(三)检测线性范围和最低检知量

在选定的色谱条件下,分别注入不同量的所试 三种化合物(进样体积相同)进行 HPLC 分析。图4表 明,3-氰基吡啶、尼克酰胺和尼克酸的检测线性范围 分别为0---5、0---4和0--5µg。

当 UV 检测器灵敏度(AUFS)为0.05,数据处 理器输入排除面积阈(A,)为100u 时,3-氰基吡啶、 尼克酰胺和尼克酸的最低检知量分别为1×10⁻⁹g、 1.5×10⁻¹⁰g 和1×10⁻¹⁰g。

图4 线性响应曲线

1.3-氰基吡啶.2.尼克酰胺.3.尼克酸.

(四)检测重现性

对10次等量混合标样液重复测定(表2)表明,上述三组分的 HPLC 分析重现性相当好,可满足微量分析的要求。

综上结果,我们认为采用上述选定的反相 HPLC分析条件,在同一分析系统中可成功地进行 对3-氰基吡啶及其微生物转化产物——尼克酰胺和 尼克酸的快速定性、定量测定。分析周期短,重现性 好,一次进样可同时完成诸组分的完全分离和分析, 并自动计算和打印结果,从而大大简化了测定手续,

适用于微生物研究工作中的批量样品测定。

表2 检测重现性

组分	峰面积(A)			保留时间(t _R)		
	平均回 收率(%)	标准偏) 差 (σ)	精确 度(h)	平均回 收率(%)	标准偏) 差(o)	精确 度(h)
3-氰基 吡啶	99. 94	116.0	6.1	99. 99	0.14	5.05
尼克酰胺	99. 79	121. 3	5.8	99. 99	0. 08	8. 73
尼克酸	99. 99	296. 2	2.4	99. 99	0. 83	0. 85

参考文献

- [1] W. Kroh, German Patent, 828247, 1953.
- [2] T. Nagasawa et al., Appl. Environ. Microbiol., 54(4), 1030(1988).

(收稿日期:1991年11月8日,修回日期:1992年2月7日)

Analysis of Products from Microbial Transformation of 3-Cyanopyridine by Reversed-Phase High Performance Liquid Chromatography (RP-HPLC) Li Wenzhong, Institute of Microbiology, Academia Sinica, Beijing, 100080

The conditions for the analysis of transformed products of 3-cyanopyridine via microorganism by RP-HPLC with flow rate gradient of mobile phase have been studied. Under the optimum conditions, the biotransformed products, nicotinamide and nicotinic acid, and 3-cyanopyridine as a substrate were well separated. When the AUFS was 0. 05, the minimum detectable amounts of 3-cyanopyridine, nicotinamide and nicotinic acid were 1×10^{-9} g, 1. 5×10^{-10} g and 1×10^{10} g respectively.

液相色谱技术测定葡萄糖果糖在 Ca 型吸附剂 上相平衡常数和总传质系数

李忠 叶振华

(华南理工大学化学工程研究所,广州,510641)

[提要] 考虑轴向扩散的影响,导出液相色谐技术测定吸附相平衡常数和总数传质系数参数估值模型,测 定葡萄糖果糖吸附相平衡常数和总传质系数,研究流速、温度对这些参数的影响。获得理论计算与色谱分离实 验流出曲线相吻合结果。

* 广东省科学基金资助项目.

液相色谱由于具有高分辨能力和广泛适用性已 在生物工程的下游处理中得到广泛应用^[1,2],例如分 离和纯化氨基酸、具有生物活性的酶或蛋白质、抗生 素、核酸、核苷酸以及一些热敏感或过程敏感物质。 对色谱分离技术的优化包括两个方面,一是选择高 效吸附分离剂,简化分离过程;二是对过程进行计算 机模拟,进行最优化设计和控制。吸附相平衡关系和 传质动力学参数是评价吸附剂性能的依据,也是对 色谱分离过程进行最优化设计所必须参数。近年来 色谱技术矩量分析在色谱分离柱上在线测定吸附相 平衡和动力学参数的方法已被提出^[3],本文利用色 谱技术,考虑轴向扩散影响提出传递函数法测定线 性系统的吸附相平衡和动力学参数,把所得参数代 入色谱分离过程数学模型进行理论计算,并把理论 计算结果与实验的色谱分离曲线进行比较。

一、吸附相平衡常数和总传质系数参数 估值模型

假设各组分的相平衡关系为线性的,液固两相 间的质量传递速率方程可用一阶线性推动力的形式 表示,组分间无干涉现象,对色谱柱填充床取微元段 作物料衡算,导出液相色谱分离连续性方程:

$$\begin{cases} u \frac{\partial C_i}{\partial x} + \frac{\partial C_i}{\partial t} - \operatorname{Dax} \frac{\partial^2 C_i}{\partial x^2} + B \frac{\partial Q_i}{\partial t} = 0 \\ \frac{\partial Q_i}{\partial t} = k_i (C_i - O_i^*) \\ Q_i = K_i C_i^* \end{cases}$$
(1)

式中, u:流体线速(cm • min⁻¹), C_i :i 组分的体积浓 度(g•ml⁻¹), X:色谱柱床层轴向距离(cm), D_{xx} :轴 向扩散系数(cm²•min⁻¹), Q_i :固定相 i 组分的吸附 量(g•g⁻¹), t:时间(min), K_i :i 组分相平衡常数, k_i

图1 色谱柱的输入输出信号

(6) 式中 C_i(t,0) 和 C_i(t,L) 分别为色谱柱的输入和 输出信号,如图 1 所示。根据色谱分离实验的矩形波 输入 C_i(t,0) 和流出曲线 C_i(t,L),按(6) 式可求出传 递函数 F(s) 的值。 :i 组分总传质系数(ml·min⁻¹g⁻¹), B = $\frac{1-e}{e}\rho_{a}$, e 为床层空隙率, ρ_{a} 为吸附剂重度(g·ml⁻¹),上标 * 为 平衡状态下的参数。

初始和边界条件为:

$$C_1(o,x) = 0, \qquad Q_1(o,x) = 0$$
 (2)

$$C_{i}(t,0) = \begin{cases} C_{\text{el}} & t_{1} \ge t \ge t_{2} \\ 0 & \text{Ide} \end{cases}$$
(3)

能用线性偏微分方程组(1)式描述的液相色谱分离 过程称为线性系统(对于非线性系统,数学模型和处 理方法另外讨论),对于这一线性系统,利用拉氏变 换并根据初始和边界条件从(1)式可导出:

$$\overline{C}_{i}(s,x) = \overline{C}_{i}(s,o) \cdot \exp\left[\frac{u \cdot x}{2D_{sx}}(1 - \sqrt{1 + 4SD_{sx}(1 + \frac{B \cdot K_{i} \cdot k_{i}}{SK_{i} + k_{i}})\frac{1}{u^{2}}}\right]$$
(4)

当色谱柱床层长度为 L 时,把 X = L 代入(4) 式,色谱柱的传递函数 F(s) 可表示为^[4]:

$$F(s) = \frac{C_i(s,L)}{\overline{C}_i(s,O)} = \exp\left[\frac{1}{2N_A}(1 - \sqrt{1 + 4S\tau N_A(1 + \frac{B \cdot K_i \cdot k_i}{SK_i + k_i})}\right]$$
(5)

式中 $N_A = D_{ax}/(uL), \tau = L/u, 根据拉氏变换的定 义, F(s) 又可表示为:$

$$F(s) = \frac{\int_{0}^{+\infty} C_{i}(t,L)e^{-s}dt}{\int_{0}^{+\infty} C_{i}(t,0)e^{-s}dt}$$
(6)

图2 色谱柱分离的输入输出浓度曲线 对(5)式两边取对数整理得到。

$$2N_{A}\ln F(s) = \left(1 - \sqrt{1 + 4S\tau N_{A} \left(1 + \frac{B \cdot K_{i}k_{i}}{SK_{i} + k_{i}}\right)}\right)$$
(7)

对(7)式两边平方,最后整理得到吸附相平衡常数 K,和总传质系数k,参数估值模型:

$$\frac{4N_{A}\tau B}{E^{2}-2E-4S\tau N_{A}}=\frac{1}{k_{1}}+\frac{1}{K_{1}}\left(\frac{1}{S}\right)$$
(8)

式中 $E = 2N_{A} \ln F(s)$,令

$$Y = \frac{4N_{\rm A}\tau B}{E^2 - 2E - 4S\tau N_{\rm A}} \tag{9}$$

则(8)式可写成以 Y 为因变量, $\frac{1}{S}$ 为自变量的线性 方程:

$$Y = \frac{1}{k_{1}} + \frac{1}{K_{1}} \left(\frac{1}{S}\right)$$
(10)

根据色谱分离实验矩形波输入的 i 组分浓度 $C_i(t,0)$ 以及经色谱柱分离后得到的 i 组分的流出曲 线 $C_i(t,L)$ (如图 2 所示),给定系列的 S 值,按(6) 式 计算得系列 F(S) 值,又按(9) 式计算得出系列的 Y值,最后按(10) 式以 $\frac{1}{S}$ 为自变量,Y 为因变量进行 最小二乘法线性回归,从斜率和截距便可求出i 组分 的吸附相平衡常数 K_i 和总传质系数 k_i 。(9) 式中的 轴向扩散系数 $D_{xx}(N_A = D_{xx}/(uL))$ 由传递函数法 扰动应答实验测定^[5]。

二、实 验

(一)色谱柱内径为 3.17cm,装填高度为
116cm,并带有恒温夹套,填料分别为工业用 Ca型
734 树脂和 Ca型 D61 大孔型树脂,粒度分别为
0.3—1.0mm 和 0.3—1.2mm,≥ 95%,湿法装填。

(二)果糖、葡萄糖混合液的总糖浓度为 0.58g/ml,其中C_{of}=0.28g/ml,C_{ng}=0.30g/ml(下 标f为果糖。g为葡萄糖),冲洗液为蒸馏水,进料泵 均为无脉冲柱塞计量泵。色谱分离果糖、葡萄糖具体 操作的初始边界条件为:

 $C_{t}(0,x) = 0, \quad C_{s}(0,x) = 0$ $C_{t}(t,0) = \begin{cases} C_{ot} & 0 < t \le 7.5 \\ 0 & \text{It} \& \\ C_{s}(t,0) = \begin{cases} C_{os} & 0 < t \le 7.5 \\ 0 & \text{It} \& \end{cases}$

(三)样品分析采用折光一旋光法。

(四)数据处理:按(6)式计算 F(s),按(9)式计 算 Y 以及相应地按(10)式进行线性回归时,S 的取 值范围为 0.1 < S < 1.1,增量 $\triangle S = 0$.01,每 20 个 数据为一组,逐个区间进行回归,取相关系数最接近 于 1 的那组回归结果,S 是拉氏域内的一个变量,目 前仍难于说明其确切的物理意义。

三、实验结果与分析

(一)表1中总传质系数 k, 随温度升高而增大;相平衡 常数 K, 随温度升高而降低, 而 K。随温度变化较小 (表中数据有波动,主要由于实验误差所致),这与利 用热力参数泵变温吸附分离第二代高果糖浆的依据 是一致的^[6]。

表1 温度对相平衡常数和总传质系数的影响

ТC	K _s	k,	K _t	k _t	K _f /k _s
40	0.377	0.612	0.553	1.122	1.467
45	0.375	0.697	0.543	1.564	1.448
50	0.368	0.753	0.529	1.865	1.438
55	0.365	0.841	0.518	2.218	1. 419
60	0.363	0.913	0.505	2. 497	1.393

测定条件:吸附剂为734Ca型树脂, u = 3.46cm/min, Dax = 0.915cm²/min, L = 116cm.

表2中 k,值随流速增大而增大,这说明在本研究 的线速范围内,液固两相间传质机理属外扩散控制。

表2 流体流速 u 对总传质系数 ki 的影响

u	D _{ax}	K _s	k _s	K,	k,
2.06	0. 482	0. 298	0. 247	0. 477	0.737
2.74	0.742	0.288	0. 485	0. 465	1.232
3.43	1.062	0. 293	0.647	0. 452	1.792
4.11	1. 462	0.301	0.763	0. 461	2.058

测定条件:吸附剂为 D61 Ca 型树脂,T = 50 C,

L = 116 cm.

(二)把本文实验测到的 K, 和 k, 代入色谱分离 过程数学模型(1)式,并使用电子计算机进行数值 解。图3和图4是理论计算所得到的色谱分离果糖葡 萄糖流出曲线与实验所得到的流出曲线的比较,以 验证所求出的参数,结果表明,理论与实验的流出曲 线很好吻合。这说明本文提出的色谱技术传递函数 法适用于线性系统相平衡常数和总传质系数的参数 识别。

参考文献

- [1] P. E. Barker, G. Ganetsos, Separation and Purification Method, 17(1), 1(1988).
- [2]姚志建,色谱,7(1),15(1989).
- [3]Motoyuki Suzuk, "Adsorption Engineering", Published by Kodansha Ltd. Tokyo, P. 128, 1990.
- [4]浙江大学,《概率论与数理统计》,人民教育出版社, 1981.
- [5]李忠、叶振华,化学工程,已接受,待发表.
- [6]李忠、叶振华,化学工程,1,54(1986).

(收稿日期:1991年3月16日,修回日期:12月30日

图2 杀虫脒的碎片图

溴化产物在 NBS 谱库中未能检索到,从碎片图2 和图3可知,图2中所出现的碎片(包括氯苯脒的分子 离子峰196m/z)在图3中都出现了,氯苯脒分子量为 196,如一个溴加到氯苯脒的苯环上,图3中应当出现 276 m/z 的分子离子峰,在79m/z,80m/z 有强度相当 的碎片峰。从图3可以看到较强的276,80,79 m/z 峰, 因氯苯脒上含有3个甲基,所以还有(276-15)m/z 碎片峰,且图2、图3中均有甲脒的特征峰44m/z。再根 据苯环上基团定位规律确定,杀虫脒碱解后的溴化 产物为 N'-(6- 溴-4- 氯-2- 甲基苯基)-N.N- 二甲基 甲脒,分子式为C10H12BrClN2,分子量276。

参考文献

- (1) G. Huns et al., J. Agric. Food Chem., 19(2), 365 (1971).
- (2) 庄无忌等,环境科学,(4),38(1978).

(上接80页)

图3 色谱分离理论流出曲线与实验流出曲线比较 T = 50°C, u = 2.74 cm/min, L = 93.8 cm, D61 型树脂. 一计算值,葡萄糖;○实验值,葡萄糖;---计算值,果糖;●实验值,果糖.

Determination of Phase Equilibrium and Lumped Mass Transfer Parameters of Glucose and Fructose on Ca Form Adsorbents by Liquid Chromatographic Technique Li Zhong and Ye Zhenhua, Chemical Engineering Research Institute, South China University of Technology, Guanazhou, 510641

Physical and mathematical models used to determine adsorption phase equilibrium and lumped mass transfer

图3 杀虫脒溴化产物的碎片图

(3) 黄志强等,色谱,9(1),53(1991).

(收稿日期:1991年4月17日,修回日期:9月25日) Identification of Brominated Chlordimeform by Gas Chromatography (GC) and Gas Chromatography/Mass Spectrography (GC/MS) Huang Zhiqiang and Nie Hongyong, Hunan Import & Export Commodity Inspection Bureau. Changsha, 410007

By means of GC and GC/MS, two chlordimeformrelated compounds have been identified in this work. The product from the decomposition of chlordimeform in 5 mol/L N' - (4-chloro-2-NaOH solution is methylphenyl)-N, N-dimethyl-methaninimide.

The degradation product is brominated in 1 mol/L HCl solution with saturated bromine water. The is N'-(6-bromo-4-chloro-2brominated product methylphenyl)- N, N-dimethyl-methaninimide.

色谱分离理论流出曲线与实验流出曲线比较 唐4 T = 50℃, u = 3.46cm/min, L = 93.8cm, 734型树脂.

parameters by liquid chromatographic technique were established, as axial dispersion being taken account. Adsorption phase equilibrium and lumped mass transfer parameters of glucose and fructose on Ca form adsorbents were determined. The effects of velocity and temperature on them were studied. Theoretical elution curves were in good agreement with those from experiments.