文章编号 1001-8166(2004) 增-0135-05

宁南深层岩溶地下水系统三维数值模拟

李向全 侯新伟 张 莉

(中国地质科学院水文地质环境地质研究所,河北石家庄 050061)

摘 要:宁南"南北古脊梁"岩溶裂隙水系统的储水空间以岩溶裂隙为主,岩溶水的空间分布明显 受南北向大型断裂构造控制。根据水动力场和水化学场特征,划分了3个相对独立的岩溶水子系统。通过三维数值模拟计算,确定了马渠—洪河岩溶水子系统天然资源量和可开采资源量,为本区的地下水合理开发利用提供了科学依据。

关 键 词 深层岩溶 地下水 数值模拟 中图分类号 P641.8 文献标识码 A

我国广大的西北地区地处干旱和半干旱气候 带,干燥少雨,年平均降雨量多在500 mm 以下,水 资源贫乏是造成这些地区经济落后、人民生活困苦 的重要原因之一。因此,寻找并开发利用优质深层 地下水资源成为解决这些地区缺水问题的重要途 径。此背景下 笔者籍助于国土资源部地质调查项 目,在这一地区投入了部分研究工作。具体研究区 位于宁夏回族自治区南部,于青龙山至固原沟口南 北一线,南北延伸180 km 的狭长黄土丘陵地带,即 所谓的"南北古脊梁"地区,也是宁夏南部最为缺水 和贫困地区之一。

长期以来,一些学者一直认为黄土覆盖层之下 深部碳酸盐岩分布区可能存在着一条裂隙—岩溶储 水带,水资源量可观。然而,深部岩溶水的形成与赋 存特征不甚清楚,在找水过程中尚存在相当大的盲 目性,难以准确圈定找水靶区。通过本次较深入的 工作,取得了一些重要的认识,可为该地区深埋岩溶 水的合理开发利用提供科学佐征。

1 区域岩溶地下水赋存与分布特征

根据本区岩溶地下水赋存条件分析、构造控水 分析 将本区岩溶水系统划分成马渠—洪河岩溶水 系统、严湾—太阳山岩溶水系统和萌城岩溶水系统 (图1)。

1.1 马渠—洪河岩溶水系统

该系统位于宁南"南北古脊梁"的南部地区,北 起同心马渠 南至洪河分水岭。系统的西侧以六盘 山前大断裂(F1)为界 东侧以青龙山—彭阳大断裂 (F7)为界。系统北端没有发现标志性构造,但通过 水动力场分析 在马渠至严湾之间存在地下分水岭, 在此处地下水向南北两个相反的方向径流。因此, 以此地下分水岭作为该系统的北边界。南部以洪河 分水岭为界。本系统含水岩组主要为奥陶系灰岩岩 溶裂隙含水岩组。官厅以南地区下白垩砂岩与深部 灰岩之间无隔水地层和构造 具有统一的水力联系, 构成统一的含水岩组。地下水径流方向由北至南, 主要补给区位于云雾山一带的基岩裸露区和南部六 盘山的侧向补给。排泄方式主要有,泉群排泄和河 谷排泄。主泉点有郑家庄泉群 根据最近测流结果, 枯季流量为 2 500 m³/d。茹河、洪河河谷为本区地 势最低区 河谷切穿白垩系地层是本系统地下水的 主要排泄区。

1.2 严湾—太阳山岩溶水系统

南起固原县严湾北至盐池惠安堡太阳山的狭长 地带。东西两侧分别为青铜峡—六盘山断裂(F1) 和青龙山—彭阳断裂(F7)所控制,含水岩组主要由 寒武、奥陶系碳酸岩地层组成。地形由南而北逐渐 降低,南部严湾一带,黄土覆盖层厚度较薄加之沟壑

收稿日期:2004-04-10.

作者简介 李向全(1966-) 男 河北乐亭人 研究员 主要从事地下水资源评价和地质灾害防治领域的研究工作・

图 1 宁南"南北古脊梁"岩溶水系统分布略图

Fig.1 M ap of the distribution of the system of karst groundwater in the south of Ningxia

1.断裂带 ⅔·褶皱带 ⅔·奧陶系、寒武系灰岩含水岩组 ⅔·白垩系砂 岩、奥陶系灰岩含水岩组 ₅·系统边界 ⊱。泉点 浮·井点 龛·水位 龛· 径流方向 ;¹⁰·系统编号

纵横 降雨入渗补给强度较大,是该岩溶地下水系统的主要补给区。地下水由南向北径流。岩溶水在青龙山北端受石炭、二叠系岩层阻挡,沿断层裂隙向地 表排泄 形成了典型的太阳泉群,该泉群也是该岩溶 水系统的唯一排泄点,枯水季流量为 7 410 m³/d。 1.3 萌城岩溶水系统

受贺家川—古城断裂(F6)、车道—阿色浪断裂 (F3)等周边弧型断裂的阻隔 崩城泉域形成了一个 独立的岩溶水系统。主要含水层为寒武、奥陶系灰 岩, 崩城泉群是该泉域唯一的地表排泄点,据 2001 年测流结果 枯季泉流量为 300 m³/d。大气降水是 唯一的补给来源 主要补给途径是大气降水经过黄 土表层径流,汇集到沟谷地带,通过沟谷岩溶出露区 补给裂隙岩溶水。本系统岩溶水 TDS 为4.3 L。

2 区域水化学特征

根据岩溶地下水分布范围 由南至北我们对几 个主要的灰岩井孔和岩溶泉点的水化学测试数据进 行了分析整理。分析结果表明研究区岩溶水水化学 场具有明显的分带特征。以云雾山——寨科一线为 界 南北两侧水化学性质存在明显差异。从寨科 (G41)向北 地下水 CL⁺、SO₄、Na⁺离子成分显著增 高 在水化学三线图中表现为集中分布于 s²⁻ O₄ + CL 每升毫克当量百分数为 80% ~100%的区域(图 2 所示),岩溶水 TDS 变化区间位于 2 479.59 ~ 5 237.9mg/L 之间,尤其是在吕套至严湾之间 TDS 有一个明显的跳跃升高,构成了从云雾山—寨科一 线至北部边界太阳泉一带的岩溶地下水高矿化咸水 地带(图3所示)。岩溶水化学类型为 CL · SO₄-Na CL · SO 4 - Na · Mg SO 4 · CL - Na SO 4 · CL -Na·Mg型水。区域岩溶地下水的这种水化学场空 间分带性 表明南北两区的地下水的水循环条件、水 岩作用方式是不同的。

图 2 岩溶地下水水化学三线图

Fig.1 Diagram of piper for karst groundwater

3 马渠—洪河岩溶子水系统三维数值 模拟

3.1 水文地质概念模型和水学模型

选定马渠—洪河岩溶水子系统为三维数值模拟 计算区。根据前述实际水文地质条件,将模拟区在 垂向上概化为2层,即白垩系含水层和碳酸盐岩含

along the south - north direction

水层(图 4)。白垩系含水层顶板埋深在 100 ~300 m 之间。碳酸盐岩含水层上部与白垩系含水层相 联,具有统一水力联系。已有钻孔未揭露底界 岩溶 发育底界在埋深 400 ~600 m 之间。官厅以北,白垩 系地层缺失,第四系黄土直接覆盖在灰岩地层之上。 因此,宫厅以北为潜水含水层,官厅以南为承压水。 该地下水系统的补给方式主要有大气降水入渗补 给、沟谷入渗补给和侧向径流补给。官厅以北,白垩 系地层缺失,第四系黄土直接覆盖在灰岩地层之上, 厚度小于50 m 的居多。此外,云雾山地区存在基岩 裸露区,大气降水直接入渗补给岩溶地下水。

groundwater system in Maju-Honghe area

因此,官厅以北地区为主要补给区。彭阳北部 山区沟谷发育,大气降水通过深切沟谷,渗漏补给地 下水。其它地区受第三系隔水层的控制,含水系统 不能接受入渗补给。在西南部边界,六盘山区基岩 裂隙水通过白垩系地层侧向径流补给本区地下水系 统,南部边界也有一定量的侧向补给。排泄方式主 要有,泉群排泄和河谷排泄。主泉点有郑家庄泉群。 茹河、洪河河谷是本系统地下水的主要排泄区。地 下水系统边界做如下处理:将北部边界以地下水分 水岭为准,定为隔水边界。系统东侧为彭阳—洪河 断裂阻水断层,该边界作为隔水边界处理。西侧为 弧形断裂带,作为隔水边界。西南部六盘山基岩裂 隙水对本地下水系统有一定的侧向补给,这一段可 作为给水边界。南部边界洪河分水岭,也作为给水 边界。

根据水文地质概念模型,选用确定性分布参数 三维裂隙岩溶承压—潜水数学模型来描述、模拟其 内部结构、水流运动方式及水量的时空转化过程。 模型表达式为:

S x	$\frac{5^{h}}{5^{t}} = \frac{5}{5^{x}} (K_{x} \frac{5^{h}}{5^{x}})$	$(K_{y}, \frac{1}{5}) + \frac{1}{5}(K_{y}, \frac{1}{5})$	$\frac{1}{\sqrt{2}}$ + $\frac{1}{5^2}$ (K	$\frac{h}{5}$ +	,
µ x	$ \int_{t}^{h} = K_{x} \left(\int_{x}^{h} \right)^{2} $ $ \int_{y,z}^{t} \int_{0}^{z} \int_{0}^{z} $	$+K_{y}(\frac{h}{5})^{2} +$	$K_z(\frac{fh}{f^z})^2$	- <u>5</u> 5 ^z (K _z +	+P) +P,
h((x,y,z,t) ₌₀	=h ₀ ,x ,y ,z	,t 0		
К,	$\frac{h}{K} = q(x, y)$,z,t),x,y,z	1,t 0		

式中^V: 为渗流区域 h 为含水层的水位标高(m); K_{xx}K_{yy}K_x分别为 x, y, z方向的渗透系数(m/d) > 为 自由面以下含水层储水系数(1/m); μ 为潜水含水 层在潜水面上的重力给水度; 为含水层的源汇项 (1/d); $_{0}$ 为渗流区域的上边界 即地下水的自由水 面 $_{2}$ 为潜水面的蒸发和降水补给等(1/d) h_{0} 为含 水层的初始水位分布(m); $_{1}$ 为渗流区域的二类边 界 包括承压含水层底部隔水边界和渗流区域的二类边 界 包括承压含水层底部隔水边界和渗流区域的侧 向流量或隔水边界 税为边界面的法线方向 $|x_{0}$ 为边 界面法向方向的渗透系数(m/d) $|q(x_{2}, z, z, z)$ 为定 义为二类边界的单位面积流量(m³/(dm²)),流入 为正,流出为负 隔水边界为 0。

3.2 地下水数值模型及其识别

采用地下水模型软件 GMS4.0 对研究区地下水 流进行模拟。模拟区面积为 2 213.6 km²,采用矩形 单元剖分,网格间距为 1 000 m < x <3 000 m, 1 000 m < y <3 000 m,共 385 个节点,在泉点和抽 水井附近网格加密。考虑到大多水文要素数据均为 按日统计量,时间步长为天,将源、汇项及边界的数 据均整理成日平均值。根据模拟区内已有地下水观 测点的资料分析,考虑到本次模拟计算对地下水长 观水位的要求,选定 2000 年 7 月 15 日岩溶地下水 水位为计算初始水位,通过线性插值得到区域初始

流场。根据地下水长观动态资料 选取 2000 年 7 月 15 日至 2001 年 7 月 15 日一年时间为模拟时间,根 据抽水情况,共分2个应力期,第一个应力期为200 d 洪分 20 个时段 ;第二个应力期 160 d ,共分 16 个 时段。根据岩性、地形、构造发育情况,将下白垩系 地层共划分为7个水文地质参数区 初始参数给定, 参照现有抽水试验资料 灰岩含水层 官厅以北寨科 一带奥陶系灰岩大气降水入渗作用较强 岩溶较发 育。根据钻孔资料揭示,茹河、红河河谷一带,岩溶 裂隙发育 共划分为 4 个参数区 ;地下水垂向补给主 要有官厅以北大气降水入渗补给区 茹河、红河流域 的沟谷入渗补给区 除这两个地区之外 其它地区为 零补给 因此 划分成 3 个降水入渗补给参数区。模 拟区周边隔水边界按零流量边界处理,西南、南部边 界是给水边界。垂向水量交换量主要包括:大气降 水入渗补给量、岩溶水开采量、泉群排泄量、河道排 泄量。

在模型识别过程中,充分利用现有的深部岩溶 水动态长观资料(4个长观孔),河道测流资料。受 观测时间所限模型识别计算共分两个应力期36个 时段时间步长为10d。经过反复试算与调整,使分 布在不同区域的部分长观孔节点水位计算值与实测 值达到了较好的拟和(图5、图6),使计算的河道排 泄量与实际测流量达到拟合。表明所建立的模型的 结构和模型参数是基本可靠的(表1)。

Fig.5 Calibration of groundwater level in Cretaceous glutenite aquifer observation hole

图 6 灰岩含水层长观孔水位动态拟合图

Fig.6 Calibration of groundwater level in limestone

aquifer observation hole

表 1 含水层水文地质参数分区表 Table 1 Hydrogeologic param eters of aquifer

		⊻ 方向渗透	⊻ 方向渗透	^Z 方向渗透	储水系数
	分区号	系数(^K _{xx})	系数(^K _{yy})	系数(^K ュュ)	(^{S/} µ)
下占亚	1	2	2.8	0.4	0.0017
	2	1.8	2.52	0.5	0.0015
糸砂石	3	1.5	2.1	0.4	0.0012
含水层	4	3	4.2	0.8	0.002
	5	2.3	3.2	0.6	0.0015
	6	2.3	3.2	0.5	0.0025
南陶玄	1	0.2	0.28	0.05	0.08
奥陶 杀	2	4	5.6	1	0.002
<u></u>	3	2	2.8	0.02	0.001
水层	4	6	8.4	1.5	0.0025

4 马渠—洪河分水岭岩溶地下水资源 评价

根据一年均衡期的模拟计算结果进行马渠—洪 河分水岭岩溶地下水资源均衡分析。大气降水补给 量为1043.5 ×10⁴/a,侧向潜流补给量为1517.6 × 10⁴/a,总补给量为2561.1 ×10⁴/a。以此作为本区 的天然资源总量。地下水天然排泄量主要为茹河、 洪河河道排泄量,考虑到郑家庄泉群的排出的泉水 通过沟谷主要排到茹河中去,所以其泉流量不再计 入。天然排泄总量为2160.8 ×10⁴/a。人工开采总 量235.2 ×10⁴/a。从以上分析看出本区,本区岩溶 水尚处于均衡状态(表2)。

表 2 岩溶地下水资源均衡分析表

	补给排泄项	流量(^{m³/d})	流量(^{10 4 m 3} /a)			
-	黄土入渗补给	27052.4	987.4			
헤 쓰 편	沟谷入渗补给	1538.9	56.1			
111 纪 山	六盘山前侧向补给	12100	441.6			
	洪河分水岭侧向补给	29480	1076			
	总量	70171.3	2561.1			
	茹河河道排泄	47600	1737.4			
排泄项	洪河河道排泄	11600	423.4			
	总量	59200	2160.8			
开采项	开采量	11430	235.2			

地下水可开采资源是指在一定技术经济条件 下,采用合理开采方案,在合理开采动态下,允许开 采利用的最大水量。本计算区在保持10年内开采 区水位不大幅度下降,平均降深保持在5m左右,在 保持一定的河道排水量的前提下,最大限度地袭夺 河流排泄量。通过反复调整开采井数量和开采量, 确定本区可开采资源1792.7 x10⁴m³/a。

5 结 论

(1)本区岩溶水为岩溶裂隙水岩溶不发育,储 水空间以岩溶构造裂隙为主。埋藏条件属深埋隐伏 型,上部黄土覆盖层较厚,主要通过深切沟谷接受大 「降水和地表水的补给,因此其富水性受到一定的 - 限制。此外,岩溶水的分布和径流严格受大型断裂 构造控制,以南北向分布与径流为主。

(2)本区岩溶水可划分为马渠—洪河岩溶水子系统、严湾—太阳山岩溶水子系统和萌城岩溶水子
 系统三个相对独立的岩溶水子系统,它们具有各自不同的控水形成模式和补径排条件。3个子系统的划分可作为岩溶水资源量评价的重要基础。

(3) 运用地下水三维数值模拟技术较好地开展 了模拟计算,确定了马渠—洪河岩溶水子系统岩溶 裂隙水天然资源量 2 561.1 ×10^{*}/a,可开采资源 1 792.7 ×10⁴m³/a。

参考文献(References):

- [1] Pan Guoying(潘国营). Theory and Model for Groundwater Flow Transportin Fissured rocks[M]. W uhan China University of Geoscience Press 2001.
- [2] 胡伏生,杜强,万力,等·岩体渗透结构与矿坑涌水量强度关系 [J]·长春科技大学学报,2000,30(2):161-164.
- [3] Hu Fusheng Du Qiang W an Li et al. Effect of permeability structure on pitflow intensity in fractured rock[J]. Journal of Changchun University of Science and Technology 2000 30(2) 161-164.

THREE DIM ENSIONAL NUM ERICAL MODELING OF DEEP KARST GROUNDWATER SYSTEM IN THE SOUTH OF NINGXIA

LI Xiang-quan , HOU Xin-wei , ZHANG Li

(Institute of Hydrogeology & Environmental Geology CAGS, Shijiazhuang 050061, China)

Abstract : In the south of NINGXIA , the groundwater storage space of Karst groundwater system is mainly made up of karst-fracture , and the distribution of karst groundwater is strictly controlled by the south-north stride great tectonics. According to the characteristics of hydro-dynamic conditions and water chemistry , the whole karst system has been divided into three subordinate karst groundwater system. The natural resources and exploitable resources of Karst groundwater in Maqu-Honghe area has been calculated by three dimensional modeling. The study can provide scientific basis for the groundwater exploition rationally.

Key words Deep karst; Groundwater; Num erical m odeling.