Vol.20 No.10 Oct. 2005

文章编号:¹⁰⁰¹⁻⁸¹⁶⁶(²⁰⁰⁵)¹⁰⁻¹⁰⁷⁵⁻⁰⁸

地表温度和地表辐射温度差值分析

黄妙芬^{1,2},刘绍民²,刘素红²,朱启疆²

(1·大连水产学院海洋工程学院 辽宁 大连 116023 ;2 北京师范大学地理学与遥感科学学院遥感与地理 信息系统研究中心 遥感科学国家重点实验室 环境遥感与数字城市北京市重点实验室 北京 100875)

摘 要:依据实验数据研究利用标准黑体源对红外辐射计测定值进行标定的方法;分析天空比辐射率的变化特性;计算天空环境辐射,与长波辐射计测定值进行比较,推算考虑天空环境辐射和地 表比辐射率后的地表温度,研究地表温度与地表辐射温度的差值。结果表明: 地表辐射温度未经 标准黑体源标定与标定后的差值绝对值在^{0.1}~¹之间; 天空比辐射率的变化范围为^{0.75}~ ^{0.85},不同下垫面天空比辐射率日变化趋势非常一致; 用空气温湿度计算的天空环境辐射与长波 辐射计测定值的差值较小,相对误差平均为^{3.1}%,但是天空³⁷热红外辐射计观测值与长波辐射 计测定值差值较大,相对误差平均值达到^{38.1}%; 地表温度高于地表辐射温度,差值在^{0.2}~ ^{1.5}之间。

关 键 词 红外辐射计 天空比辐射率 天空环境辐射 地表温度 地表辐射温度 中图分类号 · TP79 文献标识码 A

遥感定量化研究是遥感应用的一个难点和热 点。目前 遥感手段可直接提供的信息很有限 除了 可见光—近红外波段可以为我们提供地表反照率参 数 热红外波段可以为我们提供地表温度参数外 ,其 它参数都需要建立各种模型反演得到。因而 ,只能 围绕这两个基本参数建立各种遥感定量模型来反演 我们所需的其它地表参数 ,如土壤含水量、地表水热 通量、叶绿素含量和叶面积指数等。这些模型中大 都需要地表温度作为输入参数 ,因而用遥感方法获 取的地表温度精度直接影响到模型的估算精度。如 何对遥感反演的地表温度精度进行验证 ,这需要在 地面试验场对地表温度打同步观测。红外辐射计 为遥感反演地表温度的精度验证、热红外遥感图像 的定标 ,以及建立地表通量的遥感定量模型提供了 一种手段^[1]。

目前 在与地表温度有关的问题研究中 ,主要集

中在辐射表面温度的测量值随着观测角度的变化方面^[2-5],以及用一点或若干点的测量值来代表某一范围的地表辐射温度的研究^[6-9]。在许多已经建立的遥感模型中,一些学者直接用地表辐射温度^[8,10,11],也有一些学者用考虑天空环境辐射和地表比辐射率后的地表温度^[12,13]。关于地表辐射温度未经标准黑体源标定与标定后的差值,以及地表温度和地表辐射温度差值的研究鲜见报道。

本文利用 2004 年 6 月 5 日至 7 月 6 日北京市 小汤山镇国家精准农业示范基地红外巡回温度观测 值研究地表辐射温度未经标准黑体源标定与标定后 的差值 结合自动气象站观测资料,分析天空比辐射 率的变化特性 用空气温湿度资料和 37 矢空红外辐 射计实际观测值计算天空环境辐射,并与测定值进行 比较 推算考虑天空环境辐射和地表比辐射率后的地 表真实温度,研究地表真实温度和地表辐射温度的差

收稿日期 2004-12-27 ;修回日期 2005-06-13 .

^{*} 基金项目 国家重点基础研究发展规划项目"地球表面时空多变要素的定量遥感理论与应用"(编号 G2000077900);国家自然科学基金项目"北京城市绿地生态效益的遥感定量研究"(编号:40271081);中国地质调查项目"城市环境地球化学调查方法技术及污染影响机理研究"(编号:20032013004)资助.

作者简介 黄妙芬(1963-),女,广东汕头人 副研究员,博士,主要从事城市生态环境、RS 与 GES 研究,E-m ail:hm f808@163.com 通讯作者 刘素红(1967-),女,副教授 主要从事遥感图像信息提取和识别方法研究,E-m ail:hush@bnu.edu.cn

值。研究结果可为进一步利用遥感技术反演地表温 度和研究地表热量平衡提供科学的参考依据。

1 原 理

1.1 红外辐射计原理

红外辐射计接收到的地表辐射,不仅包括目标物本身发出的红外辐射,而且包括一部分周围环境 辐射^[14].即:

 $M(T) = B(T_s) + (1 -) E(T_s)$ (1) 其中 M(T) 为传感器接受到的地表辐射($W/(m^2 · \mu^m)$), 为地表辐射温度(K);为地面比辐射率 (无量纲), $P(T_s)$ 为普朗克函数($W/(m^2 · \mu^m)$), T_s 为地表(真实)温度(K); $E(T_s)$ 为环境辐照度($W/(m^2 · \mu^m)$), 野外测量时,如果没有其它高大障碍 物阻挡,那么环境辐射就是大气向下的长波辐射,即 天空环境辐射 $R_{14}(W/m^2)$, T_s 为环境温度(K)。

将斯帝芬—波尔兹曼定律代入公式(1)得:

T⁴ = T⁴_s +(1 -)^R_{ld} (²) 为斯第芬—波尔兹曼常数(5.6693 ×^{10.8} W / (^{m²}·^{K⁴}))。

将公式(²)变形得到求地表(真实)温度的表达 式:

$$T_{s} = \frac{\sqrt[4]{T^{4} - (1 -)R_{id}}}{2}$$
(3)

由公式(³)可见 要推算地表温度 除了要知道地表 辐射温度 ^T外 还需考虑地表比辐射率 和天空环 境辐射 ^R , 的影响。

在野外观测时,由于太阳照射,红外辐射计的机 壳内壁温度和调制片温度不一致,会使测得的数据 产生漂移 另外 红外辐射计使用时间长了,也会产 生漂移现象。因而使用红外辐射计进行野外观测 时,黑体源的标定工作是非常重要的^[1]。

黑体源的标定方法是:第一步将黑体源遮阴或 将其温度调至室温 读取黑体源自身的温度(x_1) 然 后用红外辐射计测量黑体的温度(x_1) 获取第一组 标定数据(x_1 , y_1) 相当于定标的最低点;第二步用 红外辐射计测量野外地物表面温度,作为×值;第三 步,将黑体源朝阳或将其温度设置为高温(70); 第四步读取黑体自身的温度,作为 x_2 值,然后用红 外辐射计测量黑体的温度,作为 x_2 值,就同用红 标定数据(x_2 , y_2)(相当于定标的最高点)。我们假 定在 $x_1 \sim x_2$ 这个时间段内,被测物温度变化和黑体 温度变化是线性关系^[2]。 根据获取的²组标定数据(×, Y₁)和(×, Y₂), 我们可以求出直线的斜率,建立直线方程。将用红 外辐射计获取的物体温度值(×)代入直线方程就可 求得经过标准黑体源订正的地表辐射温度(Y)。

1.2 天空辐射的计算

目前获取天空辐射的方法主要有³种,第一种 是用大 气纠正软件,如 MODTRAN 和 LOW TRAN 等,这种方法需要实时的探空资料,无探空资料则只 能用一种平均的大气模式来模拟出平均值;第二种 是根据²m(或^{1.5}m)高度的空气温度和湿度来估 算^{15,16]},Brutsaert给出了利用实际水汽压和空气温 度的关系式来计算天空比辐射率 的关系式:

$$=1.24(e/T)^{1/7}$$
 (4)

其中 , 是大气比辐射率(无量纲) , 为空气温度 (^K) , 为水汽压(^{hPa})。

在无云天气条件下,天空辐射主要来自覆盖在 地表的大气与空气湿度,根据斯蒂芬—波尔兹曼定 律得:

$$\mathbf{R}_{ld} = \mathbf{T}^4 \tag{5}$$

式中, 为离地面^{2 m} 处的空气温度(^K)。

将公式(⁴)代入公式(⁵),可推出用空气温湿度 求天空辐射的经验式:

$$R_{ld} = 1.24 e^{0.14} T^{3.86}$$
 (6)

第三种是用窄视场角的红外辐射计对天空不同 方位角、不同高度角进行测量,再进行加权平均,或 是在天空十分均匀的时候,只测量³⁷一个高度角 来代表整个天穹的大气下行辐射^[14]。多角度加权 平均值获得天空辐射温度值的计算式^[14]。

$$\mathbf{F}_{e} = \frac{\mathbf{T}_{e}(\)\sin\cos}{\sin\cos} \tag{7}$$

其中 F。为天空温度的加权平均值 F。()是各个方向的各个观测角度的天空温度;是角度(弧度)。

2 试 验

2.1 试验设计

试验时间为²⁰⁰⁴年6月⁵日至⁷月⁷日,试验 场设在北京小汤山国家精准农业示范基地(^{40 40} ~^{40 42 N},^{116 26} ~^{116 28 E} 海拔高度^{40 m})为 东西方向^{360 m} 南北方向^{1 km} 的长方形农田。该 试验场沿南北方向分成两部分,北边地^{500 m} ×³⁶⁰ ^m 6月⁵ ~¹⁴ 日为长势较好俗称"剌疤秧"的杂草 植被(平均株高^{26 cm})南边^{500 m} ×^{360 m} 为裸地 或刚出苗的玉米地 6月¹⁶ 日后,北边地为裸地 南 边地为长势较好植株较高的玉米地(平均株高 70 cm)。

在南北两部分各取了2条样带,共4条样带(见 图1),在每个样带上,2m设置一个观测点。观测 时间选择在830、1015、1055、1430、1630几个 时间段左右观测方式采用垂直向下观测高度为1 观测时避开阴影。每个样带的长度、观测点数以 及下垫面状况的描述见表1。

图 ¹ 红外巡回测温样带分布示意图(为自动气象站位置) Fig.1 Schem atic diagram of observation sample belts

with infrared therm om eters(Position of autom atic weather stations)

表¹ 4条观测样带概况

Table 1 Description of four observation sam ple belts

样带 序号	长度 (╹ [™])	观测 点数	下垫面状况
1	454	2 2 8	⁶ 月 ¹⁵ 日前,裸土和野草混合, ⁶ 月 ¹⁵ 日
2	492	247	后基本裸地 ⁶ 月 ¹⁵ 日前基本为长势很好的野草, ⁶ 月 ¹⁵ 日后基本裸地
3	508	255	⁶ 月 ¹⁵ 日前基本为裸地,6月 ¹⁵ 日后有一
4	506	254	些玉米苗 6月15日前基本为裸地和玉米苗混合,6 月15日后基本为长势很好的玉米苗

2.2 仪器

本试验 6 月 5 ~16 日使用的是 4 台标准型红外 辐射计, 6 月 17 日至 7 月 6 日使用的是 4 台低温型 红外辐射计标准型和低温型红外辐射计除了观测 的最低温度范围不同(标准型:-30,低温型: -50)外,其余技术参数都是相同的(Taytek MX4TM TD, Raytek Corporation 德国柏林);—台可 控温的标准黑体源(BDB15, SR93, SHIMADEN CO.,LTD 日本东京);—台中国科学院地理科学与 资源研究所自制的比辐射率测定仪;在南北两块地 的中心位置各安置了一台自动气象站(探头型号 HMP45C-L 高度为1.5 m)和一台净辐射(复合)表 (CNR-1,Kipp & Zone Net Radiom eter)。

3 结果分析与讨论

3.1 未经过黑体订正与经过黑体订正的土壤表面 辐射温度差异分析

表 2 给出了红外辐射计在低温和高温情况下与 黑体源温度的差异。由表2可见,标准型红外辐射 计测量值均高于黑体源自身温度值,而低温型红外 辐射计测量值均低于黑体源测量值。总体而言 标 准型红外辐射计在低温和高温情况下 标准误差相 差不大 但是平均偏差相差较大。低温型平均偏差 和标准误差相差都较大,表明标准型红外辐射计系 统误差小于低温型。4 台标准型红外辐射计之间也 有明显的差值 之间的差值在低温情况下较小 平均 为0.0~0.2 ,在高温情况下较大,平均为0.1~ 0.5。4 台低温型红外测量值也同样有差值,低温 下平均相差 0.0~0.1 。高温下平均相差 0.0~ 0.3 。因而用黑体源标定可以去除仪器本身的误 差 提高观测的表面辐射温度的精度。同时由于整 个观测期前后使用的红外辐射计分别是标准型和低 温型 经过黑体源标定后 数据系列具有了可比性和 连续性。

表² 红外辐射计与黑体源温度的平均偏差及标准误差()

Table 2 M ean differences and root m ean square error of tem perature observed with

infrared therm om eters and standard blackbody source

	标准型(27个样本)				低温型(²⁹ 个样本)			
	低温		高温		低温		高温	
红外辐射计序号	平均偏差	标准误差	平均偏差	标准误差	平均偏差	标准误差	平均偏差	标 准误差
1	0.29	0.22	0.25	0.28	_ 0.23	0.15	. 0.14	0.23
2	0.20	0.28	0.39	0.28	_ 0.17	0.21	_ 0.46	0.33
3	0.33	0.28	0.74	0.27	_ 0.16	0.19	_ 0.37	0.36
4	0.43	0.27	0.54	0.27	_ 0.21	0.14	. 0.32	0.23
平均值	0.31	0.26	0.47	0.27	_ 0.19	0.17	_ 0.32	0.28

对4个样带的地表辐射温度观测值,采用1.1 介绍的黑体源标定原理进行标定标定的结果表明: 4台标准型红外辐射计的观测值均偏高,而4台低 温型红外辐射计的观测值均偏低。图2给出了 2004年6月7日晴天1055样带3标准型红外辐射 计测定值与黑体源标定值的对比曲线,图3给出了 2004年7月5日晴天1535样带3低温型红外辐射 计测定值与黑体源标定值的对比曲线。这两张图都 很好地显示了这一点。显然直接将未标定的红外辐 射温度代入显热通量计算公式中,在其他参数不变 的情况下必然造成显热通量的高估或低估,或者直 接将未标定的红外辐射温度用于遥感图像的定标, 也必然造成定标值偏高或偏低 给遥感模型计算值 的验证带来误差。进一步对获取的 56 组样本分别 用标定的辐射温度值减去未标定的辐射温度,相减 的差值表明 表面辐射温度未经标准黑体源标定与 标定后的差值的绝对值在 0.1 ~1 之间,显然红外 辐射计测量值进行黑体源标定是非常重要的工作。 3.2 天空比辐射率和天空辐射特征分析

3.2.1 天空比辐射率的变化特征

将 2004 年 6 月 5 日至 7 月 6 日南边和北边自 动气象站的观测资料 代入公式(4) 计算得到不同 天气条件下的天空比辐射率。

从整个计算结果来看 不同天气条件下天空的

图 2 2004 年 6 月 7 日晴天 10 :55 样带 3 标准型红外辐射计测定值与黑体源标定值的对比曲线

Fig.2 Comparison of temperature between measured with standard infrared therm om eter and calibrated with standard blackbody source at 3th sam ple belt on June 7,2004 under clear day

图 ³ 2004 年 ⁷ 月 ⁵ 日晴天 ¹⁵ :³⁵ 样带 ³ 低温型红外辐射计测定值与黑体源标定值的对比曲线 Fig. 3 Comparison of temperature between measured with infrared therm om eter and calibrated with standard blackbody source at 3th sam ple belt on June 7 2004 under clear day

比辐射率变化范围为 0.75 ~0.85 非均匀下垫面天 空比辐射率之间的差值非常小 差值绝对值一般都 小于 0.004 而且南北观测场非均匀下垫面天空比 辐射率的日变化趋势非常一致(图 4)。假定天空温 度为 15 那么 =1 时,计算的天空环境辐射 R_a 为 392.94 W m²,而 变化在 0.75 ~0.85 之间时, R₁₀计算值为 294.71 ~334.01 W m²,因而把天空比 辐射率近似作为 1 来计算,将导致 58.94 ~98.23 W /m² 的误差。

Fig.4 Diurnal variation of atm ospheric em issivity under clear day

3.2.2 天空环境辐射

用北边自动气象站的空气温度和实际水汽压资料 代入公式(6),计算得到天空环境辐射 R_{id}。表 3 给出了净辐射(复合)表观测的天空环境辐射、空气温湿度计算值以及 37 红外辐射计测定值的比较。

表³⁷月⁶日晴³种方法的大气下行辐射比较

Table 3 Com parison of downward atm ospheric irradiance obtained with three m ethods under clear day on July 6 2004

时间	A	В	C	相对误差(%)	相对误差(%)
8 38	356.5	377.6	229.5	5.9	35.6
9 10	361.2	380.2	222.3	5.2	38.4
10 10	378.2	392.9	226.7	3.8	40.1
10 46	383.5	387.2	228.1	0.9	40.5
11 20	387.3	392.8	238.1	1.4	38.5
15 40	394.1	398.5	244.8	1.13	7.9
16 21	392.7	403.8	235.7	2.8	39.9
16 56	390.8	404.5	238.7	3.53	8.9
平均值				3.1	38.1

A 测定值(W /m²) ₱ 用空气温度和湿度计算值(W /m²); C 用 37 % 高度角红外辐射计测量温度的计算值(W /m²)

从表 3 可以看到,用空气温湿度的计算值与长 波辐射计测定值差值较小,早晚差值大,中午差值 小相对误差为 3.1%;天空 37 熟红外辐射计观测 值比长波辐射计测定值都低相对误差达到38.1%。 天空 37 熟红外辐射计观测值比长波辐射计测定值 低的主要原因是红外辐射计的滤光波段为 8 ~14 μm ,虽然经过黑体的校正 ,但是对大气并没有完全 校正过来 ,因而用天空多角度或 37 ℃外辐射观测 值计算天空辐射的方法有待进一步研究。

通过对空气温湿度的计算值与长波辐射计测定 值的差值进一步的研究 结果表明在万里无云时,计 算值高于测定值, 晴偶尔有云时,有云计算值低于测 定值,无云计算值高于测定值, 交替出现, 阴天时,全 部计算值都低于测定值,其原因是天空有云时, 长波 辐射会增强,此时地面长波辐射计测量到的大气下 行辐射还包括云对地面长波辐射的反射,以及云本 身的辐射,因而测量值明显高于晴空模型估算值。 鉴于有云时长波辐射计测量值偏高,以及利用经验 公式来计算天空下行辐射与测定值误差较小,本文 天空辐射的计算采用空气温湿度经验公式。

3.3 地表温度与地表辐射温度差值分析

在巡回观测的 4 个样带上,下垫面非均匀性较 强,我们在测量时对下垫面的每个测点状况进行了 详细记录,这为仔细地处理这些不均匀地表提供了 保证。采用逐个观测点处理的方法,根据经过黑体 源标定的表面辐射温度,以及根据公式(6)求出天 空环境辐射,代入公式(3)求出每个观测点对应的 地表真实温度。观测下垫面主要是由植被(杂草、 玉米苗)和干湿裸土组成,根据试验中使用的比辐 射率测定结果,植被的比辐射率取0.98,干燥土取 0.974 湿润土取0.985。

地表温度与地表辐射温度的差值可以用下式来

计算[14]:

$$E_{ro} = \frac{M(T) - (M(T) + (1 -)E(T_{e}))}{M(T)} \times 100\%$$
$$= \frac{(1 -)(M(T) - E(T_{e}))}{M(T)}$$
(8)

当 E(T_e) M(T) E(T_e) 0时 观测误差由环境辐 照度和比辐射率共同决定。E(T_e) <M(T),即为冷 环境时,误差为负值,地表辐射温度小于地表真实温 度,而且大气下行辐射越小,被测地物的比辐射率值 越小,地表辐射温度与地表真实温度的差值越大。 由此可见,在野外冷环境下测量到的地表辐射温度 总是小于地表温度。

图 5 显示了 2004 年 7 月 5 日 10 15 至 10 145 四个观测样带中样带 1 和样带 3 地表温度和地面辐 射温度之间的差值。由图 5 可见,地表温度高于地 表辐射温度,差值在 0.2 ~0.4 之间,事实上,我们 利用 2002 年和 2004 年手持式红外辐射计的观测值 (观测样本 3 000 个),以及 2004 年自动红外辐射计 观测值(观测样本 2 400 个),计算结果表明,在整个 观测期,不论是阴天还是晴天,不论下垫面是干土、 湿土、杂草还是玉米苗,表面温度均高于表面辐射温 度,差值在 0.2 ~1.5 之间。

图 5 2004 年 7 月 5 日观测样带 1 和样带 3 地表温度和地表辐射温度之间的差值 Fig.5 The diffience betw een surface " true" tem perature and surface radiative tem perature of the two observational sam ple strips on July 5 2004(at 1st and 3rd sam ple belt)

根据遥感热红外波段,直接得到的是地表辐射 温度,但是在许多热红外应用研究中,需要的是地表 温度,而不是地表辐射温度,这是因为地表温度不仅 取决于地表净辐射通量,而且取决于地表热量平衡 方程中的各分量(大气湍流所引起的显热通量、地 表水分蒸发蒸腾所引起的潜热通量和土壤性质控制 的土壤热通量)^[17]。因此,只有地表温度才能作为 一个重要的基本参数直接参与相关模型的计算。显 然在遥感估算地表通量时,在其它参数不变的情况 下 如果直接用地表辐射温度代替地表温度进行反 演 必将低估显热通量值,高估潜热通量。在需要地 表温度作为输入参数的遥感模型中,如果用地表辐 射温度代替,造成的误差是不可忽略的。

4 结 语

地表真实温度和辐射温度的差值研究对于进一步利用遥感技术反演地表温度和研究地表热量平 衡 提高输入参数的精度 是不可缺少的工作。研究

结果表明:

(1)利用红外巡回温度观测值对非均匀下垫面 表面辐射温度未经标准黑体源标定与标定后的差值 的研究表明非均匀下垫面辐射温度未经标准黑体源 标定与标定后的差值的绝对值在0.1 ~1 之间 很 显然对红外辐射计测量值进行黑体源标定是必须进 行的工作,可以减小将红外测温值作为输入参数代 入遥感模型参与计算所带来较大的误差。

(2)利用自动气象站观测资料分析了天空比辐射率的变化特性,天空比辐射率的变化在 0.75 ~ 0.85之间,非均匀下垫面天空比辐射率的日变化趋势非常一致,这表明将天空比辐射率作为1来处理,也会带来误差,实际上天空比辐射率的变化取决于大气中的水汽和温度,因而不同季节不同天气状况,天空比辐射率不同。

 长波辐射 计测定值差值较小,相对误差平均为 3.1%但是天空37 热红外辐射计观测值与长波辐射计测定值差值大相对误差平均值达到38.1%因 而用天空37 热红外辐射计观测值来计算大气向下 长波辐射需要进一步进行修正。

(⁴)对非均匀下垫面表面真实温度和表面辐射 温度的差值研究表明:非均匀下垫面表面真实温度 均高于表面辐射温度,差值在^{0,2}~1·5 之间。由 此可见,在地表温度作为输入参数的遥感模型中,如 果用地表辐射温度代替,带来的误差是不可忽略的。

致谢 感谢北京师范大学地理学与遥感科学学 院遥感中心所有参加实验的同学。

参考文献(References):

- [1] Zhang R H , Li Z L , Tang X Z , et al. Study of emissity scaling and relativity of hom ogeneity of surface temperature [J]. International Journal of Rem ote Sensing 2004 25(1):245-259.
- [2] Lagouarde J P Kærr Y H , Brunet Y. An experimental study of angular effects on surface tem perature for various plant canopies and bare[J]. Agriculture and Forest Meteorology 1995, 77 167-190.
- [3] Voogt J A , Oke T R. Radion etric temperature of urban Canyon W alls obtained from vehicle traverses[J]. Theoretical and Applied Climatology 1998, 60 (199-217.
- [4] Chehbouni A, Nouvellon Y, KerrY H, etal. Directional effection radiative surface temperature measurements over a semiarid grassland site[J]. Remote Sensing of Environment 2001, 76 360-372.
- [5] Li Z L , Zhang R , Sun X , etal. Experimental system for the study of the directional therm alem ission of natural surface [J]. International Journal of Rem of e Sensing 2004 , 25(1) : 195-204.
- [6] Zhang Yiping, Li Yourong. A study on the characteristic of temperatures on the different surface of building in the urban area[J].
 Urban Environment Urban Ecology, 1997, 10(1):39-42.[张一平 ,李佑荣·城市区域内建筑物表面温度特征[J].城市环境与城市生态,1997,10(1):39-42.]
- [7] Voogt J A, Oke T R. Complete urban surface temperature [J]. Journal of Applied Meteorology 1997, 36 1 117-1 132.
- [8] William P Kustas , John M Norman. Evaluation of soilamd vegeta-

tion heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agriculture and Forest Meteorology 1999 _94 13-29.

- [9] Chehbouni A, Nouvellon Y, Lhomme J P, et al. Estimation of surface sensible heat flux dual angle observations of radiative surface temperature [J]. Agriculture and Forest Meteorology 2001, 108 55-65.
- [10] Zhan W P kustas, Hum es K S. An intercomparison study on models of sensible heat llux over partial canopy surfaces with remotely sensed surface temperature [J]. Remote Sense Environment 1996 58 242-256.
- [11] W ang Pengxin, W an Zhengming, Gong Jianya, et al. Advanced in droughtmonitoring by using remotely sensed nom alized difference vegetation index and land surfee temperature products[J]. Advances in Earth Science 2003, 18(4):527-533.[王鹏新, W an Zhengming,龚健雅,等•基于植被指数和土地表面温度 的干旱监测模型[J].地球科学进展 2003,18(4):527-533.]
- [12] Norm an JM , Kustas W P , Hum es K S. Source approach for estimating soil and vegetation energy fluxes in observation of directional radiometric surface tem persture [J]. Agriculture and Forest Meteorology 1995 77 263-293.
- [13] Chehbouni A, Seen D Lo, Njoku E G, etal. Estimation of sensible heatflux over sparsely vegetated surface[J]. Journal of Hydrd ogy 1997 (188 ~189) .855-868.
- [14] Zhang Renhua. Remotely Sensing Model Based on Experiment and the Basis of Land Surface [M]. Beÿing: Science Press, 1996.[张仁华.实验遥感模型及地面基础[M].北京 科学 出版社 1996.]
- [15] Brutsaert W H. On a derivable form ula for long-wave radiation from clear skies[J].Water Resource Research ,1975 ,11:742-744.
- [16] Isdo S B. A set of equation for full spectrum ,8 ~14 µm and 10.5 ~12.5 µm thermal radiation from cloudless skies[J]. Water Resource Research 1981 17 .295-304.
- [17] Guo Xiaoyin, Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research[J]. Advances in Earth Science 2004 19(1) 107-114.[郭晓寅,程国栋·遥感技术应 用于地表面蒸散发的研究进展[J]·地球科学进展,2004 19 (1) 107-114.]

A STUDY OF THE DIFFERENCE BETW EEN TRUE SURFACE TEM PERATURE AND RADIOM ETRIC SURFACE TEM PERATURE

HUANG Miao-fen^{1,2}, LIU Shao-min², LIU Su-hong², ZHU Qi-jiang² (1.School of Marine Engineering Dalian Fisheries University Dalian 116023, China, 2. Research Center for Remote Sensing and GIS School of Geography, Beijing Normal University, State Key Laboratory of Remote Sensing Science;

Beijing Key Laboratory for Remote Sensing of Environment and Digital Cities Beijing 100875 (China)

Abstract : The measurements of air temperature and air humidity were utilized to analyze the diurnal variation of atm ospheric emissivity over heterogeneous surfaces and to calculate downward atmospheric longwave irradiance , from June 5th to July 6th ,2004 , in Xiaotangshan area , Beijing. Moreover , sky radiometric temperature at 37 and land surface radiometric temperature with thermal infrared therm ometers were employed to study the differences between surface radiometric temperature over heterogeneous surfaces without being calibrated and calibrated with standard blackbody source and the differences between surface "true" temperature , which were calculated with the downward longwave irradiance and surface emissivity , and surface radiometric temperature , which were calibrated by standard blackbody source. The results may be served as scientific reference to invertiand surface temperature with remote sensing and to study land surface energy balance.

The results indicated :(1) the differences of surface radiom etric tem perature between without being calibrated and being calibrated by standard blackbody sources ranged from 0.1 to 1 :(2) the diurnal variation range of atm ospheric emissivity ranged from 0.75 to 0.85 :(3) the differences of downward atmospheric longwave irradiance between being calculated by air temperature and air humidity and being measured by pyranom eter were sm all with the average mean error being 3.1%, while those of downward atmospheric longwave irradiance between being calculated by sky radiom etric temperature at 37 owith thermal infrared therm on eter and being measured by pyranom eter were larger, with the average mean error being 38.1%; (4) the differences between surface true temperature and surface radiom etric temperature calibrated with standard blackbody ranged from 0.2 to 1.5 over various surfaces under variable sky conditions, and the higher surface radiom etric temperature was, the larger the differences were. Therefore, the differences had the diurnal variation rule.

Key words Thermal infrared thermometers ; Atmospheric emissivity ; Downward atmosphere longwave irradiance . Surface radiometric temperature . Surface true temperature.