.d. a.s.

- Assumption (d) is non-trivial. Consider the simple case that $T_1 = T_2 = 1$. If $W_1^k = W_2^k$ a.s., the term $(W_t^k - \frac{1}{T_1} \sum_{s=1}^{T_1} W_s^k)$ is identically zero a.s.
- The Wald test for $\beta = \beta_0$:

$$\widehat{\mathcal{W}} = \sqrt{N}(\widehat{\beta} - \beta_0)'\widehat{V}^{-1}\sqrt{N}(\widehat{\beta} - \beta_0),$$

Theorem 2.2. Suppose Assumptions (a)-(d) hold. $\widehat{\mathcal{W}}$ converges in distribution to:

$$\sum_{s=1}^{T_1} W_s^{k'} \left[\sum_{t=T_1+1}^{T} (W_t^k - \frac{1}{T_1} \sum_{s=1}^{T_1} W_s^k) (W_t^{k'} - \frac{1}{T_1} \sum_{s=1}^{T_1} W_s^{k'}) \right]^{-1} \sum_{s=1}^{T_1} W_s^k.$$
 (5)

OLS: OVER

- ullet For the overlapping case, we use the all T observations are for both estimating eta and estimating the "variance-covariance" matrix of $\widehat{\beta}$.
- More precisely:

$$\widehat{\beta} = (\sum_{s=1}^{T} \sum_{i=1}^{N} x_{is} x'_{is})^{-1} (\sum_{s=1}^{T} \sum_{i=1}^{N} x_{is} y_{is}).$$
 (6)

Note the time-series units go from 1 to T.

Theorem: OVER

Theorem 2.1'. Suppose Assumptions (a)-(c) hold (as in Theorem 2.1).

$$\sqrt{N}(\widehat{\beta} - \beta) \longrightarrow_{\mathcal{L}} M^{-1} \Gamma(\frac{1}{T} \sum_{s=1}^{T} W_s^k). \tag{7}$$

• The "variance-covariance" matrix:

$$\hat{V} = \hat{A}^{-1} \hat{B} \hat{A}^{-1},
\hat{A} = N^{-1} \sum_{s=1}^{T} \sum_{i=1}^{N} x_{is} x'_{is}
\hat{B} = \sum_{t=1}^{T} (N^{-1/2} \sum_{i=1}^{N} x_{it} \hat{u}_{it}) (N^{-1/2} \sum_{i=1}^{N} x_{it} \hat{u}_{it})'.$$

Wald Test: OVER

Assumption (d').

$$\sum_{t=1}^{T} (W_t^k - \frac{1}{T} \sum_{s=1}^{T} W_s^k) (W_t^{k'} - \frac{1}{T} \sum_{s=1}^{T} W_s^{k'})$$
 is p.d. a.s.

• The Wald test for $\beta = \beta_0$:

$$\widehat{\mathcal{W}} = \sqrt{N}(\widehat{\beta} - \beta_0)'\widehat{V}^{-1}\sqrt{N}(\widehat{\beta} - \beta_0),$$

Theorem 2.2'. Suppose Assumptions (a)-(d) hold. $\widehat{\mathcal{W}}$ converges in distribution to:

$$\sum_{s=1}^{T} W_s^{k'} \left[\sum_{t=1}^{T} (W_t^k - \frac{1}{T} \sum_{s=1}^{T} W_s^k) (W_t^{k'} - \frac{1}{T} \sum_{s=1}^{T} W_s^{k'}) \right]^{-1} \sum_{s=1}^{T} W_s^k.$$
 (8)

- Remarks:
- (i) It is not difficult to generalize the Wald tests to the case that $H_0: R\beta = r_0$.
- (ii) The distribution in Theorem 2.2' is obviously different from that in Theorem 2.2. Both of them can be simulated though.

OVER vs z - test

- Our OVER is analogous to the classical ztest for the population mean.
- Consider a special case in Equation (1):

$$y_{it} = \beta + u_{it}. (9)$$

- Suppose we want to test $H_0: \sqrt{N}\beta = \sqrt{N}\beta_0$.
- If we sum all the terms in Equation (9) against i and multiply them by $N^{-1/2}$, we will get:

$$v_{Nt} = \sqrt{N}\beta + N^{-1/2} \sum_{i=1}^{N} u_{it}, \tag{10}$$

where $v_{Nt} \equiv N^{-1/2} \sum_{i=1}^{N} y_{it}$.

OVER vs z - test

• Our OVER in Theorem (2.1') will give:

$$\frac{\sqrt{T}(\bar{v}_{N} - \sqrt{N}\beta_{0})}{\sqrt{\sum_{t=1}^{T}(v_{Nt} - \bar{v}_{N})^{2}}} = \sqrt{\frac{T}{T-1}} \frac{(\bar{v}_{N} - \sqrt{N}\beta_{0})}{\sqrt{\sum_{t=1}^{T}(v_{Nt} - \bar{v}_{N})^{2}/(T-1)}} \rightarrow \mathcal{L} \sqrt{\frac{T}{T-1}} z_{T-1}, \tag{11}$$

where z_{T-1} denotes a random variable which is t distributed with T-1 degrees of freedom.

Application: Unit Root Test

 Assuming an AR(k+1) model, we consider the linear regression model:

$$\triangle w_{it} = x'_{it}\beta + u_{it},\tag{12}$$

where $x_{it} = (w_{it-1}, \triangle w_{it-1}, \dots, \triangle w_{it-k+1})'$, $t = 1, \dots, T$ and $i = 1, \dots, N$.

• The Augmented Dickey-Fuller test in this setting is simply testing $H_0: \beta_1 = 0$.

Application: Cointegration Test

• Presumably all the elements of w_{it} are I(1). We consider the following linear regression model:

$$w_{it0} = x'_{it}\beta + u_{it}, \tag{13}$$

where $x_{it} = (w_{it1}, ..., w_{itk})'$, t = 1, ..., T and i = 1, ..., N.

- One form of testing for *no* cointegration can be cast as H_0 : $\beta = 0$.
- There should not be a problem of "spurious regression" (see Granger and Newbold (1973) JOE and Phillips (1986) JOE) as we assume T is fixed.

Generalization of OLS

- Define $\mathcal{T} \equiv \{1, \dots, T\}$. Consider two subsets of \mathcal{T} , \mathcal{T}_1 and \mathcal{T}_2 .
- Consider the general version of OLS:

$$\widehat{\beta} = (\sum_{s \in \mathcal{T}_1} \sum_{i=1}^{N} x_{is} x'_{is})^{-1} (\sum_{s \in \mathcal{T}_1} \sum_{i=1}^{N} x_{is} y_{is}). \quad (14)$$

Theorem 4.1. Suppose Assumptions (a)-(c) hold.

$$\sqrt{N}(\widehat{\beta} - \beta) \longrightarrow_{\mathcal{L}} M^{-1}\Gamma(\frac{1}{\#\mathcal{T}_1} \sum_{s \in \mathcal{T}_1} W_s^k).$$

- ullet \hat{V} can be defined accordingly, with the timeseries observations in the subset \mathcal{T}_2 ,
- The Wald test can also be constructed accordingly.

Extenstion to Instrumental Variable Estimation

- ullet Define $\mathcal{T}\equiv\{1,\ldots,T\}$. Consider two subsets of \mathcal{T} , \mathcal{T}_1 and \mathcal{T}_2 .
- Suppose we have an instrument z_{it} , which is also a kx1-vector. Define the following IV (instrumental variable) estimator:

$$\tilde{\beta} = \left(\sum_{s \in \mathcal{T}_1} \sum_{i=1}^{N} z_{is} x'_{is}\right)^{-1} \left(\sum_{s \in \mathcal{T}_1} \sum_{i=1}^{N} z_{is} y_{is}\right). \tag{15}$$

• Assumption (b'). For t = 1, ..., T,

$$N^{-1/2} \sum_{i=1}^{N} z_{it} u_{it} \longrightarrow_{\mathcal{L}} \Gamma W_t^k,$$

where Γ is a positive definite matrix and W_t^k is a k-dimensional standard normal random vector.

Extenstion to Instrumental Variable Estimation

• Assumption (c'). For t = 1, ..., T,

$$N^{-1} \sum_{i=1}^{N} z_{it} x'_{it} \to Ma.s.,$$

where M is an kxk- invertible constant matrix.

• **Theorem 4.3**. Suppose Assumptions (a), and Assumptions (b')-(c') hold.

$$\sqrt{N}(\tilde{\beta}-\beta) \longrightarrow_{\mathcal{L}} M^{-1}\Gamma(\frac{1}{\#\mathcal{T}_1} \sum_{s \in \mathcal{T}_1} W_s^k).$$

- ullet $ilde{V}$ can be defined accordingly, with the timeseries observations in the subset \mathcal{T}_2 ,
- The Wald test can also be constructed accordingly.

Simulating Critical Values

 $\label{eq:table 5.1}$ Quantiles of the Limiting Distribution in (5) or (8), k = 1.

T rv soo $a - b soo$ soo soo soo soo 2 $DISJ$ 2.866 10.502 40.500 267.384 1063.563 $OVER$ 18.948 79.502 320.144 2118.335 8564.449 3 $DISJ$ 9.273 36.517 147.250 947.310 3452.401 6 $OVER$ 5.375 12.882 27.866 74.468 151.616 $\frac{3}{2} z_2^2$ 5.335 12.790 27.774 72.767 147.758 4 $OVER$ 3.579 7.386 13.491 27.004 44.591 4 $OVER$ 3.577 7.382 13.500 27.494 45.490 5 $DISJ$ 3.225 6.918 14.079 34.709 70.060 6 $DISJ$ 1.639 2.906 4.834 9.117 14.410 6 $DISJ$ 1.639 2.906 4.834 9.117 14.410 6 $DISJ$	Quantiles of the Limiting Distribution in (5) or (8), $k = 1$.						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\ <u></u>			α -th	simulated	quantiles	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	T	rv	.800	.900	.950	.980	.990
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	DISJ	2.806	10.502	40.500	267.384	1063.563
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	5						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{9}{8}z_{8}^{2}$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		1.615	2.637	3.957	6.100	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OVER		3.694			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{10}{9}z_{9}^{2}$	2.125	3.733	5.685	8.842	11.736
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20			2.570	3.607	5.020	6.104
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OVER	1.835	3.073	4.518	6.654	8.273
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{20}{19}z_{19}^2$	1.856	3.147	4.611	6.786	8.616
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30		1.600	2.560	3.577	4.964	6.215
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OVER	1.761	2.963			7.589
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{30}{29}z_{29}^2$		2.986			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	DICI	1.602	2.572	3.676	5.066	6.084
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OVER		2.854			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{50}{49}z_{49}^2$	1.722	2.868	4.121	5.902	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	DISJ	1.627	2.643	3.732	5.208	6.266
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		OVER	1.667	2.782	3.981	5.692	6.824
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{100}{99}z_{99}^2$	1.681	2.785	3.977	5.648	6.968
$\frac{121}{120}z_{120}^2$ 1.652 2.772 3.953 5.606 6.906	121	DISJ	1.643	2.721	3.846	5.249	6.173
			1.670	2.792	4.023	5.702	7.004
		$\frac{121}{120}z_{120}^2$	1.652	2.772	3.953	5.606	6.906
	χ_1^2		1.642	2.706	3.841	5.412	6.635

 ${\bf Monte-Carlo~Experiements}$

 $\label{eq:TABLE 6.1(a)} {\bf Rejection~Percentage~under}~H_0: \beta_1=0,~\rho=0.$

	Size			
T	Test	10%	5%	1%
2	DISJ	10.00	4.65	0.75
	OVER	9.85	4.65	0.70
	WHITE	11.45	6.95	1.75
10	DISJ	10.00	5.05	1.00
	OVER	10.15	4.80	0.90
	WHITE	10.65	4.80	1.25
50	DISJ	10.45	5.15	0.90
	OVER	10.05	4.25	1.05
	WHITE	9.95	5.15	0.75

 $\label{eq:table full} \textbf{TABLE 6.1(b)}$ Rejection Percentage under $H_0: \beta_1 = 0, \, \rho = 0.5.$

	Size				
T	Test	10%	5%	1%	
2	DISJ	9.75	5.60	1.35	
	OVER	9.65	5.35	1.35	
	WHITE	22.35	15.85	5.80	
10	DISJ	10.80	5.65	1.05	
	OVER	10.40	5.60	1.55	
	WHITE	20.65	13.20	4.55	
50	DISJ	11.25	5.75	1.45	
	OVER	11.30	5.20	1.25	
	WHITE	20.80	13.55	4.85	

TABLE 6.1(c) Rejection Percentage under $H_0: \beta_1=0, \, \rho=0.9.$

	Size				
T	Test	10%	5%	1%	
2	DISJ	12.45	6.45	1.10	
	OVER	11.85	6.05	1.00	
	WHITE	62.05	55.45	44.30	
10	DISJ	12.10	7.40	2.25	
	OVER	11.35	5.85	1.65	
	WHITE	58.00	51.70	39.60	
50	DISJ	11.05	6.10	2.10	
	OVER	10.75	5.80	1.35	
	WHITE	57.30	49.70	36.70	

 $\label{eq:table 6.2(a)} \textbf{Rejection Percentage under $H_a:$ $\beta_1=0.1$, $\rho=0$.}$

-		Size		
T	Test	10%	5%	1%
2	DISJ	15.10	7.35	1.35
	OVER	14.60	7.15	1.40
	WHITE	29.50	20.00	7.80
10	DISJ	49.25	37.65	14.95
	OVER	67.70	52.80	24.35
	WHITE	73.50	62.65	39.40
50	DISJ	95.70	92.90	83.75
	OVER	99.95	99.90	98.65
	WHITE	99.95	99.95	99.20

 $\label{eq:table 6.2(b)} \textbf{Rejection Percentage under $H_a:$} \ \beta_1 = 0.5, \ \rho = 0.$

		Size			
T	Test	10%	5%	1%	
2	DISJ	56.05	31.45	5.60	
	OVER	57.20	31.15	5.45	
	WHITE	99.95	99.65	99.05	
10	DISJ	100.00	100.00	99.50	
	OVER	100.00	100.00	100.00	
	WHITE	100.00	100.00	100.00	
50	DISJ	100.00	100.00	100.00	
	OVER	100.00	100.00	100.00	
	WHITE	100.00	100.00	100.00	

 $\label{eq:TABLE 6.2(c)} \textbf{Rejection Percentage under $H_a:$ $\beta_1=0.9$, $\rho=0$.}$

		Size				
T	Test	10%	5%	1%		
2	DISJ	80.25	52.60	11.50		
	OVER	83.80	53.30	11.20		
	WHITE	100.00	100.00	100.00		
10	DISJ	100.00	100.00	100.00		
	OVER	100.00	100.00	100.00		
	WHITE	100.00	100.00	100.00		
50	DISJ	100.00	100.00	100.00		
	OVER	100.00	100.00	100.00		
	WHITE	100.00	100.00	100.00		

Conclusions and Discussions

- ullet We propose a Wald test for the parameter in a linear regression model, in which there are cross-sectional correlations among the N units, where N goes to infinity.
- Unlike the existing literature,
- (i) We do not assume away the cross-sectional correlations.
- (ii) We do not assume the number of timeseries units, denoted as T is large, as long as $T \ge 2$.
- (iii) We do not rely on the definition of economic distance.
- (iv) Our approach is applicable to a general linear regression model.
- In one of the sections, we also consider a unit root test and a test for cointegration.

- In future research:
- (i) We will consider the case where, possibly, $T \to \infty$.
- (ii) The optimal choice of $\#\mathcal{T}_1$ and/or $\#\mathcal{T}_2$.