文章编号 1001-8166(2004)03-0387-06

欧亚大陆及西太平洋边缘海岩石圈结构

朱介寿,曹家敏,蔡学林,严忠琼

(成都理工大学 四川 成都 610059)

摘 要 根据欧亚大陆及西太平洋地区天然地震、人工地震及其他地学资料,采用多学科多手段进 行综合反演 建立欧亚大陆及西太平洋边缘海岩石圈模型,对欧亚大陆及西太平洋边缘海岩石圈软 流圈结构进行研究。探讨欧亚大陆及西太平洋边缘海板块结构及深部动力学问题。

关 键 词 欧亚大陆;西太平洋边缘海 岩石圈结构模型 地球深部动力学 中图分类号 P31 文献标识码 A

0 引 言

欧亚大陆及其相邻的西太平洋边缘海有着世界 上最复杂的地形地貌,这里现有全球面积最大的东 欧平原和西西伯利亚平原,也有规模最大、时代最新 的阿尔卑斯—扎格罗斯—喜马拉雅新生代造山带。 全球地表最高点(珠穆朗玛峰 ß 848 m)及海底最低 点(马尔亚纳海沟,-11 020 m)都在这一区域内。 欧亚板块是由多个块体及微板块拼合而成,内部结 构复杂,岩石圈横向不均匀性显著,地壳厚度从数公 里变化到 70 ~80 km,岩石圈厚度则从 50 km 变化 到 200 km 以上。这里既有地球上最古老的前寒武 纪地盾区,也有面积巨大的克拉通地台,这一地球上 最大的大陆块,经历了漫长而复杂的地质演化,在新 生代完成最后拼合,成为全球规模最大的岩石圈板 块。全球 80%的边缘海都集中于西太平洋,它有着 全球规模最大最发育的沟弧盆体系(图1)。

欧亚大陆中南部及西太平洋边缘海是晚古生代 (约250~220 Ma BP)以来由多个较小的板块或地 块汇聚形成的。自中生代(150 Ma BP)以来,亚洲 东部岩石圈拉张解体,上地幔软流圈物质上涌,火山 岩浆活动强烈,这一大规模热事件引起巨大的构造 与岩浆活动 岩石圈由原来的150~200 km 减薄到 50~70 km 形成欧亚大陆东部大陆裂谷系。

古新世(约 55 Ma BP)印度大陆与欧亚大陆的 碰撞,引起青藏高原缩短(2 500 km)及隆升(5 000 m)印度岩石圈板片的大规模俯冲与拆沉,在青藏 高原以及中亚地区岩石圈叠加增厚,形成了现今地 球上最高的青藏及帕米尔高原和喜马拉雅、兴都库 什造山带,在地壳内由于大规模的楔入及层间滑脱, 使地壳加厚并升温,发生部分熔融及流变。

在中新世(约15~20 Ma BP),由于欧亚大陆受 印度板块继续向北及北北东方向推挤,欧亚大陆向 东运移,太平洋板块向西扩张俯冲,大陆东部岩石圈 由扩张转为挤压,形成沟弧盆体系,在西太平洋出现 一系列边缘海。

欧亚大陆西部是研究大陆构造演化的最理想地 区,从斯堪的纳维亚半岛最古老的波罗的前寒武纪 地盾到现代地中海活动区都非常发育。欧洲中部和 北部通过乌拉尔造山带与亚洲大陆相联接,而南部 则通过地中海、阿尔卑斯造山带与亚洲扎格罗斯造 山带,喜马拉雅造山带相联系,构成全球最大最活跃 的阿尔卑斯—喜马拉亚—缅甸—苏门答腊—印度尼 西亚新构造活动带,地震及火山活动十分强烈。

收稿日期 2004-04-05 修回日期 2004-04-21

^{*} 基金项目 国家自然科学基金重点项目"中国及邻区地球内部各圈层三维结构及现代动力学研究"和"东亚西太平洋边缘海岩石圈软 流圈细结构及深部过程研究"(编号 ⁴⁹⁷³⁴¹⁰⁵ ⁴⁰²³⁴⁰⁴⁷)油气藏地质及开发工程国家重点实验室资助

作者简介 朱介寿(1936-) 男 江苏南京人 教授 博士生导师 主要从事理论地球物理学及勘探地球物理研究及教学工作 . E-m ail ghujs@ cdut.edu.cn

图 1 欧亚及西太平洋地区构造分区简图 Fig 1 The sketch tectonic m ap of Eurasion and west Pacific

以上是欧亚大陆及西太平洋边缘海岩石圈的基 本构造格局。由于漫长的地质演化历史,有关板块 构造特征都可以在这里得到研究。

1 岩石圈模型的建立

目前有关岩石圈结构的信息主要来源于地震波 探测 特别是来自地震层析成像的研究。人工地震 反射法或折射法虽然精确,但很难达到岩石圈底部。 用地震体波对岩石圈成像 仅在海洋板块俯冲带可 以获得较好的结果。对于上地幔数十以至数百公里 横向不均匀性的研究,主要还是来自瑞利面波和勒 夫面波的资料。这是因为面波在一定周期的传播速 度(相速度或群速度)主要取决于地球上层弹性层 的纵向厚度(即岩石圈的厚度),而不是取决于速度 随深度的变化。因此,利用面波研究岩石圈板块的 厚度及其横向变化 是目前最常用和最有效的手段。 在过去 30 多年内,地球科学家致力于地球岩石圈/ 软流圈的研究已经取得了若干重要成果。其中特别 是利用地震波对地球内部的三维层析成象建立的全 球性或区域性的三维速度模型 对了解岩石圈 /软流 圈的横向变化 大陆造山带、裂谷或盆地及边缘海的 地球深部结构及动力过程 分析板块俯冲带及碰撞 带的相互作用 建立地幔对流模型均起了很大作用。

亚洲大陆有世界上最丰富多彩的地质构造单 元,青藏高原是特提斯构造域发育最完整的一段,东 部是研究太平洋板块对亚洲板块作用最好地段,具 有古亚洲构造域不同时期的大陆增生带。这种环境 对研究岩石圈结构具有重要的典型意义。朱介寿 等^[12]对东亚及西太平洋地区天然地震和人工地震 进行了系统的研究,建立了这一地区的岩石圈三维 结构。

欧洲地学断面 EGT^[3] 计划的完成,为我们提供 了一个探测地球岩石圈/软流圈的内部结构范例。 EGT 进行了 6 个长度超过 1 500 km 的人工地震实 验。其中 FENNOLORA 剖面具有足够的长度和丰 富的内容 细致地描绘出了岩石圈下部结构。实际 上,该剖面甚至可以填绘出上地幔至 450 km 深度的 地质结构。近年来开展的欧洲大陆桥计划 EURO-BRIDGE^[6,7] 对于研究北欧地盾和东欧地台岩石圈 结构作出了重要贡献。

Panza 等对长周期地震仪上群速度和相速度得 到的瑞利波进行了反演分析,欧洲大陆岩石圈厚度 可从数十公里变到逾 200 km。下部岩石圈 S 波速 度值介于 4.2 ~4.8 km /s之间,一般为 4.4 km /s到 4.5 km /s,而软流圈的 S 波速度大都位于 4.2 ~4.4 km /s之间。Du 等^[4]发表欧洲三维地震模型,给出 欧洲地区莫霍界面及岩石圈厚度图^[5]。

为了系统地研究欧亚大陆及西太平洋的岩石圈 结构,本文进行了以下研究工作:

(1)人工地震测深剖面研究。对欧亚及西太平 洋地区 108 条总长 78 048 km 的地学断面人工地震 测深剖面和单一人工地震测深剖面地壳及上地幔顶 部结构基本数据进行了系统采集。结合地震—重力 反演等资料和数据,获得中国及邻近地区1°×1° (60~160 % 10 %~60 %)网格结点3 590 个地壳基 本数据 编制出中国及邻近陆海精细地壳厚度图。 进一步获得2°×2 (0~180 % 10 %~84 %)网络结 点3 524 个地壳基本数据,在此基础上,初步建立起 亚欧及西太平洋地区2°×2°地壳三维速度结构模 型,编制出该区地壳厚度(莫霍界面深度图)和地壳 平均速度(Vp)分布图。 (2) 天然地震面波层析成像研究。通过对亚欧 及西太平洋地区(10~170 % 10 % ~80 %) 天然地震 面波层析成像^[1,9-13] 对 Vs 速度结构进行三维反演, 建立了该区从 0~430 km 不同深度 Vs 速度分布图, 这项研究为研究亚欧及西太平洋地区岩石圈、软流圈 结构及动力学提供了重要依据。

利用上述成果,建立了欧亚大陆及西太平洋地 区地壳厚度及岩石圈厚数据库 给出了地壳厚度图 (图 2)及岩石圈厚度图(图 3)。

图 2 欧亚大陆及西太平洋地区地壳厚度图

Fig 2 The crustal thickness of Eurasia and west Pacific area

图 3 欧亚大陆及西太平洋地区岩石圈厚度图

2 地壳及岩石圈结构特征

由地壳厚度图及岩石圈厚度分布图可以看出, 无论地壳及岩石圈在大陆地区均较海洋地区厚。由 此可以由岩石圈厚度图勾画出海陆边界,一般说来, 地壳厚的地区岩石圈也较厚。但二者关系复杂,并 无明显的相关性。

欧亚大陆岩石圈最厚的地区分布于北部几个巨 大古老的地盾及地台,即波罗的地盾(200~210 km),东欧地台(190~200 km),西伯利亚地台(180 ~190 km),西西伯利亚地台(160~170 km),这些 都是地球上前寒武纪形成的最主要的古老陆块,在 以后的地质年代里作为整体在地球表面漂移,岩石 圈内部无强烈的构造变形。

欧亚大陆岩石圈另一较厚区域是东亚及中亚地 区 这是由于印度板块快速向北漂移,与欧亚大陆发 生陆陆碰撞,造成以塔里木地块、扬子地块、拉萨地 块、印度北部地块以及准噶尔地块、吐哈及阿拉善等 地块强烈挤压拼合,形成中亚及东亚岩石圈增厚区, 其厚度为140~190 km。岩石圈增厚带还出现于地 中海东部的爱琴海一带,这里是非洲板块与欧亚板 块发生碰撞部位厚度达150km。

岩石圈的减薄区主要位于大陆边缘及裂谷区, 特别是西太平洋一系列边缘海,红海亚丁湾等。东 亚的华北及华南也是岩石圈减薄区。欧亚的华力西 构造带 阿尔卑斯构造带西部,及地中海西部也属于 岩石圈减薄区。

欧亚大陆的地壳厚度分布则是另外一种格式, 其最厚部分与新生代大陆块体碰撞变形有密切关 系。欧亚大陆地壳增厚与印度板块和欧亚大陆碰撞 有密切关系 地壳最厚处以青藏高原为中心,向中亚 以及兴蒙地块、贝加尔地区、东北亚延长的三角地带 范围内 其最深处可达 76 ~80 km,边缘区可达 40 ~ 44 km。

地壳另一增厚区为欧洲地区(包括波罗的地 盾、东欧地台)。南亚及阿拉伯板块,厚度为44~50 km 左右。而西伯利亚及西西伯利亚地台地壳平均 厚度为36~40 km,且在大面积内厚度无变化。地 壳减薄区出现于西太平洋边缘海及裂谷区,厚度仅 数公里到十余公里。

表1 欧亚大陆及西太平洋地区地壳厚度	及岩石圈厚度统计表
--------------------	-----------

构造单元名称	地壳厚度	岩石圈厚度		地壳厚度	岩石圈厚度
	(^{km})	(km)	构這甲兀名称	(km)	(^{km})
西伯利亚地块	40	185	南海	19	64
贺弗杨斯克造山带	34	100	苏禄海	20	65
西西伯利亚地块	38	162	苏拉威西海	20	67
哈萨克斯坦地块	42	160	班达海	18	72
印度板块北部	39	170	菲律宾海板块	12	55
印度板块南部	40	120	西太平洋板块	8	100
塔里木地块	48	186	翁东爪哇台地	28	110
青藏地块	64	164	东加洛林海盆	16	80
青藏地块东北部	60	140	西加洛林海盆	12	55
青藏地块东部	64	170	东欧地块	50	200
青藏地块中部	68	166	波罗的地盾	50	210
青藏地块西部	62	182	华力西构造带	40	100
华北地块西部	42	112	阿尔卑斯构造带	24	130
华北地块东部	32	73	地中海西部	24	80
兴蒙地块中部	48	140	地中海东部	28	160
兴蒙地块西部	47	127	图兰地块	40	160
兴蒙地块东部	35	98	里海盆地	36	160
上扬子地块	45	180	伊朗地块	44	146
下扬子地块	32	90	土耳其地块	40	120
华夏地块	32	80	阿拉伯板块	50	80
印支地块北部	40	115	阿拉伯海	12	70
印支地块南部	33	74	红海亚丁湾	12	70
安达曼海	31	78	孟加拉湾	20	80
鄂霍次克海	20	65	印度洋	10	60
库页岛	32	65	东西伯利亚海	20	70
日本海	16	57	拉普捷夫海	24	80
日本列岛	30	60	喀拉海	30	140

Table 1 Tables of thickness of crust and lithosphere in Eurasia and west Pacific

东海	23	63	巴伦支海	32	160

欧亚大陆北沿的边缘海,基本是大陆向北极海 延伸的大陆架部分,因此与该区域大陆岩石圈结构 特征一致。如巴伦支海是波罗的前寒武纪地盾向海 域的延伸,岩石圈厚度达160 km 以上。喀拉海是西 西伯利亚地块向海域的延伸,厚度达140 km。而拉 普捷夫海及东西伯利亚海则是岩石圈减薄的贺弗杨 斯克褶皱带向北极海的延伸部分,厚度为70 ~ 80 km。

3 结 论

综上所述 欧亚大陆及西太平洋地区岩石圈是 由多个块体拼合而成,因此呈现出多种结构型式。 就岩石圈和地壳厚度而言,可分为以下几个特征区:

(1) 欧亚大陆北部 大约在45 ℜ 以北区域。主要由前寒武纪地盾及地台组成 如波罗的地盾、东欧地台、西西伯利亚地台、西伯利亚地台等。这一区域主要属地球早期形成的劳亚古陆部分 岩石圈巨厚,地壳厚度变化很小,在构造上长期处于稳定状态。

(2) 欧亚大陆中部及南部地区 45 ℃ 以南部 分。这里多是古生代及中新生代以来众多较小的克 拉通块体(哈萨克斯坦地块、图兰地块、土耳其地 块、伊朗地块、阿富汗地块、塔里木地块、中朝地块、 杨子地块、青藏地块、印支地块等)与褶皱山系组成 的复杂岩石圈结构体系,岩石圈及地壳厚度横向变 化大。其中特别是新生代印度板块与欧亚大陆的陆 陆碰撞,形成了全球地壳最厚的青藏高原。

(3) 亚洲东缘及西太平洋边缘海,这是中生代以来发生张裂的巨型裂谷系,在新生代以来由于西太平洋板块向西挤压俯冲,这一巨型裂谷系已停止张裂并转为闭合。其岩石圈大大减薄,仅数十公里。

(4) 欧亚大陆以北的北极海,这里是的大陆架 是大陆向北延伸部分,其岩石圈结构特征与相邻近 的大陆是一致的。

参考文献(References):

[1] Zhu Jieshou(朱介寿), Cao Jiam in(曹家敏), Cai Xuelin(蔡学林) et al High resolution surface wave tom ography in east Asia

and west Pacific m arginalsea[J]. Chinese Journal of Geophys(地 球物理学报) 2002 45(5) :679-698(in Chinese).

- [2] Zhu Jieshou(朱介寿), Cao Jiam in(曹家敏), Cai Xuelin(蔡学林), et al .Study for three-dimensional structure of earth interior and geodynam ics in China and adjacentland and sea regions[J]. Advance in Earth Sciences(地球科学进展), 2003, 18(4):497-503(in Chinese).
- [3] Blundell D, Freem an R, Mueller St, eds. The European Geotraverse[M]. Cambridge :Cambridge University Press, 1992. 275.
- [4] Du Z J, Michelini A G, Panza F. EuriD : A regionalized 3-D seismological model of Europe [J]. Physics of the Earth and Planetary Interiors 1998 105 31-62.
- [5] Egorkin A V. Velocity structure, composition and discrimination of crustal provinces in the former Soviet Union [J]. Tecton ophysics, 1998, 289, 395-404.
- [6] EUROBRIDGE Seismic W orking Group. Seismic velocity structure across the Fennoscandia Sarmatia suture of the East European Craton beneath the EUROBRIDGE profile through Lithuania and Belarus[J]. Tecton ophysics , 1999, 314, 193-217.
- [7] EUROBRIDGE SeismicW orking Group. EUROBRIDGE 95 deep seismic profiling within the East European Craton [J]. Tectonophysics 2001 339 153-175.
- [8] Friederich W. The S-velocity structure of the East Asian mantle from inversion of shear and surface waveforms[J]. Geophysical Journal of International 2003 153 88-102.
- [9] Huang Z , Su W Y , Peng Y Zheng , et al. Rayleigh wave ton ography of China and adjacent regions [J]. Journal of Geophysics Research 2003 108(B2) :2 073-2 089.
- [10] Morozovaa E A , Morozova I B , Sm ithsona SB , etal. Lithospheric boundaries and upper mantle heterogeneity beneath Russian Eurasia : Evidence from the DSS profile QUARTZ [J]. Tectonophysics 2000 329 :333-344.
- [11] Ritzwoller M H , Levshin A L. Eurasian surface wave ton ography : group velocities[J]. Journal of Geophysical Research , 1998 103 (B3) :4 839-4 878.
- [12] Ritzwoller M H , Barm in M P , Villasenor A et al. Englahl Pn and Sn tom ography across Eurassia to im prove regional seism ic event locations [J]. Tectonophysics 2003 358(1 ~4) 39-55.
- [13] Yanovskaya T B , Kozhevnikov V M . 3D S wave velocity pattern in the uppermantle beneath the continent of Asia from Rayleigh wave data [J]. Physics of the Earth and Planetary Interiors, 2003 138 : 263-278.

THE STRUCTURE OF LITHOSPHERE IN EURASIA AND W EST PACIFIC

ZHU Jie-shou , CAO Ja-min , CAI Xue-lin , YAN Zhong-qiong

(Chengdu University of Technology, Chengdu 610059, China)

Abstract W e collected the seism ological and explosion seim ic data and other geosciences data in Eurasia and west Pacific regions for inverting the three-dimensional structures lithoshhere model with multi-discipline researches and various inversion methods. The three-dimensional lithosphere model and database in the area have been built and providing a reference model for applied in individual geosciences fields. It aimed to discover the structure of lithosphere and asthenosphere. A detail discussion have been made for the structure and inter-action of lithospheric blocks, especially for the deep dynamic processes of collision of lithosphere in Eurasia and west Pacific.

Key words : Eurasia ; W est Pacific magional sea ; Lithospheric structure model; Deep dynamic processes of lithosphere.