文章编号: 1000-324X(2007)05-0859-05

油酸钠对油相法制备的 Fe₃O₄ 纳米粒子的表面改性研究

丁建芳,姜继森

(华东师范大学 物理系,纳米功能材料与器件应用研究中心,上海 200062)

摘要: 以常见的表面活性剂油酸钠作为表面改性剂, 通过油酸根离子中的脂肪烃链与高温油相法制备的 Fe₃O₄ 纳米粒子表面的亲油性基团之间的范德华力作用, 将分散在油相中的 Fe₃O₄ 纳米粒子转移到水相中. 研究了油酸 钠浓度、油相中 Fe₃O₄ 纳米粒子含量、pH 值及温度等条件对改性结果的影响; 用穆斯堡尔谱仪 (Mössbauer)、透射电镜 (TEM)、傅立叶红外光谱 (FT-IR)等方法对改性前后的样品进行了表征、结果表明:本方法可有效 地将油相法制备的 Fe₃O₄ 纳米粒子从油相中转移到水相.当油酸钠浓度为 3mmol/L 、 Fe₃O₄ 纳米粒子在正 已烷中浓度为 12.28mg·mL⁻¹、 pH 为 8.6 且温度为 60°C 时,转移率最高可达 86%, 改性后粒子在水相中的含量最高可达 10.5mg·mL⁻¹; 改性后磁性粒子在水相中含量较低时,能够稳定分散较长时间.

关 键 词:油酸钠; Fe₃O₄;纳米粒子;表面改性 **中图分类号**:O647 **文献标识码**:A

Surface Modification of Fe_3O_4 Nanoparticles Prepared in High Temperture Organic Solution by Sodium Oleate

DING Jian-Fang, JIANG Ji-Sen

(Department of Physics, Center for Functional Nanomaterials and Devices, East China Normal University, Shanghai 200062, China)

Abstract: Sodium oleate was used as surface modification agent to modify Fe_3O_4 nanoparticles prepared in high temperature organic solution. Fe_3O_4 nanoparticles were transferred from organic phase to aqueous solution by the van der Waals interaction between the long aliphatic chain of oleate anion and the hydrophobic groups in the surface of Fe_3O_4 nanoparticles. Effects of concentration of sodium oleate, pH and temperature on surface modification of Fe_3O_4 nanoparticles were investigated. Mössbauer spectroscopy, Transmission electron microscopy (TEM) and Fourier transform-infrared (FT-IR) spectroscopy were used to characterize samples before and after modification. The results show that the method is effective in transferring Fe_3O_4 nanoparticles from organic phase to aqueous solution. The ratio of Fe_3O_4 nanoparticles transferred from organic phase is as high as 86% and the content of transferred Fe_3O_4 nanoparticles in aqueous solution is $10.5 \text{mg} \cdot \text{mL}^{-1}$ on condition that the concertration of sodium oleate solution is 3mmol/L, the content of Fe_3O_4 nanoparticles in n-hexane is $12.28 \text{mg} \cdot \text{mL}^{-1}$, pH is 8.6,temperature is 60° C, respectively. The surface modified Fe_3O_4 nanoparticles with low concentration in aqueous solution can stably disperse in aqueous solution for a long time.

> 前景^[1-5].目前,采用油相法制备颗粒形状相同、 尺寸均一的单分散磁性纳米粒子的报道较多^[6],但 是利用该类方法制备的磁性纳米颗粒由于其表面

Key words: sodium oleate; Fe₃O₄; nanoparticles; surface modification

1 引言

磁性纳米粒子在生物医学方面有着良好的应用

收稿日期: 2006-08-25, 收到修改稿日期: 2007-02-10

作者简介: 丁建芳 (1981-), 女, 硕士研究生. 通讯联系人: 姜继森, 教授. E-mail:jsjiang@phy.ecnu.edu.cn

的亲油性而限制了其应用.因此对油相法制备出的 纳米粒子进行表面改性,将其从油相转移到水相中 是目前研究的一个热点. Wang Yong 等人^[7] 采用 α-环糊精溶液将以油相法制备的、以油酸作为稳定剂 的 γ -Fe₂O₃、Ag 纳米粒子从油相转移到水相; Jun Young-wook 等人^[8] 采用琥珀酸将从十六碳 (烷)二 醇中分解乙酰丙酮铁制备得到的 Fe₃O₄ 纳米粒子 从甲苯中转移到水中; Euliss Larken E 等人^[9]用 四甲基氢氧化铵以及柠檬酸钠实现了油相法制备 的 γ -Fe₂O₃ 粒子在水相中的稳定分散.以上几种改 性方法均是先在油相中制备好粒子,然后将其从油 相转移到水相. Li Zhen 等人^[10]选择具有较强极 性和较高沸点的 2- 吡咯烷酮作为溶剂和稳定剂直 接制备了亲水的纳米粒子. 油酸钠作为一种表面活 性剂经常作为分散剂使用,本工作报道了一种利用 油酸钠作为表面改性剂实现纳米粒子从油相转移 到水相中的新方法.

2 实验

2.1 高温油相法制备纳米 Fe_3O_4 粒子

参照文献 [11] 报道的方法, 在十八碳烯中高温 分解油酸铁, 制备出单分散的 Fe₃O₄ 纳米粒子. 将 5.4g 的 FeCl₃·6H₂O 和 10.8g 的油酸钠加入到 70mL 正己烷、 40mL 无水乙醇、 30mL 去离子水的混合 溶液中, 不断搅拌, 70°C 加热回流 4h, 制备得到红 棕色的油酸铁, 用 30mL 的去离子水洗涤三次, 烘 干. 干燥后的油酸铁加入到十八碳烯 (130mL) 和油 酸 (3.2mL) 的混合物中不断搅拌, 逐渐升温至 320°C 并保温 0.5h, 用无水乙醇将黑色的 Fe₃O₄ 纳米粒子 沉淀分离, 该 Fe₃O₄ 纳米粒子能够很好地分散在正 己烷、甲苯等有机溶剂中.

2.2 油酸钠对油相 Fe₃O₄ 纳米粒子的表面改性

配制一定浓度的油酸钠溶液,加入一定体积和 一定浓度的 Fe₃O₄ 正己烷悬浮液,机械搅拌 10h 后,上层油相层由褐色溶液变成无色,下层油酸钠 水溶液由无色逐渐转变成褐色.分液漏斗将下层水 相分离出来,高速离心机离心分离,得到较澄清的 褐色上层水溶液和黑色沉淀,黑色沉淀经 50°C 真 空干燥后用于各种表征.

2.2.1 不同浓度油酸钠的改性实验

配制浓度分别为 0.5 、 3 、 10mmol/L 油酸钠 溶液 15mL(其中所含油酸钠的量记为 m_0 mg), 各加 入相同体积的 12.28mg·mL⁻¹ 的 Fe₃O₄ 正己烷悬浮 液 (其中所含 Fe₃O₄ 的量记为 m_1 mg), 30°C 下搅 拌 10h, 将下层褐色水相离心分离得到黑色沉淀, 50°C 下真空干燥并称重 (沉淀物的量记为 m₂ mg). 磁性粒子的转移效率计算公式如下:

转移率 =
$$(m_2 - m_0)/m_1 \times 100\%$$
 (1)

2.2.2 不同含量磁性纳米粒子的改性实验

配制 15mL 3mmol/L 油酸钠溶液 (pH=10.0) 三 份,各加入相同体积的浓度分别为 5.34 、 12.28 、 20.81mg·mL⁻¹ 的 Fe₃O₄ 正己烷悬浮液, 30°C 下搅 拌 10h,下层水相离心分离得到黑色沉淀, 50°C 真 空干燥并称重,利用 (1) 式计算磁性粒子的转移效 率.

2.2.3 不同温度条件的改性实验

配制 15mL 3mmol/L 油酸钠溶液三份,各加入相同体积的 12.28mg·mL⁻¹的 Fe₃O₄ 正己烷悬浮液, 分别在 12、30、60°C 下机械搅拌 10h,将下层褐 色水相离心分离得到黑色沉淀, 50°C 下真空干燥 并称重,利用(1)式计算磁性粒子的转移效率.

2.2.4 不同 pH 值的改性实验

15mL 3mmol/L 油酸钠溶液 pH 分别调节至 2.6、 8.6, 加入相同体积的 12.28mg·mL⁻¹ 的 Fe₃O₄ 正己烷悬浮液, 60° C 下搅拌 10h, 下层水相离心分 离得到黑色沉淀, 50° C 真空干燥并称重, 利用 (1) 式计算磁性粒子的转移效率.

2.3 表征

样品的形貌由 JEM-100C 型透射电子显微镜 (TEM) 观测,样品的红外谱图 (FT-IR) 由型号为 Nexus 670 的傅立叶红外光谱仪测得,样品的晶相 采用德国 Wissel 公司制造的等加速驱动型穆斯堡 尔 (Mössbauer) 谱仪来表征.

3 结果和讨论

图 1 是高温油相法制备的磁性纳米粒子室温下的 Mössbauer 谱图. 该谱图采用两套六线谱拟合. 拟合参数见表 1, 表中参数与标准 Fe₃O₄ 的 Mössbauer 参数^[12] 接近,证明高温油相法制备的纳米颗粒晶相为 Fe₃O₄.

图 2 是改性前后样品分散状态的照片,其中图 2(a) 是改性前样品,上层是分散有 Fe₃O₄ 纳米粒子 的正己烷油相层 (浓度为 0.3mg·mL⁻¹),下层是油酸 钠水相层 (浓度为 5mmol/L);图 2(b) 为改性后的样 品,由于磁性纳米粒子浓度较低,所以磁性粒子几 乎完全转移到水相中,上层油相层变成近于无色透 明的液体,下层水相层变成半透明的褐色液体.对 改性后的水相层离心分离发现有黑色粒子沉降下

来,且黑色粒子在外磁场作用下有强的磁响应.以 上实验现象说明分散在油相中的 Fe₃O₄ 磁性纳米 粒子已转移并很好地分散到了油酸钠溶液中.

图 3(a)、3(b)分别是改性前后 Fe₃O₄纳米粒 子分散在正己烷和水溶液中的透射电镜照片.从图 3(a)上可以看出 Fe₃O₄纳米粒子在正己烷中的分散 性很好,粒子的尺寸在 15nm 左右,大多数粒子是 球形的,也出现了三角形、四边形等不规则形状, 具体原因尚待进一步研究.从图 3(b)照片看出粒 子改性后在水相中没有出现明显的团聚,分散性依 然很好,说明改性后粒子表面由亲油性转变为亲水 性,能够在水中很好地分散.

图 1 样品的 Mössbauer 谱图

Fig. 1 Mössbauer spectrum of a sample

room temperature

Fitted spectra	Hyperfine field $/A \cdot m^{-1}$	Isomer shift /mm·s ⁻¹	$\begin{array}{c} {\rm Quadrupole}\\ {\rm splitting}\\ /{\rm mm}{\cdot}{\rm s}^{-1} \end{array}$	e Line width /mm·s ⁻¹	Area /%
Sextet 1	$3.86{ imes}10^7$	0.39	0.00	0.29	54.6
Sextet 2	3.57×10^{7}	0.61	0.04	0.5	45.4

图 2 改性前 (a) 后 (b) 样品的照片 Fig. 2 Photos of samples (a) before modification, (b) after modification

图 4 是改性前后样品的红外光谱图,其中(a)为 高温油相法制备的 Fe₃O₄ 样品的红外光谱图, (b) 为改性后水相离心分离得到的 Fe₃O₄ 样品的红外光 谱图.图 4(a)、4(b)两谱线在 585.81、586.39cm⁻¹ 处 都出现了 Fe₃O₄ 特征吸收峰^[13], 说明油相正已烷和 水相中黑色磁性粒子均为 Fe₃O₄ 纳米粒子; 两谱线 上都有-CH₃、-CH₂^[14](在 2922, 2852 cm⁻¹ 等处)及 C=C^[14](1680~1620cm⁻¹, 1420cm⁻¹) 特征峰出现, 油相法制备 Fe₃O₄ 粒子是以十八碳烯作为反应溶 剂,因此在谱图 4(a) 上出现十八碳烯中 -CH₃、 -CH₂、C=C 基团的特征吸收峰,表明该方法制备 的 Fe₃O₄ 表面修饰有十八碳烯, 从而使其易于分散 在油相中;而图4(b)谱线除了出现-CH3-、-CH2-和 C=C 基团的特征吸收峰外,在 1560.49cm⁻¹ 处 出现了-COO的特征吸收峰^[13],和油酸钠中油酸 根的红外光谱吸收峰相对应,说明水相中的 Fe₃O₄ 纳米粒子表面上除了原有的十八碳烯外,还引入了 油酸根离子, 使得 Fe₃O₄ 纳米粒子表面由亲油性转 变成亲水性.

综合上述分析,可以认为十八碳烯作为反应溶 剂所制备的Fe₃O₄纳米粒子其表面被十八碳烯所修 饰,含有大量的亲油性的基团(-CH₃,-CH₂,C=C), 因此能够很好地分散在正己烷中.当加入油酸钠溶 液时,在强烈搅拌的条件下,Fe₃O₄纳米粒子表面

图 3 样品的 TEM 照片 Fig. 3 TEM images of samples (a) Fe₃O₄ dispersed in hexane before modification; (b) Fe₃O₄ dispersed in aqueous solution after modification

图 4 样品改性前 (a) 后 (b) 的红外谱图

Fig. 4 FT-IR spectra of samples (a) before modification, (b) after modification

图 5 Fe₃O₄ 样品改性示意图

Fig. 5 Schematic illustration of surface modification of Fe_3O_4 sample

的亲油性基团与油酸钠水溶液中油酸根离子的亲油 性脂肪烃链通过范德华作用力相互作用,在 Fe₃O₄ 纳米粒子表面包覆上油酸根离子 (见图 5),油酸根 中另一端亲水基团 -COO- 伸向水相,这样粒子表面从亲油性转变成亲水性,其在油相中的分散性变差,在水相中分散性变好,在不断搅拌的条件下, Fe₃O₄ 纳米粒子能够从油相转移到水相;且由于 -COO- 带负电,使得 Fe₃O₄ 磁性纳米粒子之间有静 电排斥作用而稳定悬浮在水中.

表2列出了不同改性条件下的改性结果. 2~ 6 组数据是 30°C 下,不同油酸钠及 Fe₃O₄ 浓度的 改性结果. 从 2 、 4 、 6 三组数据可以看出当油 酸钠浓度一定时 (3mmol/L), 随着 Fe₃O₄ 在油相中 含量的增加,转移到水相中的磁性粒子比例逐渐降 低,其中 Fe_3O_4 的浓度为 $5.34 mg \cdot mL^{-1}$ 时转移率达 到 70%, 但水相中磁性粒子含量偏低 (3.7mg·mL⁻¹), 磁响应较弱,改性后磁性粒子的应用受到影响; 从 3 、 4 、 5 三组数据看出当 Fe₃O₄ 在正己烷悬 浮液中的浓度(12.28mg·mL⁻¹)一定时,随着油酸 钠浓度的增加,转移到水相中的磁性粒子的比例 随之增加,但是在实验中观察到当油酸钠浓度为 10mmol/L 时, 改性后的磁性粒子在水相中有部分 沉降现象.因此,从 2~6 组数据可以看出,油酸钠 溶液浓度为 3mmol/L、 Fe₃O₄ 在正已烷悬浮液中 含量为12.28mg·mL⁻¹时,改性效果较好.1、4、 9 三组数据是油酸钠溶液浓度为 3mmol/L、 Fe₃O₄ 在正己烷悬浮液中含量为 12.28mg·mL⁻¹ 时,不同 实验温度 (12、30、60°C) 条件下改性结果, 随着 温度的升高,磁性粒子从油相转移到水相中的比例

Number	Temperature/°C	$C_1/\mathrm{mg}\cdot\mathrm{mL}^{-1}$	$C_2/\mathrm{mmol}\cdot\mathrm{L}^{-1}$	$_{\rm pH}$	R/%	$C_3/\mathrm{mg}\cdot\mathrm{mL}^{-1}$	$D/{ m d}$
1	12	12.28	3.0	10.0	44	5.4	14
2	30	5.34	3.0	10.0	70	3.7	
3	30	12.28	0.5	9.5	50	6.1	14
4	30	12.28	3.0	10.0	54	6.6	7
5	30	12.28	10.0	10.7	75	9.2	0
							(some sediments)
6	30	20.81	3.0	10.0	10	2.1	>30
7	60	12.28	3.0	2.6	61	7/5	1
8	60	12.28	3.0	8.6	86	10.5	0
							(some sediments)
9	60	12.28	3.0	10.0	69	8.5	1

		表 2	不同实验条件	下的改性结果				
Table 2	Results of	surface	modification	experiments	\mathbf{at}	different	conditio	\mathbf{ns}

 C_1 : The content of Fe₃O₄ nanoparticles in n-hexane; C_2 : The concentration of sodium oleate solution; C_3 : The content of modified Fe₃O₄ nanoparticles in aqueous solution; R: The percentage of Fe₃O₄ nanoparticles transferred from n-hexane to aqueous solution; D: The dispersive time of modified Fe₃O₄ nanoparticles in aqueous solution

不断增大. 表面活性剂油酸钠是两亲性物质, 温 度升高其在水中的溶解度增加, 与溶剂的亲和性 增强^[15],将磁性粒子转移到水相中的趋势增强,因 此 Fe₃O₄ 纳米粒子转移到水中的量也不断增大. 7、8、9三组数据是温度为60°C,由酸钠溶液浓 度为 3mmol/L、 Fe₃O₄ 在正己烷悬浮液中含量为 12.28mg·mL⁻¹时,不同 pH 值油酸钠溶液条件下的 改性结果. 与酸性条件相比, 碱性条件下磁性粒 子的转移率更高,这是由于油酸钠溶液在碱性条 件下含有更多的油酸根离子,能够从油相中转移 出更多的磁性粒子,因此碱性条件更有利于油酸 钠对 Fe₃O₄ 纳米粒子的表面改性. 实验还测得改性 后 Fe₃O₄ 粒子在水相中的等电点为 4.26, 当水相的 pH 值在中性到碱性范围内变化时, 磁性粒子表面 含有较多的负电荷,产生静电斥力作用使得 Fe₃O₄ 纳米粒子稳定地悬浮分散在水相中.

表 2 中最后一列数据是室温下改性后磁性粒 子在水相中分散稳定时间.随着改性后磁性粒子 在水相中含量的增加,粒子在水相中的分散稳定时 间缩短,分散稳定性逐渐降低.如:改性后粒子浓 度为 2.1mg·mL⁻¹时,粒子在水相中稳定分散 30d 未见沉降;当粒子浓度为 6.1mg·mL⁻¹时,其在水 相中稳定分散 14d 后发现少量粒子沉降;当粒子浓 度为 7.5mg·mL⁻¹时,在水相中稳定分散 1d 后有少 量粒子沉降;而当粒子浓度为 10.5mg·mL⁻¹时,改 性后水相中立刻有少量粒子沉降.这是因为随着 改性后磁性粒子在水相中含量的增大,粒子之间 碰撞频率增加,导致粒子在水相中稳定分散时间 变短,从而出现沉降现象.因此,从分散稳定性角 度考虑,改性后磁性粒子在水相中含量越低,分散 性越好.

4 结论

以廉价实用的油酸钠作为表面改性剂,将油相 法制备的 Fe₃O₄ 纳米粒子从油相中转移到水相.实 验结果表明:油酸钠溶液的浓度、Fe₃O₄ 纳米粒子 在正己烷溶液中的含量、温度及 pH 值对磁性粒子 转移率、改性后粒子在水相中的固含量及分散稳定 性均产生影响.油酸钠浓度为 3mmol/L 、Fe₃O₄ 纳 米粒子在正己烷中浓度为 12.28mg·mL⁻¹、 pH 为 8.6 且温度为 60°C 时, Fe₃O₄ 纳米粒子从正己烷 中转移到水相中的转移率最大为 86%,单位体积水 中分散的 Fe₃O₄ 纳米粒子为 10.5mg·mL⁻¹.改性后 磁性粒子在水相中的分散稳定性与其含量有关, 粒子在水相中含量低,稳定分散时间较长.

参考文献

- [1] Cui D X, Gao H J. Biotechnol. Prog., 2003, 19: 683-692.
- [2] Torchilin V P. Advanced Drug Delivery Reviews, 1995, 17: 75–101.
- [3] Devineni D, Blanton C D, Gallo J M. Bioconjugate Chem., 1995, 6: 203–210.
- [4] Taylor J I, Hust C D, Davies M J. J. Chromatogr A, 2000,
 890: 156–166.
- [5] Honda H, Kawabe A, Shinkai M, et al. J. Ferment Bioeng, 1998, 86 (2): 191–196.
- [6] 甘志锋,姜继森.化学进展, 2005, 17 (6): 978-986.
- [7] Wang Y, Wong J F, Teng X W. Nano Letters, 2003, 3
 (11): 1555–1559.
- [8] Jun Y W, Huh Y M, Choi J S. J. Am. Chem. Soc., 2005, 127: 5732–5733.
- [9] Euliss L E, Grancharov S G, Brien S O. Nano Letters,
 2003, 3 (11): 1489–1493.
- [10] Li Z, Chen H, Bao H B. Chemistry of Materials, 2004, 16
 (8): 1391–1393.
- [11] Park J, An K J, Hwang Y S. Nature Materials, 2004, 3: 891–895.
- [12] 马如璋,吴 兵,李玉璞.穆斯堡尔谱学手册.北京: 冶金 工业出版社, 1988.369.
- [13] 蒋新宇,周春山,张俊山.中南工业大学学报,2003,34
 (5):516-520.
- [14] 董庆年. 红外光谱法. 北京:石油化学工业出版社, 1977. 108-111.
- [15] 赵振国.吸附作用应用原理.北京:化学工业出版社, 2005.235.