文章编号: 1000-324X(2007)05-0816-05

Pr, Mn 多元渗对 BaTiO₃ 陶瓷结构与电性能的影响

郝素娥,黄金祥,张巨生,王进福,刘志刚 (哈尔滨工业大学应用化学系,哈尔滨150001)

摘 要: 采用溶胶 - 凝胶法制备了纯 BaTiO₃、 Pr, Mn 液相掺杂及气相多元扩渗改性的 BaTiO₃ 陶瓷.研究 结果表明, Pr 掺杂能使纯 BaTiO₃ 陶瓷的室温电阻率下降为 $1.01 \times 10^5 \Omega \cdot m$; 而 Mn 掺杂使室温电阻率升高为 $1.50 \times 10^{13} \Omega \cdot m$.但 Pr 和 Mn 的气相扩渗都能降低 BaTiO₃ 陶瓷的室温电阻率至 $1.08 \times 10^3 \Omega \cdot m$ 和 $1.29 \times 10^5 \Omega \cdot m$. Pr-Mn 共渗 BaTiO₃ 陶瓷出现了典型的 NTC 效应. XRD 分析表明, Pr 或 Mn 掺杂并不能改变 BaTiO₃ 陶瓷的物相结构,但经 Pr-Mn 共渗后,出现了新化合物 BaMn0.12 Al1.88 O4 和 Als Mn4Pr 的特征峰. XPS 分析表 明,气相多元渗使 Pr, Mn, C 元素都扩渗到陶瓷体内,并使各化学元素之间的结合更加牢固. SEM 测试结果 表明, Pr, Mn 气相扩渗使陶瓷表面明显改观,晶粒生长完整,粒度分布均匀,气孔率下降.

关 键 词: 钛酸钡,稀土,气相扩渗, NTC 效应 **中图分类号**: O614 **文献标识码**: A

Effect of Gaseous Penetration of Pr, Mn into $BaTiO_3$ Ceramics on Structure and Electrical Properties

HAO Su-E, HUANG Jin-Xiang, ZHANG Ju-Sheng, WANG Jin-Fu, LIU Zhi-Gang (Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001, China)

Abstract: Pure BaTiO₃ ceramics and Pr, Mn-doped BaTiO₃ ceramics were prepared by a sol-gel method. The pure BaTiO₃ ceramics were modified by the penetration of Pr and Mn in gaseous state, their structure and electrical properties were studied. The results show that the resisitivity of Pr-doped BaTiO₃ ceramics is decreased to $1.01 \times 10^5 \Omega$ -m, the resisitivity of Mn-doped BaTiO₃ ceramics is increased to $1.50 \times 10^{13} \Omega$ ·m, while both Pr and Mn penetration can decrease the resisitivity of BaTiO₃ ceramics evidently, which is $1.08 \times 10^3 \Omega$ ·m and $1.29 \times 10^5 \Omega$ ·m, respectively . The Pr-Mn penetrated BaTiO₃ ceramics show a distinct NTC effect. The XRD results show that the perovskite structure of Pr or Mn doped BaTiO₃ ceramics does not change obviously, but there are new peaks of BaMn_{0.12}Al_{1.88}O₄ and Al₈Mn₄Pr in Pr-Mn penetrated BaTiO₃ ceramics. The XPS results show that Pr, Mn and C element are penetrated into BaTiO₃ ceramics, leading to the binding energy of modified BaTiO₃ ceramics increase and their stability improve. The SEM results show that Pr and Mn penetration can improve the surface state of BaTiO₃ ceramics, the grains become finer and grow more integrally than pure BaTiO₃ ceramics, the porosity are decreased visibly.

Key words: BaTiO₃; rare earth; gaseous penetration, NTC effect

1 引言

自从发现稀土掺杂能改善 BaTiO₃ 陶瓷的性能

以来,稀土元素作为施主杂质掺于 BaTiO₃ 基 PTC 材料的研究引起人们的极大重视^[1-4]. 掺入少量施 主杂质的 BaTiO₃ 陶瓷具有半导体性质^[5,6], Dy₂O₃

收稿日期: 2006-08-29, 收到修改稿日期: 2007-02-05

基金项目: 国家自然科学基金 (20571020)

作者简介: 郝素娥 (1965-), 女, 博士, 教授. E-mail: haosue @hit.edu.cn

和 La₂O₃ 掺杂可降低 BaTiO₃ 陶瓷的烧结温度,且 La₂O₃ 在改变 BaTiO₃ 铁电体温谱特性上具有显著 的稳峰和压峰作用,而 Dy₂O₃ 易于在 BaTiO₃ 晶界 区偏析,对陶瓷晶粒细化、控制改性组分的化学分 布状态、改善温度稳定性和提高耐电强度非常有 利^[7-9].而微量受主杂质的引入,可以在很大程度 上改善和提高 PTC 效应^[10,11],通过过渡金属元素 Mn、V、Fe、Cu和 Cr等的掺杂可获得高的 PTC 特性^[12].本工作采用液相掺杂和气相扩渗两种方 法对 BaTiO₃ 陶瓷进行 Pr和 Mn 改性研究,对改性 BaTiO₃ 陶瓷材料的组成、结构、电性能的变化及 PTC 特性进行研究.

2 实验

2.1 掺杂 BaTiO3 陶瓷的制备

采用溶胶 - 凝胶法,按摩尔比 Ba(Ac)₂: 钛酸 四丁酯: Pr(Mn)=1:1:0.003 配置溶胶,在室温下静 置 24h,将凝胶于 80°C 烘干 24h,研磨后烧结,先于 300°C 保温 1h,再升至 800°C 保温 2h,然后自然冷 却,粉体经压制成型,干燥,于 1300°C 烧结 2h,便 得到 Pr, Mn 掺杂的 BaTiO₃ 陶瓷.

2.2 稀土对 BaTiO3 陶瓷的气相扩渗

用 Pr 和 Mn 分别对所制备的纯 BaTiO₃ 陶瓷 进行气相扩渗. 扩渗条件: 扩渗温度为 860°C, 扩渗 液浓度为 2wt%, 扩渗时间为 4h.

所制备的 Pr, Mn 改性 BaTiO₃ 陶瓷的样品编号见表 1.

2.3 改性 BaTiO3 结构与性能测试

采用美国 Keithlev 仪器有限公司的 2400 系列 四探针电阻测试仪测试样品的直流电阻率,变温 电阻率测试从室温至 850°C范围内,采用日本理学 D/max-γβ型X射线衍射仪测试了陶瓷的结构,测 试条件: Cu 阳极,石墨单色器,电压 40kV,电流 50mA, DS 1°, SS 1°, RS 0.15mm; 采用 Axis Ultra 型 X 光电子能谱仪测试了陶瓷的元素组成,测试条 件: Al 靶, Ar 离子 3kV 溅射, 溅射时间 2min, 溅 射面积 4mm×4mm, 电流 1mA; 用日本日立扫描电 镜 (S-570 型) 观测了陶瓷的形貌,加速电压 20kV, 初射角 40°.

3 结果和讨论

3.1 Pr, Mn改性 BaTiO₃ 陶瓷电性能

对 Pr, Mn 改性 BaTiO₃ 陶瓷的室温电阻率进行了测试,结果如表 2 所示.

由表2可知Pr掺杂能明显降低BaTiO3陶瓷的 室温电阻率, 由纯 BaTiO₃ 陶瓷的 1.01×10¹²Ω·m 下 降为 1.01×10⁵Ω·m; 而 Mn 掺杂对 BaTiO₃ 陶瓷的室 温电阻率有升高作用, 电阻率升高为 1.50×10¹³Ω·m. 但 Pr, Mn 元素气相扩渗都能有效降低 BaTiO₃ 陶瓷的室温电阻率,分别下降为 1.08×10³Ω·m 和 1.29×10⁵Ω·m, Pr, Mn 共渗后室温电阻率下降为 2.56×10⁴Ω·m. 综上可知, 气相扩渗是有效降低 BaTiO₃ 陶瓷室温电阻率的一种方法,可克服有些 元素, 例如 Mn, 能改善 PTC- 特性, 但同时也升高 电阻率的矛盾.对 Pr, Mn 共渗 BaTiO₃ 陶瓷的变温 电阻也进行了测试,测试结果如图1所示.由图1 可以看到明显的 NTC 曲线, 通过气相扩渗得到了 具有典型 NTC 效应的陶瓷材料. 其主要原因为: 气相扩渗是一个多种元素的扩渗过程, 在渗剂中除 了 Pr, Mn 元素外, 还含有 C 元素, 在多元扩渗过 程中 C 元素也被扩渗到陶瓷体内, 由于 C 的导电 性良好, 所以导致电阻率明显下降, 并由于 C 存在 于晶界以及空隙之中,随着温度升高,晶粒会膨胀 挤压 C, 使得晶界电阻减小, 从而出现明显的 NTC 效应.

3.2 Pr, Mn 改性 BaTiO₃ 陶瓷的 XRD 分析

表 1 Pr, Mn改性 BaTiO₃ 陶瓷的样品编号 Table 1 Sample number of Pr, Mn modified BaTiO₃ ceramics

		-	,			
No.	1	2	3	4	5	6
Type of $BaTiO_3$	Pure	Pr-doped	Mn-doped	Pr-penetratd	Mn-penetratd	Pr, Mn-penetratd

表 2 Pr, Mn改性 BaTiO₃ 陶瓷的室温电阻率

No.	1	2	3	4	5	6
Resistivity/ $\Omega \cdot m$	1.01×10^{12}	$1.01{\times}10^5$	$1.50{\times}10^{13}$	$1.08{\times}10^3$	$1.29{ imes}10^5$	$2.56{\times}10^4$

纯 BaTiO₃ 陶瓷以及 Pr, Mn 掺杂的 BaTiO₃ 陶 瓷的 XRD 谱图如图 2 所示.

由图 2 可知, 掺杂 Pr 或 Mn 元素后的 BaTiO₃ 陶瓷均较好地保留了 BaTiO₃ 的特征峰, 没有出现 新的衍射峰, 掺杂没有改变陶瓷的物相结构.为了 研究气相扩渗对 BaTiO₃ 陶瓷结构的影响, 对 Pr 扩渗 (4[#])及 Pr-Mn 共渗 (6[#])BaTiO₃ 陶瓷进行了 XRD 测试, 见图 3.

由图 3 可以看出, BaTiO₃ 陶瓷在经 Pr 气相 扩渗后, BaTiO₃ 陶瓷钙钛矿结构的主峰并没有发 生变化,只是出现了 BaAl₂O₄ 的三强峰 (28.281°, 34.317° 和 57.814°) 以及较强峰 (40.114° 和 19.602°), 证明了陶瓷中有 BaAl₂O₄ 存在,这一结果并不是气 相扩渗造成的,而是在烧结时采用的包埋粉 Al₂O₃ 所致.可见 Pr 气相扩渗并没有改变 BaTiO₃ 陶瓷 的钙钛矿结构,也未有与 Pr 元素有关的衍射峰出 现,说明渗入的少量 Pr 元素可能存在于晶界.由

图 1 Pr, Mn 共渗 BaTiO₃ 陶瓷的温度 - 电阻率曲线 Fig. 1 Relation of temperatue and resistivity of Pr, Mn-penetrated BaTiO₃ ceramics

图 2 Pr, Mn 掺杂 BaTiO₃ 陶瓷的 XRD 谱图 Fig. 2 XRD patterns of Pr, Mn-doped BaTiO₃ ceramics

图 3 Pr, Mn 扩渗 BaTiO₃ 陶瓷的 XRD 谱图 Fig. 3 XRD patterns of Pr, Mn-penetrated BaTiO₃ ceramics

图 3 也可以看出, BaTiO₃ 陶瓷在经 Pr-Mn 共渗 后, BaTiO₃ 陶瓷钙钛矿结构的主峰也没有发生显 著变化, 但除了有 BaAl₂O₄ 的衍射峰存在外, 还检 测到了新化合物 BaMn_{0.12}Al_{1.88}O₄ 和 Al₈Mn₄Pr 的 特征峰, 分别在 40.402° 和 28.198°, 这些新化合物 的存在说明 Pr 元素和 Mn 元素进入了陶瓷体系, 并与陶瓷组元发生了复杂反应,生成了新的化合 物. 由此说明, 渗入 BaTiO₃ 陶瓷中的 Pr 和 Mn 元 素,大部分在陶瓷晶界处偏聚,小部分进入晶格, 并与其它元素交互作用,形成以稀土化合物为主 的新相,

3.3 Pr, Mn 改性 BaTiO3 陶瓷的 XPS 分析

对 Pr 扩渗 BaTiO₃ 陶瓷进行了 XPS 测试,测试结果中各元素含量见表 3.为了排除 C 污染的可能,对样品进行了 Ar 离子溅射前后的测试结果对比分析.由表 3 可以看出,在进行了 Ar 离子溅射后仍能检测到 C 元素的存在,说明气相扩渗过程使得 C 元素进入了陶瓷体系, C 元素来源于扩渗试剂中的甲醇.由于 XRD 的测试结果中未能找到与 C 相关的化合物,而且陶瓷的主要结构也没有发生改变,可以推断 C 元素主要分布于晶界或陶瓷气孔中,不对晶相产生影响.同时,也检测到 Pr 元素,说明气相扩渗方法可以将化学元素引入陶瓷体内.

表 3 Pr 扩渗 BaTiO₃ 陶瓷中各元素含量分布表 Table 3 Element content of Pr-penetrated BaTiO₃ ceramics

Element	C1s	$\Pr{3d}$	$\mathrm{Ba}3d$	$\mathrm{Ti}2p$	O1s		
Before penetr- ation/%	87.86	0.22	0.39	0.59	10.94		
After penetr- ation/%	91.67	0.34	0.86	0.88	6.25		

图 6 纯 BaTiO₃ 与 Pr, Mn 共渗 BaTiO₃ 陶瓷的 SEM 照片 Fig. 6 SEM images of pure BaTiO₃ and Pr, Mn-penetrated BaTiO₃ ceramics (a) Surface of pure BTO; (b) Cross-section of pure BTO; (c) Surface of Pr, Mn-BTO; (d) Cross-section of Pr, Mn-BTO

Pr 扩渗 BaTiO₃ 陶瓷中 Pr 和 C 元素的结合能 分析谱图见图 4, Pr 扩渗 BaTiO₃ 陶瓷中 Ba、 Ti 和 O 三种元素的结合能分析谱图见图 5. 由图 4 可 见, 溅射前后 Pr、 C 两种元素的结合能位置都没 有发生改变,可以进一步确定这两种元素在改性 BaTiO₃ 陶瓷体系中的存在. 由图 5 可知, Ba、 Ti 和 O 三种元素的峰都向右移了约 2 个单位,即 结合能都增大 2eV 左右,说明气相扩渗使得陶瓷 内各化学元素之间的结合更加牢固,对纯 BaTiO₃ 陶瓷有增强稳定性的作用.

3.4 Pr, Mn 改性 BaTiO₃ 陶瓷的 SEM 分析

对纯 BaTiO₃ 与 Pr, Mn 共渗 BaTiO₃ 陶瓷进行 了表面和断面扫描, 如图 6 所示, (a) 纯 BaTiO₃ 表 面, (b) 纯 BaTiO₃ 断面, (c)Pr, Mn 共渗 BaTiO₃ 表面, (d)Pr, Mn 共渗 BaTiO₃ 断面. 由图 6(a) 可 知, 纯 BaTiO₃ 陶瓷表面有严重的粘连现象, 颗粒 分布不均, 气孔较大. 由图 6(b) 可以发现陶瓷体 内与表面情况类似, 晶粒较大, 有粘连情况, 大部 分晶粒尺寸在 20µm 左右, 晶粒间隙较大, 陶瓷内 部不够致密. 由图 6(c) 和 6(d) 可以看出, 陶瓷表 面的均匀性增强, 致密度有所增大, 陶瓷内部晶粒 生长更为完整、规则, 粒度颁布均匀, 气孔率有所 下降.

4 结论

1. Pr, Mn 气相扩渗能有效降低 BaTiO₃ 陶瓷的室温电阻率, 且使 BaTiO₃ 陶瓷产生了 NTC 效应.

2. XRD 分析表明, Pr 或 Mn 掺杂没有改变 BaTiO₃ 陶瓷的物相结构, 但经 Pr-Mn 共渗后, 出 现了新化合物 BaMn_{0.12}Al_{1.88}O₄ 和 Al₈Mn₄Pr 的特 征峰.

3. XPS分析表明, 气相扩渗使 Pr 和 C 进入了 陶瓷体系, 使各化学元素之间的结合更加牢固, 并 导致了改性陶瓷材料电阻率的降低以及 NTC 效应 的产生.

4. SEM 测试结果表明, Pr, Mn 气相扩渗后, 陶瓷表面明显改观,晶粒生长完整,粒度分布均 匀,气孔率有所下降.

参考文献

- Zhao Jingchang, Li Longtu, Gui Zhilun. Journal of the European Ceramic Society, 2002, 22 (7): 1171–1175.
- [2] 黄仲臧, 沈嘉棋 (Huang Zong-Zang, et al). 无机材料学报 (Journal of Inorganic Materials), 1999, **14** (6): 939-941.
- [3] 郝素娥, 韦永德 (Hao Su-E, et al). 无机材料学报 (Journal of Inorganic Materials), 2003, **18 (5)**: 1069–1073.
- [4] Kyomen P, Sakamoto R, Sakamoto N. Chem. Mater., 2005, 17 (12): 3200–3204.
- [5] 徐荣云. 中国陶瓷, 2002, 38 (4): 7-9.
- [6] 靳在国 (Jin Zheng-Guo). 硅酸盐学报 (Journal of the Chinese Ceramic Society), 2001, **29 (5)**: 397–399.
- [7] 周 斌, 徐国跃. 电子元件与材料, 2005, 24(1): 10-15.
- [8] Hao Su-e, Wei Yong-de, Xing Xiao-xu. Journal of Rare
 Earth, 2004, 22 (suppl.2): 109–112.
- [9] Park M B, Cho N H. J. Am. Ceram. Soc., 2001, 84 (9): 1937–1944.
- [10] 周东祥,郑志平,龚树萍,等 (ZHOU Dong-Xiang, et al).
 无机材料学报 (Journal of Inorganic Materials), 2005, 20
 (3): 593-597.
- [11] Qi Jian-quan, Gui Zhi-lun, Wang Yong-li. Sensors and Actuators A: Physical, 2002, 100 (2–3): 244–246.
- [12] Affleck L, Leach C. Journal of the European Ceramic Society, 2005, 25 (12): 3017–3020.