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§ 1. InTrRopDUCTION

The finite element method has recently become of interest in fluid mechanics in both theory
and practice™?, The theoretical analysis of the finite element method for Navier-Stokes equations
has boen made swith respect 1o bounded domains b}r marny autherst . Tn this paper, the mixed
finite element method for Stokes equations on unbounded domains is considered. Fix and Strang™
have anzlyzed the finite element method with respect to an unbounded domein, but their pro-
cedure requires the solution of an infinite system of linear algebraic equations. Rabuika™ has
proposed an approach for finding a2 finite element approximate solution of a boundary value prob-
lem for an elliptic partial differential equation on an unbounded domain by solving only a
finite system of linear algebraic equations, which has been shown on a model equation — Ax-
= fon R". In fact, this approach corresponds to solving a boundary value preblem o a
bounded domain &, for each mesh & > 0, and the bounded domain 9, approaches o R",
when b — 0. Tt means that s boundary value problem on a quite large domain must be solved
by the finitc clement method. Combining the finite element method and the classical analytical
method, we have proposed a local finite element method for finding the numerical solution of
a boundary value problem of elliptic partial differential equarion en unbounded domains, shown
through some exterior boundary value problems of model equstion Aw = 0. Its rate of conver-
geace is the same as that of the boundary value problem on bounded domains™, This method
is closely related with the method of coupling the FEM with canonical reduetion propesed by
Feng Kangt"ﬂ, Their difference is in the form of the cancpica!l integral equations. Hence
this paper can be understood as an extension of the local finite element or the couplinggof th,
FEM and csnenical reduction to Stokes equations. Aside from the shove there are ather ways
of handling problems on unbeunded domains, such as the boundary finite element method?®1,
the infinite element method™, and the infinite elements™,

§ 2. Tus SoruTion oF STokes ProBieM oN AN Exremtor Cirae

Suppese O = {2* + 3 = i}, and lex T, dencte the boundary of Q.. We consider the
boundary walue prngt:n of Stokes Eq‘uadnns on an unbounded domam Q.

au — 2E — 0, Q., (2.1)

I
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fu,— 22 0, 0., (2.2)

Brx,;

Bu Bu
a_r:+a_::_ﬂ’ Qu, (2.3)
ﬂ:lr., - fl(ﬁ}: ":rnl"n - .f:(g}! (2'4)
4, se¢; are bounded when r — 4oo, (2.5)
fF—0 when r = 4o, (2.6)

where f(8) (i = 152) are given, and (r,8) are polar coordinates, In this section we shall
solve problem (2.1)—(2.6) by series expansion. From (2.1)—{(2.3), we have

O, ﬂu,)
Ap e Al — 4 —2 ] =0 - 2.7
v [ﬂxl + 5 » Dy (2.7)
AI"I. = _ﬁ (-I'}'P}"""{':- 4 J (I'E)
8,
Al = -2 (ap) =10, 0., (2.9)
&x:

Hence, we know that £ s 3 harmonic function on Q., and w;, e are bibarmonie functions on
Q.. Therefore, there are four harmonic functions Wi, G, W3, G, such that
wm = (r — W, + Gy, {2.10)
= (' — )W, + G, (2.11)
By boundary conditions (2.4), G, and G, can be uniquely determined by the following Fouricr

series

Gr,0) — %‘+ i, (apcosnl + by, sinnf)r=, (2.12)
G r,6) —‘?“ + -z:i{r.ms#ﬂ-l-a',sinnﬂ)r_', (2.13)

where
a—%]: 1.(6)cosnBd0, m = 0,152, - (2.14)
be —-'—f ]:'h{a}si“eaa, m—ly 2y e (2.15)
e _.r_f ]:';,(e)cmam, m=0,1,2,--, (2.16)
d.mgizt,f;(ﬁjsinuﬁdﬁ, mowm 1,2, 000, (2.17)

By equation (2.7) and boundary conditien (2.6), we have

p(ry0) = > {picosnf + pisinnd}r, (2.18)

as
where constants {£..£5} are yet to be determined.

Now we determine functions W, and W,. From equations (2.1) and (2.2), we obtain
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A simple computation shows

On the other hand, we have
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Al — yw,} = 0L,
Ox,
7 2 dyp
ﬁl.-f* - -'u}wz]' - .
Oz,
8 1 g
2wy =—2E 2.19
8y (r ) 4 ri’ ( )
8 1 8p
B rwy =182 2.20
ﬁr (r i} 4 'ﬁ.t'z ( )
8p _ 0B .g_ B¢ sind
dx, O 88 -

- i {—n)pleos(n + 138 + plsin(n + 1)8}s™1,

B ap . dp cosf
e 51!!.& -+ = —
Oz, Oy a8 o«

= Ej: (—n){plen (n 4+ 1)8 — plcos(n + 1)8}r~"1,

Therefore, we obtain

Wim L35 (phcor(n + 16 4 phsian + 18}, (221)
w1 S {phsin(n + 1) — pcos(n + 1B}, (222)

If we know constants {pL.pi}, then P, Wy, W, are determined uniquely by (2.18).(2.21) and

(2.22). Unfortunately, {#L,pi} are unknown. The remainder is to determine {pL,#3). By
equation (2.3), we obtain

1 (as. 86,
2 W, + oW - —— | —= 4 — . 2.23
( iy 2 J:Jl]"‘, 2 \ Bz, Bx,/Ir, ( .)
On the other hand, we have
W, + oWy = r(Wicosf + W,sind) — %p(r,&l}. (2.24)
Combining (2.23) and (2.24), wec obtain
- BG, Eiﬂ,)'
= = = . 2,25
P'r' (ﬂxl 5:1 Ty ( }

Furthermore, we have

? = ﬁ:{.—n){u,cuﬁ(n + 1)3 =+ é',si.n(n + ]_)15'},-""!’
aG, _ Z‘: (—aMepsin(n +1)8 — d..ms(ﬂ + 1)a}r,

Bx,

m=1
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and
i
[F:*‘Z(ﬂ—l.}(a. L — da-1)s p—2,3, e, (2.26)
phoe=m 2(m = L) b,y = €ami)s
pi=rpi=0, (2.27)
Hence problem (2.1)—(2.6) has been solved. Finally, we present two integral boundary value
conditions on Iy. Hg.r Dr.ml}ul:atiun, we obtain !

B, )| a6, | 1 ﬂG:J
—_—— ) = —2-—— - == .
( 8- + Peos |I'.. ar |r=r, Fo OF lr=r,
By, . ) ﬂG,J 1 ﬂG1J
—_—1 + [} = —2 == + ==
( 8 psin Ty Or lr=r, rq 08 r=ru,

and

%1 [ 1 j:u 11.'1[1 — CDE('!P — E}] aiﬂ’;:.?) dq;._'

dr | FErg 1:\:!.,

86, __1*]"1 1 — — gy Fulreg) |
8y lr=r, 2urg Jo al r‘.nsf:q'l 2 G’ P
MNamely, we have
_-ﬂ ) —:_.]l_ ’].]_ 1 f— —_— E’!}_{rﬂsfj 4
( B + Peoosd . - L nf cos{gp— 8)] B¢
1 au:- Fos ﬂ
—_— 2.28
o 5‘3 ’ I: )
_ B ; ) -1 r 1— _ )] Frmalros )
( Or + psind g wry A lal cos(p —6)] = dg? ‘@
1 BHL(’:: EL}_
+_ 2.29
*n ﬂ'ﬁ' ( }

3. Aw Equvarent Vaptariomar Proeram on & Bouwoen Domamng

Let T be a simple closed curve satisfying the Lipchitz condition, and let @, and 0; be
the unbounded and bounded domain with boundary T respectively. Consider the following boundary
valus problem of Stokes equations:

Auy — 2P w0, 0., (3.1)

dx,
.&H;—-EE—Uj n.-: {3'1)

fx;

B, Dty
2 R, ., 3.3
Br, Ox; (33)
'h'r""'flr {3'4}
3l r = fs {3.5)
&, »#; are bounded when r — 400, (3.6)
=0 when r — 400, {3.?}

In Q,, we draw 3 circumference T'e with radivs ry, Then domain Q. is divided to two pars:
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the bounded part is denoted by D, and Q. = 0)\Q,. Suppcse the center of this circumference
is the origin of the coordinates (as shown in Figure 1). On the bounded domain &), we
consider the following boundary value problem:

A —22 =y, 0, (3.8) y
L]
au— 28 — 0, o, (3.9)

ﬂ.r:z ’ Ta
.
a"l+ B4y, o, (3.10)
ﬂfi x; '
nr
il r = fis (3.11) U
oy
sl p = fis (3.12) a

bd ¥
FL
=—i_—ju n[1 — cosCp — B)] a‘ulg;:;gg dqﬂ_%__aif;%;‘_ﬂl, (3.13)
g Fos
4L Bulr,0) 1)
ra 09

Obviously, (3.8)—(3.14) is a boundary value problem of Stokes equations on the bounded
dcmain Gy, Let @, #;, § denote the restrictions of sy, uys £ the solution of problem (3.1)—
({3.7), on ©,. Then we know that &5 fiz, § i the solution of preblem (3.8)—(3.14) by
(2.28) and (2.29).

Suppose that f{{z,2,) (i ==1,2) denotes the extension of f; en Q,, and

fixis ) |5, = 0, Ef_t{.'&ﬁl —_0.

r, -

Let oy =y — fil{xs )5 03= 0 — fi{x15 53). Then the bcumdar}' problem( 3.8 )—(3.14)
can be rewritten as follows:

— & + EE‘ = Fis &os : (3.15)
a.‘ri
—an, + 22 = F,, 0, (3.16)
az:
ﬂy, ﬂ‘r.-l,
— = 2 Das 3.17
(a;; EPV AR - GID
olr=0, . ,” (3.18)

o3l =0, .(3.19)

(—%+Fmsﬁ)1 = LL In[l — cos(p — 3)]M‘1?

[ Fa xfg



126 HAN HOU-DE WU XIAQ-MNAN Vol. §

— 1%r.0) (3.20)
o ag
(— Buy Psinﬂ) -1 r n[1 — cos (p — 6)1Z22(re2@) 4o,
ﬁl" [ Ty [ E-;:
+ L B—-—}—"‘(;;; o), (3.21)
Ta

where Fy = Af,, Fz== Af;, and g = 6, =+ 51 are given,
Bz, Oz,

Let W™e(4),H"(Q,), and H*(T';) denote the usual Sobolev spaces with norms [+ [la,,.0 5
I - lmggsll = llaur,e Suppese (@) = {¢ € H'(Q)) v = 0}, and X = A'(Q) X H'(Q.),
M = HY0) with porms || - |lgsl - - Then the boundary value problem (3.15)—(3.21)
is equivalent to the following variational problem:

Find (w.p) € X > M, such that
alw.w) + alv.w) + s{w, ¢) = {F, w), vwe X, (3.22)
.E'(ﬂ, ‘?} - {g, ‘?}: NeeEM,

where
Hw,g) = — L (diverygdx,

ﬂ(u, w} - Sﬂ vl-'i - V'urld'z + Eﬂ vb’; - vﬂ."]ﬂl:y

aw, w) = [ [ 2L (ry,0) + Qsl128 4, (,,0)] 0t

| 1 1= s . . . Be(re, 8) Bari(ry, 0)
| Aty s

-%FE lal1 — cos (@ -E}Ja*’"—(ari‘—*il@%ﬂ dpdf
®

¥

. ([ 2 gﬁ_@ wn(rent) + 22020 4, 03t

il

= = N = N
s L{j cosnp Ovi(res @) dp - ] cos ng Oui(res 6) o
‘.:d' mia= ] n a aq:l h_ ﬂﬁ

- 3=
+ E sin ngp %‘?}— d --[n ﬂnﬂﬂ%:’ﬂzn‘ﬂ}, (3.24)
1¥I o4

(F, w) = ﬁ L- Fiwidr,

i=1
{E+G) = L gq9dx,

Obvicusly, a{w,w)} is a bilinear, continuous and ¥V -elliptic form on X X X, and &(w, g) is

a bilinear, continuous form on X X M. For a(o.w), we have

" Lemama 3.1. m{ll, I'-P) is a bilincar fﬂrm o X X X, and the faﬂnwfnj inrguul'j.ry

hold ‘
las(w, w) | < Cllo|lx|lwls, ¥o,we X, (3.25)
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where C is o positive constant,
Proof. For any v, we X, we know that #;, wy (i =1, 2) € A'(Q,). By the trace
theorem, we obtain w;lp, and wy|p, € H(T0): morcover,
Neil el r, = elleillig,» (3.26)
i.] Wiﬁr,‘.r.:.r:. T, = ¢:|H‘:|!;.s:u- (3-2?}
On the other harnd, for any function #(6) € H'Y(T,), let

1 =
o __5 (8) cos 1846,
{ o

Lo n=0,1,2, -,
B =+ L #(8) sin nfldd
Then
12).,..< <y > n(a + ) < lhliar, (3.28)
The conclusion follows from (3.24), (3.26)—(3.28). Furthermore, it is not difficult o show
alw,w) =0, Ywe X, (3.29)
Lemma 3.2. For any € M = H'(Q,), there is an element 0€ X, such that
dive — —p (3.30)
and
lolx = collp!y. (3.31)

Proof. Let |V = *':IJE X, dive = U}, and we denote by E the n:ﬂ:‘_ﬂgnnﬂ oc:m[r[r_ment
of ¥ in X for the sczlar product {gradw ,grade}. Thus dive & (X ;H'(Q,)). Let us show
that div i a one-to-onc mapping from V' onto H'(Q,). For any g€ H'(Q), we seck e X
such that dive = —p, As @, is bounded, there exists some function @ € H*(Q,), =nd

M = _P il'.l. .G{_
We set o, = gradf € (H'(Q,))%; then
d”"nl = _F:

and w,| € H'?(T') X H¥(T). Hence there exists w, € (H'(Q))* such that divev, = 0, and
w|r=w|;. Lav=p —w;then 2€X and dive = —p. So w is required, By the
Banich inverse optrator theorem, we know that the invermse of the div operator is a bounded
livear operator. Inequality (3.1) then follows immediately.

Lemma 3.3. There exists a constant § = 0, such thar

blw, q)
_su = s g€ M,
s olx Bliglus **q (3.32)
Proof. For any g€ M, there is an elememt pe X, satisfying
dive = —4g. |:'l'!]x = ﬁ':fll‘i'!.ru+
Therefore

b, q) kv, q) I[‘ﬂuu 1,
vt Jwle = lolx ol 0!



LN

128 HAN HOU-DE WU XJAQ=-NAN Vol.

Then inequality (3.32) is proved with 8 = L,
€q

By Lemmas 3.1, 3.3 and Theorem 4.1 in Chapter I of [4], we obtain

Theorem 3.1. Suppose Fe X', g€ M'. Then the variational problem (3.22)—(3.23)
has a wnique solution (v.pJEX X M,

§4. A Finrre Erement Arenoximamion of Propies (3.22)—(3.23)

In this section, we suppose T is a polygonal line for the sake of simplicity. Demain O,
is subdivided inte a finite number of triangles K and curved triangles E. Let 7, denote this
triangulation satisfying

e = (U x)u( U &)

EE Ty Ee oy
2° For each K€ .9 ,,K is a curved triangle with a curved side(as shown in Figure 2).
I° If Ke G, s a curved triangle with vertices a,, 83, a,, then triangle K awith vertices
fyy gy dy is contained in R Let £ denote the circum-
scribed circle of K. Then K is comained in §. Hence

y Q, = KU Rlca,
b‘l ! (lli-!’. ) (!LE'J" )
& 4% G, is a regular triangulation in the following

Scnsc:

Ty

There 1= a constant ¢ = 0, such that
pelhx <o, ¥K, Ke F,, (4.1)
Figure 2 where
diam{K},
he = {daam{.iz},
pr = the diameter of the circumscribed circle of K.

Let h = :aa:* {#g}. MNow we construct a finite dimensional subspace of X by quadratic
wisngular clements. For any clement K (or K)€ 575, the space Py (or Py) is Py(K) (or
P.(K)) and I consists of the values st the vertices and middle points of the straight sides as
shown in Figure 3.

Figure 3

Let 5* ={ve H'(Q), o|glr|g) is a quadratic polynomial, ME(K)e 7, and
v|r=0} Obviously, X, = 5% x 5% is a finite dimensional subspace of X. Suppose
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Mi={ge¢ M, 9|x(g|e) b a consant, ¥K(K)e 7},

Then M, is a finite dimensional subspace of M. Consider the following finite element appro-
ximation of problem (3.22)—(3.23):

Find (ﬂ* ,P*j € X, X M,, such that
al(oy ,w) + a(w,, w) + o(w, p,) = (F,w), Ywe X;, (4.2)

B, ,q) = (g:9), ¥qEM, (4.3)
The bilinear form 5(w;.q9) can be rewritten

”

B(srq) = — L* (divengis — | (aiver)gas

= b,(wy, q) + b:(0s, 7). (4.4)
We have
Lemma 4.1. There is an operaor H;: X — X, such that
by(o — M0,9,) =0, ¥g,€ My, € X, (4.5)
and
lo — Molly = ch™ |o|[x> (4.6)
(Mol < ch™*(olx (4.6)’

where € > 0 is o constant given in the proof.

A similar Jemma fer o convex polygonal domain it given in [4] (chapter T, Lemma
25). The domain £, in our problem is not convex. Hence this lemma can be understood
25 an extension of Lemwna 2.5 in [4] o the non—<onvex domain,

Proof. For any w = (v;sv;) € X, we take the orthogonal projection @0, of o on X; for
the scalar product of (ﬁil‘:ﬂ}}:t

Alwy, — v, 2,) = (V(w, —v), Vz,) =0, ¥5,€X,.
Then on cach element K(K), we define w; of X, by

vi(a;) = wy(a;), for 1 <i<3,
{j (g —w)dl =0, for 1 <; < <3,
!ﬁ'l‘f]

Let Hil" = Uy H;E E’(ngh). Ubviomly, Hﬁ# HﬁSEiEE (4’.5)- MNow we establish estimate
(4.6). Let

B = — U E Xy, B0 — Wy, (4.7)
Therefors

loslio, = [Walio, + |€alio, = |@]ig, + [€sls.0,.

Hence, we only nced to estimate |€g]s,p, A computation shows
lesllo, = CCa7%llelid o, + |elie) (4.8)

{(for the detail the reader can refer to the proof of Lemma 2.5 in chapter II of [4]). By
equality (4.7), we have

|ﬂ'[l.ﬂ.ﬁ§ [l-"[.n.a,.
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It remains to evaluate A7%[lellf o, We have
leildo, == Cesnes) == Ceislapi)y § == 1,2,

where g is the solution of the auxiliary problem:

—Ap; =iy L

?ilr =0, (4.9)

O | o o,

8n IR,
Let 8;,1 =< j = N, denote the vertices of I with &; being the interior angle of Q,. Furthermore,
supposc

¥ -— :qiu =/ 8,
LaiaN

Then we have 1/2 <71 <"1. By a regularity result of g; from Koadarév [14], see also [15],
we obtain

g E o @)y unwe(a,),

and

]ul"?’ilFJ-l-li‘, = fl!"-’!"m.ﬂ,r (4.10)
where 43 << p = —t <2, and § > 0 is 2 sufficiently small consant, Let & =

2—7
+ &
2
2(i —L). Then D-::s-':-l. By
o 2 z
ledlig, = {ers—Api) = (Ve s V) = (Ve sV — Vag)s ¥ 5, €54,

we have

i:i::i'[:i-i'g = |f;1t..r.'. |‘F‘I - ’l|=1n,1 oz, € 58,
By Theorem 3.1.6 in [16], we obtain
inf ]lPr — ] L@, = ™ i?.-l;.,-..p, = f-’*l"]!ﬂnn.n.-

5
It yiclds

fleiling, = eh* =l el g, (4.11)
Combining inequalities (4.8) and (4.11), we have

leylio, < ch™|eli,0,. (4.12)

Finally, we find
le — Mwlly =lo —oulls = clo— mll.ﬂ.
< ¢f !"A;hn, + |'|L.ﬂ.}
< ah*[olxs
and Imwlix < eb™*|lvlix.
Thus the proof 13 completed.
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Lemma 4.2. There exists a constant ¢, independent of h such thar

|6(p — Mw,q,) | = C:lﬁ*_'ﬁl’"x"?l]lur
NOE X, G4 6 My, (4.13)
Proof. By Lemma 4.1, we hawve

16Co — Mawag) | = [6:00 = Mws 4| = | [ [div (0 — Mo0) Jaus

= E H'“ [div(p — ITo)g, gdx
Bery

% > gl L,m |div(e — mw)dx|

Eexy

<c 2 |qaelio — Mw| glmess(R\K) 12

Ee E
Z)

= ¢ 2 lqullo— Mo ekt

Eery
=r z B2 o — el eligall.e

L TEN
=< ch"flo — Mollxllgalln
< A4 ol 94Iu.
Lemma 4.3, There exir tawo constants ho > 05 8% = 0, independent of h, such thar
for O = A = ks

sup b(wisds) = g*hcllqullus ¥aa€ My,
wie 00w,y

Proof. For an arbitrary g, € MyTM, there Is € X, such that
div o = —qy, [0l < o[ gallu.

Hence
BCwsy gx) - #(I,w,4,)
e B lwalx = aolx
_ bwagy) — 8w — Tw,q,)
4wl
= l9allie — eocsbi2lla, 14
ch™ |lgalli
= %K l|galln

with

i e O I

Ef]_ ’ zlf-'nﬂj
Finally, by Theorem 1.1 in Chapter IT of [4], we oixain the following error estimare:
Theorem 4.1. There exists a constant by = 0, mch that when 0 << h = B, problem

1} 74.F is a constant, and gu| % =dnE.
2) By incquality meas (B\EY=Sch's YEeFx.



132 5 . | H = ¥ (5] L

(4.2)—(4.3) har o unigue solution (0,.05) € Xy X M,, and

[

— p—
i
e

{101
[11]
[12]

[13]
[14]

[15]

[16]

”H‘— Ih,.lg = fl’-l_l{ inf [I' - wﬁ[[:“" inf ¢ — "?.ilh’}:
AEL ARE My

I = palbe < e _ink Lo —wullx +inf [ip — aullu,
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