Capturing Cross-Sectional Correlation with Time Series: with an Application to Unit Root Test

Chor-yiu SIN (CY)
Wang Yanan Institute for Studies in Economics (WISE) Xiamen University, Fujian, P.R.China

Email: cysin@xmu.edu.cn

Friday, May 9, 2007
China Center for Economic Research
Peking University Preliminary draft. Comments are much appreciated.

INTRODUCTION

- Throughout the paper, we consider the following linear regression model:

$$
\begin{equation*}
y_{i t}=x_{i t}^{\prime} \beta+u_{i t} \tag{1}
\end{equation*}
$$

where $i=1, \ldots, N$ and $t=1, \ldots, T, T \geq 2$, $x_{i t}$ is a $k x 1$-vector while both $y_{i t}$ and $u_{i t}$ are scalars.

- In fact, this is a typical panel data model.
- Though, as one can tell from the title, our focus is the time series properties.
- More precisely, we are interested, with panel data, in investigating the time series properties, with a low time-series dimension (T is fixed) but a high cross-sectional dimension ($N \rightarrow$ $\infty)$.

INTRODUCTION (cont'd)

- On major drawback in making inference on the parameter β in Equation (1) is to model and estimate the cross-sectional correlations.
- More precisely, for statistical inference, one may need to model and estimate, for $t=1, \ldots, T$, the following $N(N-1) / 2$ cross-product terms:

$$
\begin{equation*}
E\left[x_{i t} u_{i t} u_{j t} x_{j t}^{\prime}\right] \tag{2}
\end{equation*}
$$

where $i<j$, and $i, j=1, \ldots, N$.

- This is not easy when N, the number of cross-sectional units, is large.

INTRODUCTION (cont $^{\prime}$ d)

- In the literature, there are at least four ways to tackle this issue.
- (i) Assuming away the cross-sectional correlations. That is, in Equation (2) above:

$$
E\left[x_{i t} u_{i t} u_{j t} x_{j t}^{\prime}\right]=0
$$

- See, for instance, Anderson (1978) JASA, Anderson and Hsiao (1981) JASA, Holz-Eaken, Newey and Rosen (1988) Ec., Quah (1994) EL, and Phillips and Moon (1999) Ec.
- This assumption may not be justifiable.

INTRODUCTION (cont'd)

- (ii) Assuming T, the number of time-series units, is also large. In one way or the other, one may estimate the $N(N-1) / 2$ cross-product terms in Equation (2) with T time-series units.
- See, for instance, Kao (1999) JOE, Bai and Ng (2003) Ec. and Bai (2003) Ec. and a survey paper by Choi (2005).
- The assumption of large T is justifiable in many cases but it may not be justifiable in the so-called short panel data.

INTRODUCTION (cont'd)

- (iii) Using the geographical distance or the economic distance to model the cross-sectional correlations.
- Geographical distance is commonly used in the field of spatial statistics/econometrics. See, for instance, Kelejian and Prucha (1999) IER.
- The interesting idea of economic distance is first introduced by Conley (1999) JOE. Since then it attracts a lot of attention from economists.
- However, the concept geographical distance may not be applicable to some if not all economic data while the concept economic distance is a bit controversial.

INTRODUCTION (cont'd)

- (iv) Pesaran (2006) Ec.: A special case.

INTRODUCTION (cont'd $^{\prime}$)

- In this paper, we first follow the lines in Conley (1999) and prove the \sqrt{N} - consistency of our OLS estimator.
- Then we use the T time-series unit to capture the cross-sectional correlations. T can be small as long as $T \geq 2$.
- In fact, for sake of theoretical simplicity, we assume that T is fixed while $N \rightarrow \infty$.

OUTLINE OF THE TALK
(1) Introduction
(2) Two OLS estimators and two Wald tests

- The disjoint case (DISJ)
- The overlapping case (OVER) and its similarity with the classical z-test
(3) Two applications: Testing for unit root and testing for cointegration
(4) Generalizing and extending (2)
(5) Simulating the critical values
(6) Monte Carlo Experiments
- Comparing DISJ and OVER with another test that ignores cross-sectional correlations
(7) Conclusions and Discussions

OLS : DISJ

- For the disjoint case, we split the time-series units into two parts, one with T_{1} observations and the other with $T-T_{1}$ observations.
- The T_{1} observations are for estimating β while the remaining $T-T_{1}$ observations are for estimating the " variance-covariance" matrix of $\widehat{\beta}$.
- More precisely:

$$
\begin{equation*}
\widehat{\beta}=\left(\sum_{s=1}^{T_{1}} \sum_{i=1}^{N} x_{i s} x_{i s}^{\prime}\right)^{-1}\left(\sum_{s=1}^{T_{1}} \sum_{i=1}^{N} x_{i s} y_{i s}\right) \tag{3}
\end{equation*}
$$

Note the time-series units go from 1 to T_{1} only.

Assumptions: DISJ

Assumption (a). $N \rightarrow \infty$ and T is fixed.

Assumption (b). For $t=1, \ldots, T$,

$$
N^{-1 / 2} \sum_{i=1}^{N} x_{i t} u_{i t} \longrightarrow \mathcal{L} \Gamma W_{t}^{k},
$$

where Γ is a positive definite matrix and W_{t}^{k} is a k-dimensional standard normal random vector.

Assumption (c). For $t=1, \ldots, T$,

$$
N^{-1} \sum_{i=1}^{N} x_{i t} x_{i t}^{\prime} \rightarrow \text { Ma.s. }
$$

where M is an $k x k$ - invertible constant matrix.

Theorem: DISJ

Theorem 2.1. Suppose Assumptions (a)-(c)

 hold.$$
\begin{equation*}
\sqrt{N}(\widehat{\beta}-\beta) \longrightarrow \mathcal{L} M^{-1} \Gamma\left(\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k}\right) . \tag{4}
\end{equation*}
$$

- The proof of Theorem 2.1 follows the lines in Conley (1999). In fact Conley (1999) gives us some primitive assumptions to assume Assumption (b). The difference is on the " variancecovariance" matrix:

$$
\begin{aligned}
\hat{V} & =\widehat{A}^{-1} \widehat{B} \widehat{A}^{-1} \\
\hat{A} & =N^{-1} \sum_{s=1}^{T_{1}} \sum_{i=1}^{N} x_{i s} x_{i s}^{\prime} \\
\widehat{B} & =\sum_{t=T_{1}+1}^{T}\left(N^{-1 / 2} \sum_{i=1}^{N} x_{i t} \widehat{u}_{i t}\right)\left(N^{-1 / 2} \sum_{i=1}^{N} x_{i t} \widehat{u}_{i t}\right)^{\prime} .
\end{aligned}
$$

Wald Test: DISJ
Assumption (d).
$\sum_{t=T_{1}+1}^{T}\left(W_{t}^{k}-\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k}\right)\left(W_{t}^{k^{\prime}}-\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k^{\prime}}\right)$ is p.d. a.s.

- Assumption (d) is non-trivial. Consider the simple case that $T_{1}=T_{2}=1$. If $W_{1}^{k}=W_{2}^{k}$ a.s., the term $\left(W_{t}^{k}-\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k}\right)$ is identically zero a.s.
- The Wald test for $\beta=\beta_{0}$:

$$
\hat{\mathcal{W}}=\sqrt{N}\left(\widehat{\beta}-\beta_{0}\right)^{\prime} \hat{V}^{-1} \sqrt{N}\left(\widehat{\beta}-\beta_{0}\right),
$$

Theorem 2.2. Suppose Assumptions (a)-(d) hold. $\widehat{\mathcal{W}}$ converges in distribution to:

$$
\begin{equation*}
\sum_{s=1}^{T_{1}} W_{s}^{k^{\prime}}\left[\sum_{t=T_{1}+1}^{T}\left(W_{t}^{k}-\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k}\right)\left(W_{t}^{k^{\prime}}-\frac{1}{T_{1}} \sum_{s=1}^{T_{1}} W_{s}^{k^{\prime}}\right)\right]^{-1} \sum_{s=1}^{T_{1}} W_{s}^{k} . \tag{5}
\end{equation*}
$$

OLS : OVER

- For the overlapping case, we use the all T observations are for both estimating β and estimating the "variance-covariance" matrix of $\widehat{\beta}$.
- More precisely:

$$
\begin{equation*}
\widehat{\beta}=\left(\sum_{s=1}^{T} \sum_{i=1}^{N} x_{i s} x_{i s}^{\prime}\right)^{-1}\left(\sum_{s=1}^{T} \sum_{i=1}^{N} x_{i s} y_{i s}\right) . \tag{6}
\end{equation*}
$$

Note the time-series units go from 1 to T.

Theorem: OVER

Theorem 2.1'. Suppose Assumptions (a)-(c) hold (as in Theorem 2.1).

$$
\begin{equation*}
\sqrt{N}(\widehat{\beta}-\beta) \longrightarrow \mathcal{L} M^{-1} \Gamma\left(\frac{1}{T} \sum_{s=1}^{T} W_{s}^{k}\right) \tag{7}
\end{equation*}
$$

- The "variance-covariance" matrix:

$$
\begin{aligned}
\hat{V} & =\hat{A}^{-1} \hat{B} \hat{A}^{-1} \\
\widehat{A} & =N^{-1} \sum_{s=1}^{T} \sum_{i=1}^{N} x_{i s} x_{i s}^{\prime} \\
\widehat{B} & =\sum_{t=1}^{T}\left(N^{-1 / 2} \sum_{i=1}^{N} x_{i t} \widehat{u}_{i t}\right)\left(N^{-1 / 2} \sum_{i=1}^{N} x_{i t} \widehat{u}_{i t}\right)^{\prime} .
\end{aligned}
$$

Wald Test : OVER
Assumption (d').
$\sum_{t=1}^{T}\left(W_{t}^{k}-\frac{1}{T} \sum_{s=1}^{T} W_{s}^{k}\right)\left(W_{t}^{k^{\prime}}-\frac{1}{T} \sum_{s=1}^{T} W_{s}^{k^{\prime}}\right)$ is p.d. a.s.

- The Wald test for $\beta=\beta_{0}$:

$$
\widehat{\mathcal{W}}=\sqrt{N}\left(\widehat{\beta}-\beta_{0}\right)^{\prime} \widehat{V}^{-1} \sqrt{N}\left(\widehat{\beta}-\beta_{0}\right),
$$

Theorem 2.2'. Suppose Assumptions (a)-(d) hold. $\widehat{\mathcal{W}}$ converges in distribution to:

$$
\begin{equation*}
\sum_{s=1}^{T} W_{s}^{k^{\prime}}\left[\sum_{t=1}^{T}\left(W_{t}^{k}-\frac{1}{T} \sum_{s=1}^{T} W_{s}^{k}\right)\left(W_{t}^{k^{\prime}}-\frac{1}{T} \sum_{s=1}^{T} W_{s}^{k^{\prime}}\right)\right]^{-1} \sum_{s=1}^{T} W_{s}^{k} . \tag{8}
\end{equation*}
$$

- Remarks:
(i) It is not difficult to generalize the Wald tests to the case that $H_{0}: R \beta=r_{0}$.
(ii) The distribution in Theorem 2.2' is obviously different from that in Theorem 2.2. Both of them can be simulated though.

OVER vs z - test

- Our OVER is analogous to the classical ztest for the population mean.
- Consider a special case in Equation (1):

$$
\begin{equation*}
y_{i t}=\beta+u_{i t} . \tag{9}
\end{equation*}
$$

- Suppose we want to test $H_{0}: \sqrt{N} \beta=\sqrt{N} \beta_{0}$.
- If we sum all the terms in Equation (9) against i and multiply them by $N^{-1 / 2}$, we will get:

$$
\begin{equation*}
v_{N t}=\sqrt{N} \beta+N^{-1 / 2} \sum_{i=1}^{N} u_{i t} \tag{10}
\end{equation*}
$$

where $v_{N t} \equiv N^{-1 / 2} \sum_{i=1}^{N} y_{i t}$.

OVER vs z - test

- Our OVER in Theorem (2.1') will give:

$$
\begin{align*}
& \frac{\sqrt{T}\left(\bar{v}_{N}-\sqrt{N} \beta_{0}\right)}{\sqrt{\sum_{t=1}^{T}\left(v_{N t}-\bar{v}_{N}\right)^{2}}} \\
= & \sqrt{\frac{T}{T-1}} \frac{\left(\bar{v}_{N}-\sqrt{N} \beta_{0}\right)}{\sqrt{\sum_{t=1}^{T}\left(v_{N t}-\bar{v}_{N}\right)^{2} /(T-1)}} \\
\longrightarrow & \sqrt{\frac{T}{T-1}} z_{T-1}, \tag{11}
\end{align*}
$$

where z_{T-1} denotes a random variable which is t distributed with $T-1$ degrees of freedom.

Application : Unit Root Test

- Assuming an $\operatorname{AR}(k+1)$ model, we consider the linear regression model:

$$
\begin{equation*}
\triangle w_{i t}=x_{i t}^{\prime} \beta+u_{i t} \tag{12}
\end{equation*}
$$

where $x_{i t}=\left(w_{i t-1}, \Delta w_{i t-1}, \ldots, \Delta w_{i t-k+1}\right)^{\prime}, t=$ $1, \ldots, T$ and $i=1, \ldots, N$.

- The Augmented Dickey-Fuller test in this setting is simply testing $H_{0}: \beta_{1}=0$.

Application : Cointegration Test

- Presumably all the elements of $w_{i t}$ are $I(1)$. We consider the following linear regression model:

$$
\begin{equation*}
w_{i t 0}=x_{i t}^{\prime} \beta+u_{i t}, \tag{13}
\end{equation*}
$$

where $x_{i t}=\left(w_{i t 1}, \ldots, w_{i t k}\right)^{\prime}, t=1, \ldots, T$ and $i=1, \ldots, N$.

- One form of testing for no cointegration can be cast as $H_{0}: \beta=0$.
- There should not be a problem of "spurious regression" (see Granger and Newbold (1973) JOE and Phillips (1986) JOE) as we assume T is fixed.

Generalization of OLS

- Define $\mathcal{T} \equiv\{1, \ldots, T\}$. Consider two subsets of $\mathcal{T}, \mathcal{T}_{1}$ and \mathcal{T}_{2}.
- Consider the general version of OLS:

$$
\begin{equation*}
\widehat{\hat{\beta}}=\left(\sum_{s \in \mathcal{T}_{1}} \sum_{i=1}^{N} x_{i s} x_{i s}^{\prime}\right)^{-1}\left(\sum_{s \in \mathcal{T}_{1}} \sum_{i=1}^{N} x_{i s} y_{i s}\right) . \tag{14}
\end{equation*}
$$

Theorem 4.1. Suppose Assumptions (a)-(c) hold.

$$
\sqrt{N}(\hat{\beta}-\beta) \longrightarrow \mathcal{L} M^{-1} \Gamma\left(\frac{1}{\# \mathcal{T}_{1}} \sum_{s \in \mathcal{T}_{1}} W_{s}^{k}\right) .
$$

- \hat{V} can be defined accordingly, with the timeseries observations in the subset \mathcal{T}_{2},
- The Wald test can also be constructed accordingly.

Extenstion to Instrumental Variable Estimation

- Define $\mathcal{T} \equiv\{1, \ldots, T\}$. Consider two subsets of $\mathcal{T}, \mathcal{T}_{1}$ and \mathcal{T}_{2}.
- Suppose we have an instrument $z_{i t}$, which is also a $k x 1$-vector. Define the following $I V$ (instrumental variable) estimator:

$$
\begin{equation*}
\widetilde{\beta}=\left(\sum_{s \in \mathcal{T}_{1}} \sum_{i=1}^{N} z_{i s} x_{i s}^{\prime}\right)^{-1}\left(\sum_{s \in \mathcal{T}_{1}} \sum_{i=1}^{N} z_{i s} y_{i s}\right) \tag{15}
\end{equation*}
$$

- Assumption (b'). For $t=1, \ldots, T$,

$$
N^{-1 / 2} \sum_{i=1}^{N} z_{i t} u_{i t} \longrightarrow \mathcal{L}\left\ulcorner W_{t}^{k},\right.
$$

where Γ is a positive definite matrix and W_{t}^{k} is a k-dimensional standard normal random vector.

Extenstion to Instrumental Variable Estimation

- Assumption (c'). For $t=1, \ldots, T$,

$$
N^{-1} \sum_{i=1}^{N} z_{i t} x_{i t}^{\prime} \rightarrow \text { Ma.s. }
$$

where M is an $k x k$ - invertible constant matrix.

- Theorem 4.3. Suppose Assumptions (a), and Assumptions (b')-(c') hold.

$$
\sqrt{N}(\tilde{\beta}-\beta) \longrightarrow \mathcal{L} M^{-1} \Gamma\left(\frac{1}{\# \mathcal{T}_{1}} \sum_{s \in \mathcal{T}_{1}} W_{s}^{k}\right) .
$$

- \tilde{V} can be defined accordingly, with the timeseries observations in the subset \mathcal{T}_{2},
- The Wald test can also be constructed accordingly.

Simulating Critical Values

TABLE 5.1
Quantiles of the Limiting Distribution in (5) or (8), $\mathrm{k}=1$.

T	$r v$	α-th simulated quantiles				
		. 800	. 900	. 950	. 980	. 990
2	DISJ	2.806	10.502	40.500	267.384	1063.563
	OVER	18.948	79.502	320.144	2118.335	8564.449
	$2 z_{1}^{2}$	18.948	79.733	322.885	2025.152	8104.427
3	DISJ	9.273	36.517	147.250	947.310	3452.401
	OVER	5.375	12.882	27.866	74.468	151.616
	$\frac{3}{2} z_{2}^{2}$	5.335	12.790	27.774	72.767	147.758
4	DISJ	1.775	3.593	7.110	17.652	35.444
	OVER	3.579	7.386	13.491	27.004	44.591
	$\frac{4}{3} z_{3}^{2}$	3.577	7.382	13.500	27.494	45.490
5	DISJ	3.225	6.918	14.079	34.709	70.060
	OVER	2.927	5.680	9.597	17.531	26.328
	$\frac{5}{4} z_{4}^{2}$	2.938	5.682	9.633	17.550	26.496
6	DISJ	1.639	2.906	4.834	9.117	14.410
	OVER	2.625	4.853	7.914	13.631	19.782
	$\frac{6}{5} z_{5}^{2}$	2.614	4.872	7.932	13.588	19.508
7	DISJ	2.423	4.411	7.426	14.067	22.642
	OVER	2.412	4.410	6.974	11.525	15.841
	$\frac{7}{6} z_{6}^{2}$	2.419	4.404	6.986	11.525	16.032
8	$\frac{0}{D I S J}$	1.627	2.719	4.119	7.006	10.005
	$O V E R$	2.233	3.978	6.058	10.145	13.845
	$\frac{8}{7} z_{7}^{2}$	2.288	4.104	6.392	10.272	13.992
9	DISJ	2.156	3.693	5.742	9.869	15.029
	OVER	2.177	3.827	5.812	9.132	12.295
	$\frac{9}{8} z_{8}^{2}$	2.195	3.892	5.982	8.858	12.663
10	DISJ	1.615	2.637	3.957	6.100	8.419
	OVER	2.090	3.694	5.617	8.636	11.601
	$\frac{10}{9} z_{9}^{2}$	2.125	3.733	5.685	8.842	11.736
20	DISJ	1.614	2.570	3.607	5.020	6.104
	OVER	1.835	3.073	4.518	6.654	8.273
	$\frac{20}{19} z_{19}^{2}$	1.856	3.147	4.611	6.786	8.616
30	DISJ	1.600	2.560	3.577	4.964	6.215
	OVER	1.761	2.963	4.232	6.082	7.589
	$\frac{30}{29} z_{29}^{2}$	1.778	2.986	4.326	6.270	7.857
50	DISJ	1.602	2.572	3.676	5.066	6.084
	OVER	1.715	2.854	4.108	5.852	7.247
	$\frac{50}{49} z_{49}^{2}$	1.722	2.868	4.121	5.902	7.329
100	DISJ	1.627	2.643	3.732	5.208	6.266
	OVER	1.667	2.782	3.981	5.692	6.824
	$\frac{100}{99} z_{99}^{2}$	1.681	2.785	3.977	5.648	6.968
121	DISJ	1.643	2.721	3.846	5.249	6.173
	OVER	1.670	2.792	4.023	5.702	7.004
	$\frac{121}{120} z_{120}^{2}$	1.652	2.772	3.953	5.606	6.906
χ_{1}^{2}		1.642	2.706	3.841	5.412	6.635

Monte - Carlo Experiements

TABLE 6.1(a)
Rejection Percentage under $H_{0}: \beta_{1}=0, \rho=0$.

		Size		
T	Test	10%	5%	1%
2	DISJ	10.00	4.65	0.75
	OVER	9.85	4.65	0.70
	$W H I T E$	11.45	6.95	1.75
10	DISJ	10.00	5.05	1.00
	OVER	10.15	4.80	0.90
	WHITE	10.65	4.80	1.25
50	DISJ	10.45	5.15	0.90
	OVER	10.05	4.25	1.05
	$W H I T E$	9.95	5.15	0.75

TABLE 6.1(b)
Rejection Percentage under $H_{0}: \beta_{1}=0, \rho=0.5$.

		Size		
T	Test	10%	5%	1%
2	DISJ	9.75	5.60	1.35
	OVER	9.65	5.35	1.35
	WHITE	22.35	15.85	5.80
10	DISJ	10.80	5.65	1.05
	OVER	10.40	5.60	1.55
	WHITE	20.65	13.20	4.55
50	DISJ	11.25	5.75	1.45
	OVER	11.30	5.20	1.25
	WHITE	20.80	13.55	4.85

TABLE 6.1(c)
Rejection Percentage under $H_{0}: \beta_{1}=0, \rho=0.9$.

		Size		
T	Test	10%	5%	1%
2	DISJ	12.45	6.45	1.10
	OVER	11.85	6.05	1.00
	WHITE	62.05	55.45	44.30
10	DISJ	12.10	7.40	2.25
	OVER	11.35	5.85	1.65
	$W H I T E$	58.00	51.70	39.60
50	DISJ	11.05	6.10	2.10
	OVER	10.75	5.80	1.35
	WHITE	57.30	49.70	36.70

TABLE 6.2(a)
Rejection Percentage under $H_{a}: \beta_{1}=0.1, \rho=0$.

		Size		
T	Test	10%	5%	1%
2	DISJ	15.10	7.35	1.35
	OVER	14.60	7.15	1.40
	WHITE	29.50	20.00	7.80
10	DISJ	49.25	37.65	14.95
	OVER	67.70	52.80	24.35
	$W H I T E$	73.50	62.65	39.40
50	DISJ	95.70	92.90	83.75
	OVER	99.95	99.90	98.65
	$W H I T E$	99.95	99.95	99.20

TABLE 6.2(b)
Rejection Percentage under $H_{a}: \beta_{1}=0.5, \rho=0$.

		Size		
T	Test	10%	5%	1%
2	DISJ	56.05	31.45	5.60
	OVER	57.20	31.15	5.45
	$W H I T E$	99.95	99.65	99.05
10	DISJ	100.00	100.00	99.50
	OVER	100.00	100.00	100.00
	$W H I T E$	100.00	100.00	100.00
50	DISJ	100.00	100.00	100.00
	OVER	100.00	100.00	100.00
	$W H I T E$	100.00	100.00	100.00

TABLE 6.2(c)
Rejection Percentage under $H_{a}: \beta_{1}=0.9, \rho=0$.

		Size		
T	Test	10%	5%	1%
2	DISJ	80.25	52.60	11.50
	OVER	83.80	53.30	11.20
	WHITE	100.00	100.00	100.00
10	DISJ	100.00	100.00	100.00
	OVER	100.00	100.00	100.00
	WHITE	100.00	100.00	100.00
50	DISJ	100.00	100.00	100.00
	OVER	100.00	100.00	100.00
	WHITE	100.00	100.00	100.00

Conclusions and Discussions

- We propose a Wald test for the parameter in a linear regression model, in which there are cross-sectional correlations among the N units, where N goes to infinity.
- Unlike the existing literature,
(i) We do not assume away the cross-sectional correlations.
(ii) We do not assume the number of timeseries units, denoted as T is large, as long as $T \geq 2$.
(iii) We do not rely on the definition of economic distance.
(iv) Our approach is applicable to a general linear regression model.
- In one of the sections, we also consider a unit root test and a test for cointegration.
- In future research:
(i) We will consider the case where, possibly, $T \rightarrow \infty$.
(ii) The optimal choice of $\# \mathcal{T}_{1}$ and/or $\# \mathcal{T}_{2}$.

