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1. Introduction
Binding contracts are the touchstone in identifying possible solutions for a game. In
a normal form game, the availability of binding contracts determines three fundamental
types of solutions: i) if no binding contract is available, players will behave strategically
and choose Nash equilibrium [5] as the solution; ii) if binding contacts are available to the

grand coalition,! players will behave cooperatively and choose core (i.e., the a- or b-core,

[2], [8], and [11]) or its refinements as the solution; and iii) if binding contracts are
available only to coalitions in a given partition (or coalitional structure), players will behave
cooperatively within each coalition and in the same time strategically across the coalitions
in the partition, and they will choose the hybrid equilibrium for the partition [10] as the
solution. Because “no binding contract” and “binding contracts for grand coalition” are
two limiting cases of the general situation in which binding contracts are available to
coalitions in a coalitional structure, the core and the Nash equilibrium are two limiting cases
of the hybrid equilibrium.2

This paper shows that the existence theorems on Nash equilibrium (Nash, 1951), core
(Scarf, 1967), and hybrid equilibrium (Zhao, 1992) are equivadent to each other. It establishes
the equivaence by showing that Scarf’s core theorem implies Kakutani’s fixed point theorem

Because the concepts of core, Nash equilibrium, and hybrid equilibrium describe three

fundamental types of social institutions (i.e., with no binding contract, binding contracts for
the grand coalition, and binding contracts for coalitions in a given partition), the

equivalence theorem suggests that the outcomes in each institution could be theoretically

1 When binding contracts are available to a given coalition, it is implicitly assumed that binding

contracts are also available to all of its subcoalitions.

2 See Allen [1] for more discussions of hybrid equilibrium.



implemented as an outcome in each of the other two institutions.
Section 2 below states the equivalence problems, Section 3 states and proves the

equivalence theorem, and Section 4 provides a list of open problems for future research.

2. The Equivalence Problems

Let N = {1, ..., n} be a finite set, a subset S /1 N will be called a coalition of
players. Given SI N, let R® denote the Euclidean space whose dimension is the number of
players in S and whose coordinates are the players in S. Letel R"be the vector of ones, 0

be the vector of zeros, Arg-Max { fiz) | z T Z } be the optimal set for

Max { f(z) |zT Z).
Forany x, yl R, x3 yU x3 y,alli;x>yU x3 y,at y;x>>yU x>y, all i; xgbe
the projection of x on R®, and (xs, y.s) be the column vector zZl R"such thatz; = x;ifil S, z
=y;ifil S.
For simplicity of exposition, we will state the next four theorems in their simplest

forms. First, Kakutani’s fixed point theorem is given below:

(i) (Kakutani, [4]) Let X * A1 R"be compact and convex, - X® 2% be a
correspondence. Assume: (a) fis upper semicontinuous; (b) for each x1 X, fix)* 1 Xis

closed and convex. Then there exists at least one x1 X such that xI f{x).

Second, consider the Nash equilibrium for a normal form game:

G: []v) Xl" ui}’



where for each player i N, X1 EI] R is i's choice set, and u;; X = PX;® R is i's

payoff function. A choice profile xI X is a Nash equilibrium if for each il N,

xi1 Arg-Max {uf(y;,x.) |y,~T X/
or in other words if each x; is player i's best response to the complementary choice x.; = {x;,

xZ; LS xi—[; xi+1; LR xn}-

(ii) (Nash, [5]) For each il N, assume: (a) X; is compact and convex; (b) u(x) is

continuous in x and quasi-concave in x;. Then G has at least one Nash equilibrium.

Next, consider the core for a coalitional NTU (non-transferable utility) game given

below:
Cer = (N, V(*)},
where for each S, V(S)* A R’ is its set of payoffs for S that satisfies:3

(a) it is closed and bounded from above;

(b) yT V(S) and uf y imply ul V(S); and

(c)$ ¥l V(S) such that y;® Max {x;| x1 V(i)}, all il S.

Given a set of coalitions B = (T}, ..., T¢}, let B(i) = {T1 B |iT T} denote the subset of
coalitions that include i as a member. @ is balanced if $ wy >0 for each 71 ® such that
Sri gywr = 1 holds for all i. A game is balanced if for any balanced 3, ul V(N) must hold

if ugl V(S) fordl 9 3. Let

3 We simplify V({i}) as V(i).



TV(S) = (¥l V(S) |$ no xI V(S) with x>>y} * A
be the weakly efficient set of V(S). A vector u is blocked by S if there is yl v(S) with y >> ug

(i.e., usl W(S)A(S)), or in other words if S can obtain a higher payoff for each of its members
than that given by u.

A payoff vector ul fv(N) is in the core if it is unblocked by all S N (i.e., if it is S-

efficient or if ugl v(S)Mv(S) for all S N). Let

C(Ger) = {ul TVUN) | usl VISNIV(S), all S* N}

be the core.
(iii) (Scarf, [7]) If Ger is balanced, then C(Ger) * AE

Finally, consider the hybrid equilibrium for G= {N,X,u;}. Let the set of weakly
efficient solutions be denoted as
X5 = {x1 X |$noyl Xwith u(y)>>u(x)},
where u(x) = { u,~(x)|iT N}, and let the coalitional game derived from G in the a -fashion,
G ={N, Va()/,
be given by:

Va(S) = E/ yCS {wsl RS | ws £ us(xs, y.s)}) for St N, and

V(N) = Va(N) = { wl R" | w £ u(x) for some x1 X},}.
Then, xi X, is an a-core solution if ux)l C(Gy). A partition D = {S,, ..., S/ (i.e., ES;=N,

e

S:CS;=A, all i* j) defines k parametric games in normal form:



Gyy.s) = (S, X, ui(xsy-s)}, SI D.

A choice x = {x5|ST D/l Xisa hybrid equilibrium for D if each xs is an a-core solution of

Gdx.s).

(iv) (Zhao, [10]) Given D= {S,, ..., S} in G For each SI D, assume: (a) X;, il S,
all are compact and convex; (b) u(x) = u(xs, x_), il S, all are continuous in x and quasi-

concave in xs. Then there exists at least one hybrid equilibrium for D.

As shown in Figure 1, Nash equilibrium assumes an institution with no binding

contract, core assumes another institution with binding contracts for N, while hybrid
equilibrium assumes a general institution with binding contracts for each ST D. Hence,
hybrid equilibria include core (when D = D,, = {N})* and Nash equilibrium (when D= D, =

{{1},..., {n}}) as two limiting cases.

Dm={N} : D={S. ... S} :Do={1,2 ,n}
k=1 | 1<k<n | k=n .
- : —— e ——— — : - >
TheCore : Hybrid Equilibria (Non-degener ate) for eachD : Nash Equilibrium
I I
| |
Binding contract for N | Binding contradts for eech T1 D Nobinding contract

Figure 1. The spectrum of hybrid equilibria, where
k (LE K £ n) isthe number of caditionsin D.

4 Note that (iv) (Theorem 2 in [10]) becomes the a-core existence in [8] when D=D,, = {N/}. The

general version of (iv) (Theorem 3 in [10]) implies (iii) directly.



3. The Equivalence Theorem
Theorem: The statements (i) -(iv) are equivalent.

Proof: Our proof uses three other equivalent claims (v)-(vii) as given below. Statement (v)
is Brouwer’s fixed point theorem, (vi) is equivalent to Theorem 2 in [7], and (vii) is a new

claim that reveals the geometry of (ii) and (vi).

(v) (Brouwer, [3]) Let X /El R"be compact and convex, and f: X® X be a

continuous function. Then there exists at least one x1 X such that f{x) = x.

Given a finite game G = {N, V}, where each
V(S) = (Y1 R°IYE w, all j}

is defined by k(S) corners u;, j = 1, ..., k(S). Let K(S) ={1, ..., k(S)},

Q > Max{u; | il S, jl K(S), St N}

be a large number;

m= & k(S), C= Cn'm = {Ck}
SIN

be given by:
= cjs = (wjs, Qes)
be the column vector for each S and jl K(S); and
A=Ayn=lay = I/ejS}
be the incidence matrix for all Sin C (i.e., e;s° (es, 0z), all il K(S)).5 The following (vi), is

equivalent to Theorem 2 in [7].

5 ¢ = ¢ and ay., for unique j1 K(S), are given by: ¢y = uys, az © 1if il S; ¢y © Q,a;° 0ifil S.



(vi) (Scarf, [7]) For the above A and C, $ x = (xp, 0.3), x3>>0 such that Ax = e,

and that if we define u; = Min{cy| jl B}, then for each kil M = {1,....m}, $ i with u;® cy.

The following (vii) reveals the geometry of the core theorem (iii) and the above

claim (vi). For each coalition St N, let ¥(S) = V(S) R R" denote the n-dimensional

cylinder associated with V(S). For each balanced collection 3, let

(1) GP(®) = Sg?@wsﬂ R

denote the n-dimensional payoffs generated by 3, and

@) GP = GP(Gcr) :Balance% @; NI @GP (B)

be the set of all generated payoffs.

It is straightforward to see that Gor is balanced U GPI V(N).

Observe that u is unblocked by S U ul [V(SNIV(S)]” Rl R", where the

superscript C denotes the complement set. Hence, the set of payoffs unblocked by all S

1 Nis given by

3) UBP = UBP(Ger) = G ([VISMV(S)]” R?),
ST N

and the core can alternatively be given by C(G¢r) = TV(N)CUBP.

Now, one sees that statement (vi) is equivalent to the following three claims:

a) the base B for xp forms a balanced set;¢

b)ul GP;and

6 Let 8= {S | x;s >0 for someﬁ K(S)}, o = &, gx, for each ST @. One sees that B is balanced.



¢)ul UBP (by u? cy, all k).

Hence, (vi) U GPCUBP! /E for finite games. Since any Gcr can be approximated by a

sequence of finite games (86 in [7]), one obtains (vii) below:

(vii) GP(Gcr)CUBP(Ger) ' AE holds for all Ger.

Now, come back to the proof for our theorem. By (i)P (iv)P (ii) [10], (ii)P (iii)
[6], (vii)O (vi), (vi)P (v) [7], and (v)U (i)[4], our proof completes by showing (iii)p (vii).

Since V(S)\MIV(S) is open in R®, each {[V(S)\MIV(S)]” R*} is closed in R". Hence,

4) UBP = G VISV RY)= il of ol VSNV RY))

is a closed subset in R". Let fGP be the upper surface of GP, GP be the enclosure of

GP€, one has GPC = fGPEGPC. By (1) and (2), one has

) GP* = 'l@ witEN'l' @{sg@[v(s)l RY])) = @wit%N'I' @{sTE@[V(S)CI A}

Let V(S)C be the enclosure of V(S)¢. By [V(SMIV(S)]¢ = V(S)S, one has
SAVNVS)I R E [ vis) /).

By (4), (5), and the above expression, one has

(6) UBP = UBP(Gcr) | GPS.
Given (iii), assume by way of contradiction that GPCUBP = /£ By (6), UBP is

included in the interior of GP. Since GP is the lower surface of GPS, one must have



@) d* = d(1GP, UBP) = Min { |x-y|| | xl IGP, yl UBP} > 0.

Define a new game G = (N, V(-)'} from G¢r by: V(S) = V(S),all ST N, and

®) VINY = GP(Ger) Ef g & o ¥] v® xand d(xy)< a2},

one has: GP(G) = GP(Ger) | V(N), so G is balanced. However, by (7)-(8), and by
UBP(G) = UBP(G¢r) and d(V(N)', UBP(G)) 3 d*/2 > 0, one has
C(G)=1V(N)CUBP(G) = £,

which contradicts to (iii). Therefore, (vii) must hold. Q.E.D.

4. Conclusion and Open Problems

We have established the equivalence between Kakutani’s fixed point theorem and
the existence theorems for Nash equilibrium, core, and hybrid equilibrium. We completed
the equivalence by showing that Scarf’s core theorem implies Brouwer’s fixed point
theorem.

The equivalence leaves with us three classes of problems for future research. The
first class of open problems are to prove directly those relations in the equivalence that had
been indirectly established, these are marked as the dotted arrows in Figure 2. Due to
Nash’s popularity, it will be interesting to directly derive Brouwer’s or Kakutani’s fixed

point theorem using Nash’s theorem. Although an indirect proof follows from [6] and this

paper, it remains to be seen when direct proofs for (ii) P (i) can be discovered.

10



i) Kakutani’s Fixed i) Existence Theorem

Point Theorem on Nash Equilibrium
®
A
—> New result

——> Open problems
s Known results

v

@

iv) Existence Theorem iii) Scar’s Core Theorem

on Hybrid Equilibrium

Figure 2. The equivalence between Kakutani’ fixed point theorem and
the existence theorems of Nash equilibrium, core, and hybrid equilibrium.

Because the concepts of Nash equilibrium, core, and hybrid equilibrium are the
outcomes in three different social institutions, the equivalence theorem implies that the
outcome in each institution can be theoretically implemented as an outcome in each of the
two other institutions. This suggests a new approach to implementation and hence another
class of open problems: It will be useful to apply the equivalence theorem to the growing
literature on implementation and mechanism design.

Finally, it will be useful to find the equivalent versions of Nash equilibrium, core
and hybrid equilibrium associated with each of the more advanced fixed point theorems.
Given the success of the finite-dimensional fixed point theorems in game theory, this line of
research will provide a rich source of future applications in economics and game theory for

the fixed point literature.
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