一种镍基单晶高温合金压缩蠕变强度的各向异性 *

沙玉辉 1.2) 左 良 1) 张静华 2) 徐永波 2) 胡壮麒 2)

1) 东北大学材料与冶金学院, 沈阳 110004

2) 中国科学院金属研究所材料疲劳与断裂国家重点实验室, 沈阳 110016

 摘 要 研究了镍基单晶高温合金压缩蠕变强度的各向异性。结果表明。压缩蠕变强度的取向依赖性与温度有关。其由大到小的 排序分别为: 1023 K — [110], [111], [001]; 1123 K — [110], [001], [111], 当蠕变速率小于 8×10⁻⁵ s⁻¹ 时。 [001] 与 [110] 间的各向异性减弱: 1223 K — [110], [001], [111], 但 [001] 与 [110] 间的各向异性变得非常弱。通过蠕变门槛应力分 析。确定了上述取向在不同区域中的蠕变控制机制。并据此解释了压缩蠕变强度的各向异性。

关键词 镍基单晶高温合金,压缩蠕变强度、各向异性、门槛应力

中图法分类号 TG146.1, TG113.25 文献标识码 A 文章编号 0412-1961(2001)011-1142-05

ANISOTROPY OF COMPRESSION CREEP STRENGTH IN A NICKEL–BASE SINGLE CRYSTAL SUPERALLOY

SHA Yuhui^{1,2}, ZUO Liang¹, ZHANG Jinghua², XU Yongbo², HU Zhuangqt²

1) School of Materials and Metallurgy, Northeastern University, Shenyang 110004

2) State Key Laboratory for Fatigue and Fracture of Materials, The Chinese Academy of Sciences, Shenyang 110016 Correspondent: SHA Yuhui, associate professor, Tel: (024)23968655, E-mail: yuhuisha@163.net Manuscript received 2001-01-04, in revised form 2001-06-04

ABSTRACT The anisotropy of compression creep strength in a nickel-base single crystal superalloy was investigated. The results showed that the anisotropy of compression creep strength depends on temperature, which decreases in the following order: 1023 K—[110], [111], [001]; 1123 K—[110], [001], [111], while the anisotropy between [001] and [110] weakens as creep rate is lower than $8 \times 10^{-5} \text{ s}^{-1}$; 1223 K—[110], [001], [111], but the anisotropy between [001] and [110] becomes very weak. Through the analysis of creep threshold stress, the controlling creep mechanisms were determined, and by which the anisotropy of compression creep strength was explained.

KEY WORDS nickel-base single crystal superalloy, compression creep strength, anisotropy, threshold stress

镍基单晶高温合金由于具有很高的蠕变、疲劳、氧化 及腐蚀抗力而成为新一代发动机叶片材料. 尽管 [001] 取 向的综合性能最优,而且叶片基本也是承受 [001] 轴向的 离心载荷,但叶片的复杂形状及各部分的温度梯度仍会产 生多轴应力.因此,为了优化单晶叶片的设计,充分利用 Ni 基单晶高温合金优异的高温强度、必须理解其蠕变行 为的取向依赖性及相关机制.研究表明 ^[1-4]、蠕变寿命强 烈依赖于加载轴取向,且 (110) 取向具有最低的拉伸蠕变 寿命. Caron 等 ^[4] 发现,在中温区域 (1023—1123 K), [001] 和 [11] 取向的相对蠕变强度随 γ' 颗粒尺寸的增

* 国家自然科学基金资助项目 59871052
 收到初稿日期: 2001-01-04, 收到修改稿日期: 2001-06-04
 作者简介: 沙玉辉, 男、 1969 年生、博士、副教授

大发生变化,而 [011] 取向的蠕变强度则保持最低;在高温 区域 (1223—1323 K),取向及颗粒尺寸对蠕变强度的影 响明显减小. Sass 等 ^[5] 的拉伸蠕变结果表明、1123 K, [001] 取向蠕变强度最高, [ī11] 强度最低;在 1253 K, [001] 与 [011] 取向的各向异性程度显著降低,而 [ī11] 取 向强度仍然最低. Courbon 等 ^[6] 研究发现 <110> 取 向在 1023 和 1123 K 下的压缩蠕变速率均比 (100) 取向 的压缩蠕变速率低.

由于以上结论是在单一的温度或应力下获得的,而蠕 变机制与变形条件密切相关,因此本文选择较宽的温度和 应力范围、旨在获得对 Ni 基单晶高温合金蠕变行为及其 取向依赖性的系统认识.

1 实验方法

实验用单晶合金 DD8 成分列于表 1. [001] 取向的

表 1 DD8 合金及 γ 及 γ' 相成分 Table 1 Compositions of DD8 alloy, γ and γ' phases

					(mass fraction,%)		
Alloy/phase	Ni	Co	Ti	Al	Cr	W	Ta
DD8	59.85	8.21	4.58	8.05	17.17	1.77	0.37
γ ′	71.60	2.17	8.78	12.43	2.91	1.47	0.64
γ	47.47	14.52	0.19	3.51	32.10	2.12	0.08

单晶棒经热处理后形成如图 1 所示的显微组织、边长 250 nm 的立方体形 γ' 颗粒沿 {100} 面规则排列于 γ 基体中、 γ' 相体积分数约为 60%、基体通道宽度约 为 46 nm. 热处理后的单晶棒经 Laue 背散射法定向 后,用线切割切取轴向分别为 [001]、[110] 及 [111] 取 向的压缩试样、实验是在 1023, 1123 和 1223 K 下、以 4×10^{-4} , 8×10^{-5} , 8×10^{-5} 及 8×10^{-7} s⁻¹ 恒速率变 形方式进行、以获得准确的蠕变速率、蠕变应力则通过应 力应变曲线上的稳态应力来确定、实验过程中温度波动控 制在 ±2 K 以内、实验环境为空气、样品在实验前经过仔 细的机械和电解抛光。

图 1 单晶高温合金 DD8 的显微组织 Fig.1 Microstructure of the single crystal superalloy DD8

2 实验结果

2.1 蠕变速率的应力依赖性

稳态蠕变速率 ć 通常可用 Dorn 方程表示:

$$\dot{\varepsilon} = A\sigma_{\rm a}^{n_{\rm a}} \exp(-\frac{Q_{\rm a}}{RT}) \tag{1}$$

式中 σ_a 为实验应力, T 为实验温度, A 为与材料结构 有关的常数, R 为气体常数, n_a , Q_a 分别为表现应 力指数和激活能, 作 $\ln \dot{\epsilon} - \ln \sigma_a$ 曲线, 得到 [001], [110] 及 [111] 取向的蠕变速率应力依赖性, 分别示于图 2a-c中. 从图中可见, 三个取向具有相似的蠕变速率应力依赖 性, 在 1023 和 1123 K, 都可以依据应力指数分为两个区 域、高应力区内的应力指数高于低应力区;而在1223 K, 则都具有单一的应力指数.综合三个温度、可将整个实验 应力范围分成三个区域: RI、RII和 RIII,每个区域具 有相近的应力指数.

2.2 蠕变门槛应力

对于两相合金、通常在式 (1) 中引入有效应力 σ_e : $\sigma_e = \sigma_a - \sigma_{th}, \sigma_{th}$ 称为门槛应力. Dorn 方程变成 以下的形式 ^[7,8]:

$$\dot{\varepsilon} = A' (\sigma_{\rm a} - \sigma_{\rm th})^n \exp(-\frac{Q}{RT})$$
(2)

式中 A' 为材料常数、 n 和 Q 分别为真应力指数和激活 能. 以 $\epsilon^{1/n} - \sigma$ 作图、并将曲线外推至 $\epsilon = 0$,此时对应的 应力值即为门槛应力 σ_{th} . 由于高温合金的 n 值在 3—5 之间 $^{[9-11]}$,经过对 n=3, 4, 5 分别进行尝试、发现 $\epsilon^{1/5}$ $-\sigma$ 线性最好 (见图 3)、以此获得的门槛应力值列于表 2 中. 从图 4 和表 2 可以看出、门槛应力大致分为三组: (A, F, K), (B, C, G, H, L, M), (D, E, I, J, N, O), 分 别对应图 2 中的 RI, RII 和 RIII 三个区域.

2.3 蠕变速率的取向依赖性

为了明确显示出应力轴取向的影响、将图 2 中 1023, 1123 及 1223 K 下的数据分别作图、示于图 4 中. 蠕变 强度表现出明显的各向异性,在 1023 K, [110] 取向蠕变 强度最高、[111] 取向居中、[001] 取向最低;在 1123 K, [110] 取向蠕变强度最高、[001] 取向成之、[111] 取向 最低,不过当蠕变速率小于 8×10⁻⁵ s⁻¹ 时、[001] 与 [110] 取向的蠕变强度各向异性减弱;在 1223 K, [001] 与[110] 取向的络向异性程度进一步减弱,而[111] 取向 仍然最低.

3 讨论

3.1 变形机制

在析出相强化的合金中、基体位错可以通过三种机制 克服析出相颗粒、即 Orowan 机制、剪切机制和攀移机 制. 而门槛应力是与一定温度和应力下的变形机制直接相 关的. 它由两部分组成: 一是由颗粒本身产生的 (称为 σ_p), 二是由基体产生的 (称为 σ_m),即 $\sigma_{th} = \sigma_p + \sigma_m$.

下面对 Orowan 机制和剪切机制所对应的 σ_p 进行 估算:

衰 2 [001], (110] 和 [111] 取向在 1023、1123 及 1223 K 下 的蠕变门槛值

 Table 2
 The creep threshold stress values of [001], [110] and
 [111] at 1023, 1123 and 1223 K

	-				(MPa)
Orientation	10 23K		11 2 3 K		1223 K
[001]	877(A)	555(B)	581(C)	285(D)	251(E)
[110]	1020(F)	548(G)	598(H)	227(I)	228(J)
[111]	861(K)	511(L)	441(M)	202(N)	167(O)

(1) Orowan 机制. 位错绕过 γ' 颗粒必须克服的 Orowan 阻力可以表示为: $\tau_{\rm Or} = \mu b/d = \sqrt{\frac{2}{3}} \mu b/l$, 式中 μ 为剪切模量, b 为 Burgers 矢量模, d 为 (110) 方向基体 通道宽度, l 为 (100) 方向基体通道宽度. 以 l= 46 nm, $d = 46/\sqrt{\frac{2}{3}} = 56.4$ nm, $b = |a/2\langle 110\rangle| = 0.254$ nm, $\mu \approx 50$ GPa^[6,12-15] 代入得: $\tau_{\rm Or} = 225$ MPa. $\tau_{\rm Or}$ 除以 各取向的 Schmid 因子, 可得轴向应力: $\sigma_{\rm Or}^{[001]} = 551$ MPa, $\sigma_{\rm Or}^{[110]} = 551$ MPa, $\sigma_{\rm Or}^{[111]} = 827$ MPa.

(2) 剪切机制. 剪切机制包括层错及超位错两种形 式、对于超位错剪切、 $\sigma_{\rm p}$ 源于形成反相畴界 (APB) 所 增加的能量,因此对应的剪切应力为 $\tau_{\rm APB} = E_{\rm APB}^{\{111\}}$ $2|a/2\langle110\rangle|, 以 E_{\rm APB}^{\{111\}}=184 \,{\rm mJ/m^2}$ 和 $a=0.359 \,{\rm nm}^{[16]}$ 代入、得 $\tau_{\rm APB}=362 \,{\rm MPa}$,同样将 $\tau_{\rm APB}$ 转化为轴向 应力: $\sigma_{\rm APB}^{[001]}=887 \,{\rm MPa}$, $\sigma_{\rm APB}^{[110]}=887 \,{\rm MPa}$, $\sigma_{\rm APB}^{[111]}=130 \,{\rm MPa}$, $\sigma_{\rm APB}^{[110]}=887 \,{\rm MPa}$, $\sigma_{\rm APB}^{[111]}=130 \,{\rm MPa}$, $\sigma_{\rm APB}$ = $1330 \,{\rm MPa}$. 对于以层错剪切的情况,因为没有层错能的数 据无法计算、但根据超位错和层错通常同时出现的 TEM 观察结果 $^{[17,18]}$,层错剪切产生的 $\sigma_{\rm SF}$ 应与 $\sigma_{\rm APB}$ 相近.

将计算得到的 $\sigma_p(\sigma_{APB}, \sigma_{Or})$ 与实验得到的 σ_{th} 进 行比较可以发现, 对于 [001] 和 [110] 取向, 在 RI 区, σ_{th} 接近 σ_{APB} ,表明 γ' 剪切机制控制变形; 在 RII 区, σ_{th} 接近 σ_{Or} ,表明 Orowan 机制起主导作用,尽管在该 区域同时也观察到剪切机制的存在; 在 RIII 区, σ_{th} 低 于 σ_{Or} 和 σ_{APB} ,位错只能以攀移机制克服 γ' 颗粒. 对 于 [111] 取向,由于 σ_{APB} 高达 1330 MPa,剪切机制实 际上很难发生,在 RI 区,Orowan 机制控制变形,而在 RII 和 RIII 区,位错必须借助攀移机制越过颗粒.

3.2 蠕变强度的各向异性

门槛应力代表材料抵抗变形的能力,因此,其取向依赖性决定了蠕变强度的各向异性,而门槛应力的取向依赖 性取决于 σ_p 和 σ_m 对 σ_{th} 的相对贡献以及各自的取向依赖 赖性.

在 **RI** 区,对于 [001] 和 [110] 取向,位错以剪切 机制克服 γ¹ 颗粒,由于此时 [110] 取向的屈服应力高于 [001] 取向 ^[19],使前者具有较高的门槛应力和蠕变强度. 对于 [111] 取向.由于 Orowan 机制仍能提供较高的门槛 应力,所以 [111] 取向也具有相当高的蠕变强度.

在 RII 区, 对于 [001] 和 [110] 取向, Orowan 机制控 制变形, 同时也存在剪切机制、由于 Orowan 应力在这两 个取向之间并不会产生各向异性, 所以 [001] 和 [110] 取 向门槛应力的各向异性仍是由剪切机制引起的, 即 [110] 取向具有较高的蠕变强度, 对于 [111] 取向,攀移机制逐 渐起主要作用、使 [111] 取向的门槛应力迅速减小、蠕变 强度也随之显著降低, 到 1123 K 时,已经成为强度最低 的取向.

在 RIII 区,攀移机制成为控制机制,此时基体中的

应变硬化起重要作用,变形分布的不均匀性以及大量的滑移系开动将有利于位错交互作用,从而产生较高的应变硬化.对于 [001] 取向,变形主要集中于四个平行于应力轴的基体通道即 2/3 基体、有 8 个等效的滑移系;对于 [110] 取向,变形主要集中于两个平行于应力轴的基体通道即 1/3 基体,有四个等效的滑移系:对于 [111] 取向.变形在所有基体通道均匀分布即 3/3 基体,有四个等效的滑移系.可见, [001] 取向和 [110] 取向分别在滑移系的数量及变形分布的不均匀性上各具优势,使二者门槛应力相当,因此 [001] 和 [110] 取向蠕变强度的各向异性变得很弱, [111] 取向由于滑移系数量少且变形分布均匀,从而具有最差的应变硬化能力,使 [111] 取向的蠕变强度最低.

4 结论

(1) [001], [110] 和 [111] 取向的压缩蠕变速率应力依 較性,可以根据应力指数分成三个区域. [001] 和 [110] 取向在三个区域中的蠕变控制机制分别为剪切、Orowan 和攀移机制,而 [111] 取向只出现 Orowan 和攀移机制.

(2) 压缩蠕变强度的各向异性与温度有关. 压缩蠕变强度由大到小的排序为: 1023 K—[110], [111], [001]; 1123 K—[110], [001], [111], 当蠕变速率小于 8×10⁻⁵ s⁻¹ 时, [001] 与 [110] 的压缩蠕变强度各向 异性减弱: 1223 K—[110], [001], [111], 但此时 [001] 与 [110] 的压缩蠕变强度各向异性已变得非常弱.

参考文献

[1] Kear B H, Piearcey B J. Trans AIME, 1967; 239: 1209

- [2] Mackay R, Maier R D. Metall Trans, 1982; 13A: 1747
- [3] Caron P, Khan T, Nakagawa Y G. Scr Metall, 1986; 20: 499
- [4] Caron P, Ohta Y, Nakagawa Y G, Khan T. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds, Superalloys 1988, PA: Metall Soc AIME, 1988: 215
- [5] Sass V, Glatzel U, Feller-Kniepmeier M. Acta Mater, 1996; 44: 1967
- [6] Courbon J, Ignat M, Louchet F. Acta Metall Mater, 1990; 38: 663
- [7] Williams K R and Wilshire B. Metall Sci J, 1973; 7: 176
- [8] Park J D , Wilshire B. Metal Sci, 1975; 9: 248
- [9] Feller-Kniepmeier M, Link T, Catena V, Wortmann J. Z Metallk, 1989; 80: 152
- [10] Carry C, Strudel J L. Acta Metall, 1977; 25: 767
- [11] Lagneborg R , Bergman B. Metal Sci J, 1976; 10: 20
- [12] Mukherji D, Wahi R P. Acta Mater, 1996; 44: 1529
- [13] Pollock T M, Argon A S. Acta Metall Mater, 1992; 40: 1
- [14] Pollock T M, Argon A S. Acta Metall Mater, 1994; 42: 1859
- [15] Dollar M, Bernstein I M. In: Reichman S, Duhl D N, Maurer G, Antolovich S, Lund C eds., Superalloys 1988, PA: Metall Soc AIME, 1988: 275
- [16] Scheunemann-Frerker G, Gabrisch H, Feller-Kniepmeier M. Phil Mag, 1992; A65: 1353
- [17] Feller-Kniepmeier M, Link T, Poschmann I, Scheunemann-Frerker G, Schulze C. Acta Mater, 1996; 44: 2397
- [18] Rouault-Rogez H, Dupeux M, Ignat M. Acta Metall Mater, 1994; 42: 3137
- [19] Sha Y H. Zhang J H, Jin T, Xu Y B, Hu Z Q. Acta Metall Sin, 1999; 35: 495

(沙玉輝、张静华、金涛, 徐永波、胡壮麒, 金属学报, 1999; 35: 495)