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1. Introduction 

Binding contracts are the touchstone in identifying possible solutions for a game.  In 

a normal form game, the availability of binding contracts determines three fundamental 

types of solutions:  i) if no binding contract is available, players will behave strategically 

and choose Nash equilibrium [5] as the solution;  ii) if binding contacts are available to the 

grand coalition,1 players will behave cooperatively and choose core (i.e., the α- or β-core, 

[2], [8], and [11]) or its refinements as the solution;  and iii) if binding contracts are 

available only to coalitions in a given partition (or coalitional structure), players will behave 

cooperatively within each coalition and in the same time strategically across the coalitions 

in the partition, and they will choose the hybrid equilibrium for the partition [10] as the 

solution.  Because “no binding contract” and “binding contracts for grand coalition” are 

two limiting cases of the general situation in which binding contracts are available to 

coalitions in a coalitional structure, the core and the Nash equilibrium are two limiting cases 

of the hybrid equilibrium.2    

This paper shows that the existence theorems on Nash equilibrium (Nash, 1951), core 

(Scarf, 1967), and hybrid equilibrium (Zhao, 1992) are equivalent to each other.  It establishes 

the equivalence by showing that Scarf’s core theorem implies Kakutani’s fixed point theorem.  

Because the concepts of core, Nash equilibrium, and hybrid equilibrium describe three 

fundamental types of social institutions (i.e., with no binding contract, binding contracts for 

the grand coalition, and binding contracts for coalitions in a given partition), the 

equivalence theorem suggests that the outcomes in each institution could be theoretically 

                                                 
1  When binding contracts are available to a given coalition, it is implicitly assumed that binding 

contracts are also available to all of its subcoalitions. 

2  See Allen [1] for more discussions of hybrid equilibrium. 
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implemented as an outcome in each of the other two institutions.   

Section 2 below states the equivalence problems, Section 3 states and proves the 

equivalence theorem, and Section 4 provides a list of open problems for future research. 

2. The Equivalence Problems 

 Let N = {1, ..., n} be a finite set, a subset S ≠ ∅ ⊂ N will be called a coalition of 

players.  Given S⊂ N, let RS denote the Euclidean space whose dimension is the number of 

players in S and whose coordinates are the players in S.  Let e∈ Rn be the vector of ones, 0 

be the vector of zeros, Arg-Max { f(z) | z ∈ Z } be the optimal set for  

Max { f(z) |z∈ Z }.  

For any x, y∈ Rn, x ≥  y ⇔ xi ≥  yi, all i; x > y ⇔ x ≥  y, x≠ y; x >> y ⇔ xi > yi, all i;  xS be 

the projection of x on RS, and (xS, y-S) be the column vector z∈ Rn such that zi = xi if i∈ S, zi 

= yi if i∉ S.  

For simplicity of exposition, we will state the next four theorems in their simplest 

forms.  First, Kakutani’s fixed point theorem is given below:  

 (i) (Kakutani, [4]) Let X ≠ ∅ ⊂ Rn be compact and convex, f: X→2X be a 

correspondence.  Assume: (a) f is upper semicontinuous; (b) for each x∈ X, f(x) ≠ ∅ ⊂ X is 

closed and convex.  Then there exists at least one x∈ X such that x∈ f(x).  

Second, consider the Nash equilibrium for a normal form game:  

Γ = {N, Xi, ui}, 
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where for each player i∈ N, Xi ≠ ∅ ⊂ Rm(i) is i's choice set, and ui: X = ΠXk→R is i's 

payoff function.  A choice profile x∈ X is a Nash equilibrium if for each i∈ N,  

xi ∈  Arg-Max {ui(yi,x-i) | yi∈ Xi};  

or in other words if each xi is player i's best response to the complementary choice x-i = {x1, 

x2, …, xi-1, xi+1, …, xn}. 

 (ii) (Nash, [5])  For each i∈N, assume: (a) Xi is compact and convex; (b) ui(x) is 

continuous in x and quasi-concave in xi.  Then Γ has at least one Nash equilibrium. 

Next, consider the core for a coalitional NTU (non-transferable utility) game given 

below: 

  ΓCF = {N, V(.)},  

where for each S, V(S)≠ ∅⊂ RS is its set of payoffs for S that satisfies:3  

(a) it is closed and bounded from above;  

(b) y∈V(S) and u≤ y imply u∈V(S); and  

(c) ∃ y∈V(S) such that yi ≥ Max {xi| xi∈ V(i)}, all i∈S.  

Given a set of coalitions B = {T1, ...,Tk}, let B(i) = {T∈B |i∈T} denote the subset of 

coalitions that include i as a member.  B is balanced if ∃ wT >0 for each T∈B such that 

ΣT∈B(i)wT = 1 holds for all i.  A game is balanced if for any balanced B, u∈ V(N) must hold 

if uS∈V(S) for all S∈B.  Let  

                                                 
3  We simplify V({i}) as V(i). 
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∂V(S) = {y∈V(S) |∃ no x∈V(S) with x>>y} ≠ ∅   

be the weakly efficient set of V(S).  A vector u is blocked by S if there is y∈v(S) with y >> uS 

(i.e., uS∈v(S)/∂v(S)), or in other words if S can obtain a higher payoff for each of its members 

than that given by u. 

A payoff vector u∈∂v(N) is in the core if it is unblocked by all S ≠ N (i.e., if it is S-

efficient or if uS∉v(S)/∂v(S) for all S≠N).  Let  

C(ΓCF) = {u∈∂V(N) | uS∉V(S)\∂V(S), all S≠N}  

be the core.  

(iii) (Scarf, [7])   If ΓCF is balanced, then C(ΓCF) ≠ ∅. 

Finally, consider the hybrid equilibrium for Γ = {N,Xi,ui}.  Let the set of weakly 

efficient solutions be denoted as  

X *
we= {x∈X |∃ no y∈X with u(y)>>u(x)},  

where u(x) = {ui(x)|i∈N}, and let the coalitional game derived from Γ  in the α-fashion, 

   Γα = {N, Vα(.)},  

be given by: 

  Vα (S) = ∪
xS

{∩
y-S

{wS∈RS | wS ≤ uS(xS, y-S)}} for S ≠ N, and  

V(N) = Vα (N) = { w∈Rn | w ≤ u(x)  for some x∈ X *
we}.   

Then, x∈X *
we is an α-core solution if u(x)∈C(Γα).  A partition ∆ = {S1, ..., Sk} (i.e., ∪Si=N, 

Si∩Sj=∅ , all i≠j) defines k parametric games in normal form:  
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ΓS(y-S) = {S,Xi,ui(xS,y-S)}, S∈∆.   

A choice x = {xS|S∈∆}∈ X is a hybrid equilibrium for ∆ if each xS is an α-core solution of 

ΓS(x-S).  

 (iv) (Zhao, [10])  Given ∆ = {S1, ..., Sk } in Γ.   For each S∈ ∆, assume: (a) Xi, i∈ S, 

all are compact and convex; (b) ui(x) = ui(xS, x–S), i∈ S, all are continuous in x and quasi-

concave in xS.  Then there exists at least one hybrid equilibrium for ∆. 

 As shown in Figure 1, Nash equilibrium assumes an institution with no binding 

contract, core assumes another institution with binding contracts for N, while hybrid 

equilibrium assumes a general institution with binding contracts for each S∈∆.  Hence, 

hybrid equilibria include core (when ∆ = ∆m = {N})4 and Nash equilibrium (when ∆ = ∆0 = 

{{1},…, {n}}) as two limiting cases.   

k = n  
 
 

Nash Equilibrium   
 
 

∆0 = { 1, 2, ..., n }  
 
 

∆ = { S1, S2, ..., Sk }  
 
 

1 < k < n 
 
 

Hybrid Equilibria (Non-degenerate) for each ∆ 
 
 

Figure 1.  The spectrum of hybrid equilibria,  where  
k (1≤ k ≤ n) is the number of coalitions in ∆.   

 

k  
  
 
 

k =1 
 
 

The Core   
 
 

∆m = { N }  
 
 

Binding contract for N Binding contracts  for each T ∈ ∆ No binding  contract 

 

                                                 
4  Note that (iv) (Theorem 2 in [10]) becomes the α-core existence in [8] when ∆ = ∆m = {N}.  The 

general version of (iv) (Theorem 3 in [10]) implies (iii) directly.       
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3.  The Equivalence Theorem 

Theorem:   The statements (i) -(iv) are equivalent.  

Proof:  Our proof uses three other equivalent claims (v)-(vii) as given below.  Statement (v) 

is Brouwer’s fixed point theorem, (vi) is equivalent to Theorem 2 in [7], and (vii) is a new 

claim that reveals the geometry of (iii) and (vi).    

(v) (Brouwer, [3])  Let X ≠ ∅ ⊂ Rn be compact and convex, and f: X→X be a 

continuous function.  Then there exists at least one x∈ X such that f(x) = x. 

   Given a finite game ΓCF = {N, V}, where each  

V(S) = {y∈RS|y≤ ujS, all j} 

 is defined by k(S) corners ujS, j = 1, …, k(S).  Let K(S) = {1, …, k(S)},  

Q > Max{uijS | i∈S, j∈K(S), S≠N}  

be a large number;  

m = ∑
S≠N

k(S), C = Cn×m = {ck}  

be given by:  

ck = cjS = (ujS, Qe-S)  

be the column vector for each S and j∈K(S); and  

A = An×m = {ak} = {ejS}  

be the incidence matrix for all S in C (i.e., ejS ≡ (eS, 0-S), all j∈K(S)).5  The following (vi), is 

equivalent to Theorem 2 in [7]. 

                                                 
5  ck = cjS and ak , for unique j∈K(S), are given by: cik = u ijS, aik ≡1 if  i∈S; cik ≡ Q, aik ≡ 0 if i∉S. 
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(vi) (Scarf, [7]) For the above A and C, ∃ x = (xB, 0-B), xB>>0 such that Ax = e, 

and that if we define ui = Min{cij| j∈B}, then for each k∈ M = {1,…,m}, ∃ i with ui ≥ cik.  

The following (vii) reveals the geometry of the core theorem (iii) and the above 

claim (vi).  For each coalition S ≠ N, let ~v(S) = V(S)×R−S⊂ Rn denote the n-dimensional 

cylinder associated with V(S).  For each balanced collection B, let  

(1)  GP(B) = ∩
S∈B

~v(S)⊂ Rn  

denote the n-dimensional payoffs generated by B, and   

(2)  GP = GP(ΓCF) = ∪
Balanced B; N∉BGP(B)  

be the set of all generated payoffs.   

It is straightforward to see that ΓCF  is balanced  ⇔ GP⊂ V(N).   

Observe that u is unblocked by S ⇔ u∈ [V(S)\∂V(S)]C×R-S⊂ Rn, where the 

superscript C denotes the complement set.  Hence, the set of payoffs unblocked by all S 

≠ N is given by    

(3)   UBP = UBP(ΓCF) = ∩
S ≠ N

{[V(S)\∂V(S)]C×R-S}, 

and the core can alternatively be given by C(ΓCF) = ∂V(N)∩UBP. 

Now, one sees that statement (vi) is equivalent to the following three claims:  

a) the base B for xB forms a balanced set;6  

b) u∈ GP; and  

                                                 
6  Let B = {S | xjS >0 for some j∈Κ(S)}, δS = ∑k∈Sxk for each S∈B.  One sees that B is balanced.    
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c) u∈UBP (by ui≥ cik, all k).   

Hence, (vi) ⇔ GP∩UBP≠ ∅  for finite games.  Since any ΓCF can be approximated by a 

sequence of finite games (§6 in [7]), one obtains (vii) below:  

 (vii)  GP(ΓCF)∩UBP(ΓCF) ≠ ∅  holds for all ΓCF.   

Now, come back to the proof for our theorem. By (i)⇒ (iv)⇒ (ii) [10], (ii)⇒ (iii) 

[6], (vii)⇔(vi), (vi)⇒(v) [7], and (v)⇔(i)[4], our proof completes by showing (iii)⇒ (vii). 

Since V(S)\∂V(S) is open in RS, each {[V(S)\∂V(S)]C×R-S} is closed in Rn.  Hence,   

(4)  UBP =    ∩
S ≠ N

{[V(S)\∂V(S)]C×R-S}=  ∩
B with N∉B{ ∩

S∈B{[V(S)\∂V(S)]C×R-S}}   

is a closed subset in Rn.  Let ∂GP be the upper surface of GP, GPC be the enclosure of 

GPC, one has GPC = ∂GP∪GPC.   By (1) and (2), one has  

(5)   GPC = { ∪
B with N∉B{ ∩

S∈B[V(S)×R-S]}}C =  ∩
B with N∉B{ ∪

S∈B[V(S)C×∅-S]}. 

Let V(S)C be the enclosure of V(S)C.   By [V(S)\∂V(S)]C =  V(S)C,  one has 

   ∩
S∈B{[V(S)\∂V(S)]C×R-S} ⊂  ∪

S∈B[ V(S)C×∅-S]. 

By (4), (5), and the above expression, one has  

(6)   UBP = UBP(ΓCF)  ⊂  GPC. 

Given (iii), assume by way of contradiction that GP∩UBP = ∅.  By (6), UBP is 

included in the interior of GPC.  Since ∂GP is the lower surface of GPC, one must have  
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(7)  d*  = d(∂GP, UBP) = Min { ||x-y|| | x∈∂GP, y∈UBP} > 0.    

Define a new game Γ’ = {N, V(.)’} from ΓCF by:  V(S)’ = V(S), all S ≠ N, and  

(8)  V(N)’ = GP(ΓCF) ∪{ ∪
x∈∂GP(ΓCF)

{y| y ≥ x and d(x,y)< d*/2}}, 

one has: GP(Γ’) = GP(ΓCF) ⊆ V(N)’, so Γ’ is balanced.  However, by (7)-(8), and by 

UBP(Γ’) = UBP(ΓCF) and d(∂V(N)’, UBP(Γ’)) ≥ d*/2 > 0, one has 

C(Γ’) = ∂V(N)’∩UBP(Γ’) = ∅,   

which contradicts to (iii).  Therefore, (vii) must hold.       Q.E.D. 

 

4. Conclusion and Open Problems 

We have established the equivalence between Kakutani’s fixed point theorem and 

the existence theorems for Nash equilibrium, core, and hybrid equilibrium.  We completed 

the equivalence by showing that Scarf’s core theorem implies Brouwer’s fixed point 

theorem.   

The equivalence leaves with us three classes of problems for future research.  The 

first class of open problems are to prove directly those relations in the equivalence that had 

been indirectly established, these are marked as the dotted arrows in Figure 2.  Due to 

Nash’s popularity, it will be interesting to directly derive Brouwer’s or Kakutani’s fixed 

point theorem using Nash’s theorem.  Although an indirect proof follows from [6] and this 

paper, it remains to be seen when direct proofs for (ii) ⇒ (i) can be discovered.   
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Figure 2.   The equivalence between Kakutani’  f ixed point  theorem and 
the existence theorems of Nash equil ibrium, core,  and hybri d equil ibrium.  

 

i) Kakutani’s Fixed  
Point Theorem  

ii) Existence Theorem  
on Nash Equilibrium 

iv) Existence Theorem  
on Hybrid Equilibrium 

iii) Scar’s Core Theorem  

New result   
Open problems  
Known resul ts  
  
 

 
Because the concepts of Nash equilibrium, core, and hybrid equilibrium are the 

outcomes in three different social institutions, the equivalence theorem implies that the 

outcome in each institution can be theoretically implemented as an outcome in each of the 

two other institutions.  This suggests a new approach to implementation and hence another 

class of open problems: It will be useful to apply the equivalence theorem to the growing 

literature on implementation and mechanism design.   

Finally, it will be useful to find the equivalent versions of Nash equilibrium, core 

and hybrid equilibrium associated with each of the more advanced fixed point theorems.  

Given the success of the finite-dimensional fixed point theorems in game theory, this line of 

research will provide a rich source of future applications in economics and game theory for 

the fixed point literature.    
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