基于刚 - 弹性变换的医学图像塔式配准新算法

刘新刚,陈武凡,陈光杰(南方医科大学生物医学工程学院医学信息研究所,广东 广州 510515)

摘要:提出了利用 B 样条实现医学图像从刚性到弹性配准的统一的塔式算法。选取图像的四个顶点作为构成变形函数 的 B 样条的节点,合理选择 B 样条的次数,可以实现图像的仿射变换。沿 X 和 Y 方向均匀增加节点数量,逐步增加变 形函数的复杂性,通过选择 B 样条的不同的次数 n,可以实现图像的分块仿射变换或 n-1 阶导数连续的弹性变换。整个 匹配算法体现了从整体到细节的匹配思想。实验证明,这种配准方法比单纯的弹性配准方法鲁棒性有很大提高。 关键词:B 样条;配准;刚性变换;弹性变换 中图分类号:TR399 文献标识码: 文章编号:1673-4254(2006)05-0587-04

A new mixing rigid-elastic multiresolution algorithm for medical image registration

LIU Xin-gang, CHEN Wu-fan, CHEN Guang-jie

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China

Abstract: We present a new mixing rigid-elastic multiresolution algorithm for medical image registration from global registration to local registration in sequence. The global registration is achieved by the method of affine transformation composed of B spline, which knots are the four vertexes of the medical image. When increasing the number of the knots of the B spline along the X and Y axis, the transformation function will be more complex and "elastic", which can complete the elastic aligning for the detail of the medical image. The results of experiment demonstrated that the presented algorithm was more robust than the previous elastic algorithm of registration.

Key words: B spline, registration, rigid registration, elastic registration

1 简介

图像配准在遥感图像处理、计算机视觉、运动估 计、医学图像分析等领域有着广泛的应用。它是指对 于一幅医学图像寻求一种空间变换,使它与另一幅图 像上的对应点达到空间上的匹配。在医学领域,配准 主要应用于 CT、MRI、PET 等医学图像的信息融合、 实际医学图像和图谱的比较、外科手术导航、心脏运 动估计等许多方面^[1,2]。

常用的图像变换模型有刚性变换和弹性变换模 型两种。刚性变换是一种相对简单的变换(本文主要 指的是仿射变换),它将直线映射为直线,并保持平行 性。如果图像畸变严重,配准时就需要引入弹性变换。 弹性变形函数具有足够的通用性,可以逼近任意的非 线性变换。弹性变换的变形模型基本可以分为两类: 一类是非参数化模型。在这种模型中,图像被看成是 一片有弹性的薄膜,在外力和内力的作用下达到平 衡。外力由参考图像和变形图像的差异确定;内力由 薄膜的强度和平滑程度确定。这种模型中最有名的是 流体模型^[3,4],此外还有扩散模型^[5]、光流模型^[6]等;还

收稿日期:

- 基金项目:国家重点基础研究(973)计划项目(2003CB716104);自然 科学基金重点项目(No.30130180)
- Supported by National Notural Science Foundation of China (30130180) and "973" Program (2003CB716104)

作者简介:刘新刚,男,博士,E-mail:xjlxg@163.com

通讯作者:陈武凡,男,博士,教授、博导,电话:020-61648285,E-mail: chenwf@fimmu.com

有一类是参数化模型,模型需要使用一些参数来表示,模型的计算过程就是参数的计算过程,这类函数 包括多项式、谐波函数、分级基函数、小波等^[1]。

在实际的医学图像中,各种变形是同时存在的, 即在整体上存在刚性变形,同时在图像的细节上也存 在弹性变形。一个比较好的配准方法首先应从整体上 作全局变换,然后在细节上作微调,即先进行刚性变 换,再在此基础上作弹性变换。如果直接对图像作弹 性变形,因为对图像任一部分的变形只利用了图像的 局部信息,容易产生误配。另外刚性变形需计算的参 数少,计算量小,所以从计算量的角度考虑,也应该先 计算刚性变换,再计算弹性变换。Rueckert等人做过 类似的工作 [7],他们是把配准过程分为前后两个步 骤,依次作仿射变换和用 B 样条作弹性变换。Michael 等人的方法是在作弹性配准之前有个预配准的过 程^[8]。他们的配准方法都是把配准过程分为前后两个 计算步骤,分别作刚性和弹性配准。这种方法虽然实 现简单,但也造成了它的缺陷,就是配准过程的不连 续和计算的复杂。就变换的通用性来说,刚性变换是 包含于弹性变换的,所以有必要设计一种弹性变形函 数,可以实现从刚性到弹性,从简单到复杂的统一的 变换表达。本文提出的变形模型可以解决以上问题。 在这种模型中,随着变形函数中参数数量的增加,变 形函数逐渐由刚性变换过渡到弹性变换。它是一种基 于参数模型的弹性配准算法^[9,10],采样 B 样条来构造 变形函数^[9,11-13]这种方法在图像配准方面有着广泛的应用^[14]。模型使用多尺度的方法^[15],即塔式模型。下面 对算法作具体介绍。

2 塔式配准模型

2.1 塔式算法

本文用 B 样条来构造塔式变形函数^[9,13],这是因 为 B 样条模型有以下三个优点:一、很好的近似性; 二、有快速算法;三、粗糙层次的变形模型可以递推到 更精细的层次,而不会丢失任何信息。用 B 样条表示 的变形函数为:

$$\begin{cases} g_{x}(x,y) = \sum_{i \in I_{e}} \sum_{j \in I_{e}} C_{i,j} \beta_{n}(x/2^{w}-i)\beta_{n}(y/2^{w}-j) \\ g_{x}(x,y) = \sum_{p \in I_{e}} \sum_{q \in I_{e}} C_{p,q} \beta_{n}(x/2^{w}-p)\beta_{n}(y/2^{w}-q) \end{cases}$$
(1)

其中,n为样条的次数,2^w为节点间距,w表示层次,即相邻层次间的伸缩尺度为2,ij,p、q分别为节 点在 x 和 y 方向上的位移,g_x和 g_y为原图像的坐标 x、y 经变换后相应的坐标值。为便于计算,所选的图 像长和宽相等,为L。

设 *i*₀ 为最初的层次,节点间距 *h*=2^{*w*},*w* 表示现在 所处的层次,*C*_{*i*,*w*} 表示原层次为 *i*₀ 的变形函数的系数 递推到层次 *w* 时的系数,则相对粗糙的层次 *w*+1 的 系数 *C*_{*i*,*w*+1} 和相对精细的层次 *w* 的系数 间有如下递 推关系^[15]:

$$C_{i_{0},w}(k) = u_{2}^{n} * [C_{i_{0},w+1}]_{\uparrow 2}(k)$$

$$C_{i_{0},w+1}(k) = \frac{1}{2} [u_{2}^{n} * C_{i_{0},w}]_{\downarrow 2}(k)$$
(3)

其中 u_2^n 为长度为2的移动平均滤波器的n+1次,n为样条次数,即

$$u_{2}^{n}(Z) = \frac{Z^{k_{0}}}{2^{n}} \left(\sum_{k=0}^{1} Z^{-k}\right)^{n+1}, \ddagger \psi k_{0} = (n+1)/2 \quad (4)$$

$$\begin{bmatrix} C \end{bmatrix}_{\uparrow 2}(k) \neq \emptyset$$

$$\begin{bmatrix} C \end{bmatrix}_{\uparrow 2}(k) = \begin{bmatrix} C(k'), \exists \ k = 2k' \\ 0, 其 c \end{bmatrix}$$
(5)

$$[C]_{\downarrow 2}(k)定义为:$$

 $[C]_{\downarrow 2}(k)=C(2k)$ (6)

2.2 基函数的选择

选定 B 样条就涉及一个样条次数的问题。现在 不管构造变形函数还是插值函数,B 样条次数大多选 3 次,这是因为 3 次 B 样条在精度和计算速度之间有 一个很好的平衡。使用 3 次 B 样条作为基函数可以 满足弹性形变的要求,但在节点相当少的情况下不能 满足我们仿射变换的要求,因为这时节点间距很大, 变形函数的非线性明显。如果用1次B样条来构造 变形函数,就可以很好的解决这个问题。下面对此进 行证明。

1次B样条是分段线性函数,它的表达式为:

$$\beta_{1}(x) = \begin{cases} 1 - |x|, \exists |x| < 1 \text{ If} \\ 0, \exists c \end{cases}$$
(7)

当节点间距取 *h*=2^{*u*}=*L* 时, 节点 *C*₀₀, *C*₁₀ 和 *C*_{1,1} 为图像的四个顶点, 如图 1 所示。

这时的变形函数在 x 方向的表达式(y 方向与之 类似)为:

$$g_{x}(x,y) = \sum_{i=0,1} \sum_{j=0,1} C_{i,j} \beta_{1}(x/h-i) \beta_{1}(y/h-j)$$

= $C_{0,0} \beta_{1}(x/h) \beta_{1}(y/h) + C_{1,0} \beta_{1}(x/h-1) \beta_{1}(y/h)$
+ $C_{0,1} \beta_{1}(x/h) \beta_{1}(y/h-1) + C_{1,0} \beta_{1}(x/h-1) \beta_{1}(y/h-1)$
= $C_{0,0}(1-x/h)(1-y/h) + C_{1,0}(x/h)(1-y/h)$
+ $C_{0,1}(1-x/h)(y/h) + C_{1,1}(x/h)(y/h)$ (8)
= $(C_{0,0} + C_{1,1} - C_{1,0} - C_{0,1}) \frac{xy}{h^{2}} + (C_{1,0} - C_{0,0}) \frac{x}{h}$
+ $(C_{0,1} - C_{0,0}) \frac{y}{h} + C_{0,0}$
m x 方向仿射变换公式为.

 $g_x(x, y) = \alpha_x x + b_x y + c_x \tag{9}$

对比(8)和(9)式可以看出,用 B 样条构造的变 形函数和仿射变换很相似。在 x 方向上,仿射变换有 3 个自由变量,而所构造的变形函数有 4 个自由变 量,所构造的变形函数比仿射变换复杂,多一个 xy 项。如果加一个约束条件 C_{0,0}+C_{1,1}-C_{1,0}-C_{0,1}=0,这时两 式完全一样,所构造的变形函数就是一个仿射变换, 所以利用 1 次 B 样条和塔式算法构造的变形函数在 加适当约束条件的情况下可以构成一个仿射变换。 2.3 从刚性变换到弹性变换

如果以 B 样条为基函数构造变形函数,则在节 点间隔很小,即节点数量较多时,可以实现弹性变换。 随着节点间隔的增加,节点数量的减少,变形函数中 的参数数量逐渐减少,变形的弹性也随之减少,刚性 逐渐增大。当节点减少为图像的四个顶点时,如果选 择 1 次 B 样条作为基函数,就能使变形函数变为仿 射变换。于是可以先对图像进行仿射变换,并作配准; 然后把所得的变形函数再变换到小节点间隔的情况, 以新的变形函数为基础,再次进行配准;这个过程一 直继续下去,直到满足所要求的误差限制为止。最小 节点间距一般取为8或16。

塔式算法的详细流程图如图2所示:

图 2 详细流程图

本文使用变形图像和参考图像的误差的平方和 作为代价函数,搜索方法为梯度下降法,即

$$E = \frac{1}{\|I\|} \sum_{i \in I} e_i^2 = \frac{1}{\|I\|} \sum_{i \in I} (f_i(i) - f_r(i))^2 \quad (10)$$
$$\triangle C_i = -\mu \nabla c E(C_i) \quad (11)$$

其中 *f_i*(*i*)为变形图像,*f_i*(*i*)为参考图像,*C_i*为变形 模型的系数。步长 μ 的选取采样变步长的方法。 2.4 算法的改进

在塔式算法中,如果选取1次B样条作为基函 数,可以很好的实现从仿射到弹性的一系列变换,但 这种算法在进行弹性变换时实际上是对整幅图像分 块进行仿射变换,变形函数在块与块之间是导数不连 续的。如果增加样条次数 n, 变形函数是 n-1 阶导数 连续,这样可以很好的解决连续性问题,但这时样条 基函数不再是分段线性,而是非线性的,在塔式算法 的最底层就不能构成仿射变换。实际上分块仿射变换 也是一种应用广泛的弹性变换方式[1],但如果对变换 的整体连续性有更高的要求,可以采取以下步骤解决 这个问题:一、首先在最底层用1次样条进行仿射变 换:二、把所求得的变形函数的系数向上层进行转换; 三、把变形函数的基函数由1次变为3次,同时对系 数再进行一次转换。这样变形函数既可以在最底层实 现仿射变换,又可以保持弹性变换时变形函数更高的 连续性。其中第一、二个步骤的实现方法已经在前面 进行过介绍,现在讨论第三个步骤的实现方法。

因为基样条的系数值就是采样值^[11,12],所以可以先把 1次B样条的系数转换为基样条的系数,再把基样条 的系数转化为3次B样条的系数。这样就实现了1 次B样条和3次B样条之间的系数转换。基样条和 B样条之间的系数转换如图3所示^[15]:

所以1次B样条至3次B样条的系数转换有如 下关系:

$$C_{3}(n) = C_{1}(n)^{*}b^{1}(n)^{*}[b^{3}(n)]^{-1}$$
(12)

其中"*"表示卷积, b¹(n)为1次B样条的离散 值,即

$$b^{1}(n) = \begin{cases} 1, \leq n = 0 \text{ 时} \\ 0, 其它 \end{cases}$$
 (13)

[b³(n)]⁻¹ 是 3 次 B 样条离散值的逆变换,它的 Z 变换为:

$$(b^{3}(Z))^{-1} = \frac{6}{Z + 4 + Z^{-1}}$$
(14)

把 b¹(n)和[b³(n)]⁻¹带入,得

$$C_{3}(Z) = C_{1}(Z) \frac{6}{Z + 4 + Z^{-1}}$$
(15)

即
$$C_3(n) = C_1(n)^* [b^3(n)]^{-1}$$
 (16)

3 实验结果及分析

本文对刚性和弹性相结合的混合变形进行了配 准实验,并把实验结果和文献[9]中的单纯利用 B 样 条的弹性配准结果进行了对比。文献[9]中的算法以 后简称为参考弹性算法。

我们随机从图库中选取了 16 幅图像作为参考图像,其中 CT 图像 8 幅、MR 图像 8 幅,分别对它们进行相同的变形处理,以此作为变形图像。变形包括旋转 15 度、沿 X 和 Y 轴方向分别平移 10 个象素,并用 photoshop 对图像作局部非线形变形。利用本文算法和 Kybic 的算法分别对这 15 组图像进行配准试验,结果见表 1。

表 1 15 组试验的结果对比

	CT 图像	MR 图像	总和
试验样本数量	8	8	16
配准正确数量(本文算法)	8	5	13
准确率(本文算法)	100%	62.5%	81.25%
配准正确数量(参考算法)	3	2	5
准确率(参考算法)	37.5%	25%	31.25%

从 16 组对比试验的试验结果可以看出,本文算 法实现了总体 81.25%的准确率,其中对 CT 图像的 配准准确率达到了 100%;而 Kybic 的参考算法对这 种刚性和弹性相结合的变形图像的配准效果很差,准 确率只有为 31.25%。

下面选取一组试验来具体说明本文算法的配准 情况。MRI图像参考的原图和变形后的图像如图 4 所示:

 参考图像
 变形后图像

 图 4 MRI 原图和变形图像

对上面两幅图像使用 B 样条塔式算法进行缩减,分别得到 128×128 和 64×64 象素的图像。对这两 组图像分别使用本算法和参考弹性算法进行配准实 验。配准后的图像对比如图 5 所示:

20

50 100 150 200 250

50

100

150

200

250

50 100 150 200 250

20 40 60 80 100 120 利用本文算法变形后的图像

20 40 60 80 100 120 利用参考弹性算法变形后图像

10 20 30 40 50 60

10 20 30 40 50 60

本文算法配准的精度见表2。

表 2 实验结果

	旋转角度(度)	X方向平移(象素)	Y方向平移(象素)
标准值	15	10	10
实验值	14.9746	10.2905	10.3232
误差	0.0254	0.2905	0.3232

从以上图表可以看出,在配准正确的试验中,本 文算法实现了变形图像的平移和旋转,且配准精度较 高,达到了亚象素的水平;参考弹性算法从整体上实 现了图像的平移和旋转,但在对某些细节部位,如对 脑室的配准中出现了明显的误差,没有达到旋转的效 果,配准失败。在这组试验中,图像有明显的特征区 域,且特征区域与周围区域对比明显,面积也足够大。 在 16 组试验中,本文算法配准正确的图像基本上都 有这个特点。

4 结论

本文所构造的算法可以实现刚性配准,也可以实 现弹性配准,实现了使用一个统一的变形函数对图像 进行刚 - 弹性混合塔式变换的目的,配准的鲁棒性比 参考算法有了很大的提高。从实验效果来看,本文算

> 法对刚性和弹性相结合的混合变形 图像的配准效果很好,总体准确率 达到 81.25%,对 CT 图像达到了 100%的准确率;而参考算法对这类 图像的配准效果很差。这主要是因 为弹性变形利用的是局部信息,各 部分之间的变形缺乏配合,当局部 信息缺乏或图像表现为整体变形 时,配准结果往往有误。另外,本文 算法也有它的局限性,那就是配准 图像必须特征明显,当图像内存在 多个相似的特征区域,或是特征少 且不明显时,配准准确率往往不高。

参考文献:

- Zitova B, Flusser J. Image registration methods: a survey [J]. Image Vision Computing, 2003, 21: 977-1000.
- [2] Maintz JBA, Viergever MA. A Survey of Medical Image registration [J]. Med Image Anal, 1998, 2(1): 1-37.
- [3] Wollny G, Kruggel F. Computational cost of nonrigid registration algorithms based on fluid dynamics [J]. IEEE Trans Med Imaging, 2002, 21: 946-52.

A: Control; B: Scutellariae barbata extracts(0.0368 g/ml)

以 PBS 作对照,中效浓度的半枝莲作用于 QGY-7701 72 h 后,流式细胞仪检测发现凋亡细胞比 例增加,在半枝莲处理组中达到 26.38%。检测 DNA 含量发现:半枝莲使 G₂/M 期细胞增多,G0/G1 期细 胞减少(图 4)。

2.5 半枝莲对 QGY-7701 凋亡相关基因蛋白 Bcl-2, Bax, Fas 表达的影响

半枝莲作用 QGY-7701 细胞 72 h 后,流式细胞 仪检测表明 Bax 表达增强(P=0.001),Bcl-2 表达减弱 (P=0.000),而 Fas 表达变化不明显(P=0.726)。

3 讨论

本实验发现半枝莲对 QGY-7701 细胞的增殖有 明显的抑制作用,且随着半枝莲浓度的增加和作用时 间的延长,其对 QGY-7701 细胞的抑制率逐渐上升, 具有一定的剂量依赖性和时间依赖性。光、电镜均可 见 QGY-7701 细胞出现凋亡的早期改变。同时,流式 细胞仪检测发现半枝莲可阻滞细胞周期于 G₂/M 期和 S 期,细胞凋亡百分比增加,达到 1.30%(对照组 0.01%),提示半枝莲可促进 OGY-7701 细胞凋亡,阻滞其细胞周期。

本实验通过流式细胞仪检测了半枝莲 处理组与对照组凋亡细胞百分比及凋亡相 关基因蛋白 Bcl-2,Bax,Fas 表达情况,发现 半枝莲可上调 Bax 表达,下调 Bcl-2 表达,而 Fas 表达变化不明显。

本实验表明半枝莲能抑制 Bcl-2 蛋白的表达,促进 Bax 蛋白的表达,从而通过各种途径诱导 QGY-7701 细胞凋亡。Fas/Apo1 属于肿瘤坏死因子受体 (FNFR) 超家族,Fas 基因高表达可激活 caspase8 而导致肿瘤细胞凋亡^[45]。本实验发现半枝莲作用于 QGY-7701 细胞 Fas 蛋白表达变化不明显,提示 Fas/Apo1 可能不参与半枝莲诱导 QGY-7701 细胞增 殖的过程。

参考文献:

- [1] 邹箴蕾, 吴启南. 半枝莲的化学成分及药理作用研究进展[J]. 时 珍国医国药, 2005, 16(2): 149-50.
- [2] 程宝鸾.动物细胞培养技术[M].广州:华南理工大学出版社, 1999:131-2.
- [3] Chou TC, Talalay P. Quantitative analysis of dose-effects relationships: the combined effects of multiple drugs on enzyme inhibitors[J]. Adv Enzyme Regul, 1984, 22(1): 27-9.
- [4] 司维柯,陈 安,李 鹏,等. 苦参碱诱导人肝癌细胞系 HepG2 凋 亡的研究[J]. 第三军医大学学报, 2001, 23(7): 816-20.
- [5] 杜华. p53 在调节细胞周期阻滞和细胞凋亡中的作用及其机制[J]. 国外医学·放射医学核医学分册, 2002, 26(2): 79-83.

(上接 590 页)

- [4] Nielsen M, Gramkow C. Fast fluid registration of medical images
 [A]. In proceedings visualization in biomedical computing (VBC'96), springer lecture notes in computer science[C]. Hamburg, Germany, 1996, 267-76.
- [5] Thirion JP. Image matching as a diffusion process: an analogy with Maxwell's demons[J]. Med Image Anal, 1998, 2: 243-60.
- [6] Beuchemin SS, Barron JL. The computation of optical flow [J]. ACM Comput Surv, 1995, 27: 433-67.
- [7] Rueckert D, Hayes C, Studholme C. Non-rigid registration of breast MR images using mutual information [J]. Int J Comput Vis, 2000, 22: 199-210.
- [8] Leventon ME, Grimson EWL. Multi-Modal Volume Registration Using Joint Intensity Distributions[J]. Image Vision Comput, 2001, 2: 97-110.

- [9] Kybic J, Unser M. Fast parametric elastic image registration [J]. IEEE Trans Image Proc, 2003, 12(11): 1427-42.
- [10] Kybic J, Thevenaz P. Unwarping of Unidirectionally Distorted EPI Image[J]. IEEE Trans Med Imag, 2000, 19: 80-93.
- [11] Unser M, Aldroubi A, Eden M. B-spline signal processing: Part I-Theory[J]. IEEE Trans Signal Proc, 1993, 41(2): 821-32.
- [12] Unser M, Aldroubi A, Eden M. B-spline signal processing: Part II-Efficient design and application [J]. IEEE Trans Signal Processing, 1993, 41(2): 834-48.
- [13] Unser M. Spline: A perfect fit for signal and image processing [J]. IEEE Signal Proc, 1999, 11: 22-38.
- [14] Szeliski R, Coughlan J. Spline-based image registration [J]. Int J Comput Vis, 1997, 22: 199-218.
- [15] Unser M, Aldroubi A, Eden M. The L2 Polynomial Spline Pyramid[J]. IEEE Trans Pattern Anal Machine Intell, 1993, 15(4):364-79.