文章编号: 1000-324X(2007)02-0373-04

真空紫外激发下 Pr³⁺ 掺杂的几种硼酸盐体系的低温光谱特性

符义兵¹,张国斌¹,吴文清¹,戚泽明¹,石军岩¹,施朝淑^{1,2}

(1. 中国科学技术大学 国家同步辐射实验室, 合肥 230029; 2. 中国科学技术大学 物理系, 合肥 230026)

摘 要: 研究了 SrB₄O₇:Pr³⁺, LaB₃O₆:Pr³⁺ 及 LaMgB₅O₁₀:Pr³⁺ 低温下的光谱. 从发射谱上看这三种发光材料都 可以产生光子级联发射,对照 Pr³⁺ 离子的能级图对各发射峰进行了指认.因为硼酸盐体系中较高的声子振动能 量导致了 ${}^{3}P_{0}$ 和 ${}^{1}D_{2}$ 能级间的无辐射弛豫,所以级联发射的第二步过程 ${}^{3}P_{0} \rightarrow {}^{3}H_{1}$ 发光非常微弱或基本没有. 在 LaB₃O₆ 及 LaMgB₅O₁₀ 的激发谱上除了 4f5d 吸收带外还观测到了 Pr³⁺ 离子的 $^{3}H_{4} \rightarrow {}^{1}S_{0}$ 跃迁,由此在这两 种材料中确定了 Pr^{3+} 离子的 ${}^{1}S_{0}$ 能级相对于最低的 4f5d 能级的位置.

关 键 词: 三价镨离子; 光子级联发射; 真空紫外激发; 低温光谱

中图分类号: 0433, 0482 文献标识码: A

Low Temperature Spectral Properties of Several Pr³⁺ Doped Borates under VUV Excitation

FU Yi-Bing¹, ZHANG Guo-Bin¹, WU Wen-Qing¹, QI Ze-Ming¹, SHI Jun-Yan¹, SHI Chao-Shu^{1,2}

(1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China; 2. Department of physics, University of Science and Technology of China, Hefei 230026, China)

Abstract: Low temperature spectra of SrB₄O₇:Pr³⁺, LaB₃O₆:Pr³⁺ and LaMgB₅O₁₀:Pr³⁺ were investigated by synchrotron radiation VUV light. Under VUV excitation, photon cascade emission was found in SrB_4O_7 : Pr^{3+} , LaB_3O_6 : Pr^{3+} and $LaMgB_5O_{10}$: Pr^{3+} . All peaks in emission spectra were assigned. Because high phonon energy in borates results in non-radiative relaxation between ${}^{3}P_{0}$ and ${}^{1}D_{2}$ states of Pr^{3+} , the second step emission ${}^{3}P_{0} \rightarrow {}^{3}H_{J}$ is very low in SrB₄O₇:Pr³⁺ and even is absent in LaB₃O₆:Pr³⁺ and $LaMgB_5O_{10}$: Pr^{3+} . In the excitation spectra of LaB_3O_6 : Pr^{3+} and $LaMgB_5O_{10}$: Pr^{3+} , along with the 4f5d absorption bands, a weak line due to ${}^{3}H_{4} \rightarrow {}^{1}S_{0}$ transition also was detected. From the position of ${}^{3}H_{4} \rightarrow {}^{0}S_{0}$ transition, the energy difference of ${}^{1}S_{0}$ state and the lowest 4f5d state was determined.

Key words Pr^{3+} ion; photon cascade emission; VUV excitation; low temperature spectra

1 引言

近年来由于无汞荧光灯及等离子平板显示的发 展,对真空紫外 (VUV) 激发下的发光材料提出了 新的要求,目前已知的发光材料在 VUV 激发下存 在能量转换效率低的问题,因而寻求 VUV 激发下 的高效发光材料就变得日益迫切. 提高发光效率的 --个有效途径是提高发光体的量子效率, 使之超过

100%. 即吸收一个高能光子发出两个或以上的可见 光子,这种现象被称为"量子剪裁 (Quantum Cutting)", "光子级联发射 (Photon Cascade Emission, PCE)"或"能量下转换 (Downconversion)".

由于其特殊的能级结构,随着所选基质的不同 Pr^{3+} 离子可以实现 $4f5d \rightarrow 4f^2$ 和 $4f^2 \rightarrow 4f^2$ 两种 发光过程.这主要取决于 Pr^{3+} 离子的 ${}^{1}S_{0}$ 能级相 对于 4f5d 能级的位置,当 Pr^{3+} 离子的 ${}^{1}S_{0}$ 能级位

收稿日期: 2006-04-20, 收到修改稿日期: 2006-06-05 基金项目: 国家自然科学基金 (10575099, 90201019) 作者简介: 符义兵 (1979-), 男, 博士研究生. 通讯联系人: 张国斌. E-mail: gbzhang@ustc.edu.cn

于 4f5d 能级内时, $4f5d \rightarrow 4f^2$ 发射将起主导作 用; 反之当 Pr^{3+} 离子的 ${}^{1}S_{0}$ 能级位于最低的 4f5d能级下时,将会出现 $4f^{2} \rightarrow 4f^{2}$ 发射,这时将发生 光子级联发射. Pr^{3+} 离子的光子级联发射过程可 用图 1 来说明, Pr^{3+} 离子吸收一个高能光子进入 了 4f5d 能级,之后无辐射的弛豫到 ${}^{1}S_{0}$ 能级,退 激发过程发射出两个低能光子.第一个光子来自 ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ 或 ${}^{1}S_{0} \rightarrow {}^{1}D_{2}$ 跃迁,之后 ${}^{3}P_{0} \rightarrow {}^{3}H_{J},{}^{3}F_{J}$ 或 ${}^{1}D_{2} \rightarrow {}^{3}H_{J}$ 跃迁发出第二个光子.最早被发现可 以产生光子级联发射的发光体是 YF3: $Pr^{3+[1,2]}$,之 后大量的 Pr^{3+} 离子掺杂的体系被证明可以产生光 子级联发射 $[{}^{3-13}]$.

稀土离子掺杂的硼酸盐特别是钇、镧、钆的 硼酸盐材料在 VUV 区有较强的吸收,在 VUV 激发下稀土离子掺杂的硼酸盐通常都有较高的 发光效率 $^{[14,15]}$,如商用的 PDP 红色荧光粉 (YGd)BO₃:Eu³⁺.本工作研究了 SrB₄O₇:Pr³⁺, LaB₃O₆:Pr³⁺及 LaMgB₅O₁₀:Pr³⁺ 低温下的光谱. 低温下这三种材料在 200~300nm 范围内的发射 光谱目前还没有详细报道,另在 LaB₃O₆:Pr³⁺和 LaMgB₅O₁₀:Pr³⁺的激发谱上观察到 Pr³⁺的³H₄ → $^{1}S_{0}$ 跃迁对应的谱线.

2 实验

样品 SrB₄O₇:Pr³⁺(SBO:Pr), LaB₃O₆:Pr³⁺(LBO: Pr)及LaMgB₅O₁₀:Pr³⁺(LMBO:Pr)均采用高温固相 法制备.所用原料为SrCO₃(分析纯), La₂O₃(99.99%), 4MgCO₃·Mg(OH)₂·5H₂O(分析纯), 硼酸 (分析纯)以 及 Pr₆O₁₁(99.99%).由于硼酸在高温下易挥发,称量 时过量 5mol%.Pr³⁺的掺杂浓度皆为 1mol%.按各 样品的化学组分准确称取上述药品并充分研磨后, 放入坩埚中于 CO 气氛中先 500°C 预烧 1h 再按所 需的温度烧结 8h 后即得实验样品,SrB4O7:Pr³⁺, LaB₃O₆:Pr³⁺及 LaMgB₅O₁₀:Pr³的烧结温度分别 为: 850、850及 1020°C.各样品的物相分析使 用北京大学制造的 BD2000型 X 射线衍射仪,结果 显示三个样品皆为纯相.样品的 VUV 区激发和发 射光谱在国家同步辐射实验室真空紫外光谱实验 站采集.实验所用的发射单色仪型号为 ARC-275, 发光信号用日本 Hamamatsu 公司的 H8259-01型光 子计数器采集,激发光谱用水扬酸钠的激发光谱做 了校正.

3 结果和讨论

图 2 为低温 (20K) 下 SBO:Pr, LBO:Pr 和 LMBO:Pr 在 VUV-185nm 激发下的发射光谱.由 图可见,这三种材料的发射谱比较类似,都表现为 一些尖锐的发射峰,它们来自 Pr³⁺的4 $f \rightarrow 4f$ 特 征发射.位于250、270、340和410nm左右的发射 峰分别对应于 ${}^{1}S_{0} \rightarrow {}^{3}F_{4}$ 、 ${}^{1}S_{0} \rightarrow {}^{1}G_{4}$ 、 ${}^{1}S_{0} \rightarrow {}^{1}D_{2}$ 和 ${}^{1}S_{0} \rightarrow {}^{1}I_{6}({}^{1}S_{0} \rightarrow {}^{3}P_{1})$ 跃迁.这些发射峰的出现 说明了在这三种材料中 Pr³⁺的 ${}^{1}S_{0}$ 能级都位于最 低的4f5d能级之下,从而发生了光子级联发射. 上述发射峰属于级联发射过程的第一步发射.图 3 是将200~260nm范围内的发射谱单独列出,从该 图上可以看到从 ${}^{1}S_{0}$ 到 ${}^{3}H_{J}$ 、 ${}^{3}F_{J}$ 的发射,各发射 峰对应的跃迁已在图中标出.

图 2 中位于 543 和 600nm 附近的发射峰属于级 联发射的第二步发射,其中 543nm 处的发射对应 于 ${}^{3}P_{0} \rightarrow {}^{3}H_{5}$,596nm 处的发射对应于 ${}^{3}P_{0} \rightarrow {}^{3}H_{6}$, 600~620nm 范围内的发射峰对应于 ${}^{1}D_{2} \rightarrow {}^{3}H_{4}$.表 1 中列出了各样品光子级联发射过程各发射峰的位 置及所对应的跃迁.

另外由图 2 可见在 LBO:Pr, LMBO:Pr 中没有观 察到 ${}^{3}P_{0} \rightarrow {}^{3}H_{J}$ 的发射峰, SBO:Pr 中虽然观察到 了 ${}^{3}P_{0} \rightarrow {}^{3}H_{5}$, ${}^{3}H_{6}$ 的发射但是强度上远弱于第一 步发射.这是由于在 SBO 、 LBO 及 LMBO 中到 达 ${}^{3}P_{0}$ 能级的电子多数通过多声子弛豫过程无辐射 的衰减到了 ${}^{1}D_{2}$ 能级. 多声子弛豫的几率可由 Van Dijk 和 Schuurmans 提出的公式得到 [16]:

 $W_{\rm nr} = \beta_{\rm el} \exp[-\alpha (\Delta E - 2h\omega_{\rm max})]$ (1) 式中 $\beta_{\rm el}$ 和 α 是与基质有关的常数, ΔE 是两能 级间的能量差, $h\omega_{max}$ 为最高的声子振动频率.对 于硼酸盐体系 $\beta_{el} = 16.8 \times 10^{7} \text{s}^{-1}$, $\alpha = 4.43 \times 10^{-3} \text{s}^{-1}$, ³ P_0 和 ¹ D_2 间的能量差为 $\Delta E \sim 3500 \text{cm}^{-1}$, SBO、 LBO 及 LMBO 中声子的振动能量 $h\omega_{max}$ 分别约为 $1200 \text{cm}^{-1[3]}$ 、1400 cm^{-1[7]}、1400 cm^{-1[8]}.由(1) 式可 得到在 SBO:Pr, LBO:Pr 及 LMBO:Pr 中 ³ P_0 和 ¹ D_2 间多声子弛豫的几率 $W_{nr} \sim 10^5 \sim 10^7 \text{s}^{-1}$,大于从 ³ P_0 能级向低能级的辐射衰减几率 $W_r \sim 10^5 \text{s}^{-1}$.又 SBO 中声子的振动能量 $h\omega_{max} \sim 1200 \text{cm}^{-1}$,所 以在 SBO:Pr 中观察到了微弱的 ³ $P_0 \rightarrow {}^{3}H_J$ 的发射 峰.这一点不同于 SrAl₁₂O₁₉:Pr³⁺ 材料,在 SrAl₁₂O₁₉ 中声子的振动能量 $h\omega_{max}$ 只有 700 cm⁻¹, ³ P_0 和 ¹ D_2 间多声子无辐射弛豫的几率比硼酸盐中要小几个 量级,所以在 SrAl₁₂O₁₉:Pr³⁺ 材料中观察到了较强

图 2 20K 下 SBO:Pr, LBO:Pr, LMBO:Pr 在 185nm 激发下的发射光谱图 Fig. 2 Emission spectra of SBO:Pr, LBO:Pr,

图 3 20K 下 SBO:Pr, LBO:Pr 和 LMBO:Pr 短波 段 (200~260nm) 的发射光谱图 Fig. 3 200-260nm range emission spectra of SBO:Pr, LBO:Pr and LMBO:Pr at 20K 的 ${}^{3}P_{0} \rightarrow {}^{3}H_{J}$ 的发射峰 (相对于从 ${}^{1}S_{0}$ 的发射)^[9].

图 4 为 20K 温度下在 SBO:Pr, LBO:Pr 及 LMBO:Pr 中监测 Pr³⁺ 的 ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ 发射的激发 光谱. 从激发谱上可以看出三个样品在 140~210nm 范围内都有较强的吸收,其中 160~210nm 范围内

表 1 各样品光子级联发射过程各发射峰的位置 及对应的跃迁

Table 1 Position and assignment of the emissions involved in PCE process

Transition		λ/nm		
		SBO:Pr	LBO:Pr	LMBO:Pr
${}^1S_0 \rightarrow {}^3H_4$		216	216	216
${}^1S_0 \rightarrow {}^3H_5$		227	227	227
${}^{1}S_{0}$	$\rightarrow^3 H_6$	236	237	237
${}^{1}S_{0}$ -	$\rightarrow^{3}H_{2,3}$	241	242	243
$^1S_0 ightarrow {}^3F_4$		251	253	254
$^1S_0 \rightarrow {}^1G_4$		271	275	275
1S_0	$\rightarrow {}^{1}D_{2}$	337	340	340
$^{1}S_{0}$	$\rightarrow {}^{1}I_{6}$)405	405	410
$^{3}P_{0}$	\rightarrow ³ H_5	543	/	/
$^{3}P_{0}$	$\rightarrow^{3}H_{6}$	596	/	/
1D_2	$\rightarrow^{3} H_{4}$	605, 615	602, 611	602, 607
$\left(\begin{array}{c} \text{SB0:Pr} \\ \text{LB0:Pr} \\ \text{LB0:Pr} \\ \text{LMB0:Pr} \\$				
Wavelength/nm				

图 4 20K 下 SBO:Pr, LBO:Pr 及 LMBO:Pr 中监 测 Pr³⁺ 的 ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ 发射的激发光谱图 Fig. 4 Excitation spectra of SBO:Pr, LBO:Pr and LMBO:Pr monitoring ${}^{1}S_{0} \rightarrow {}^{1}I_{6}$ emission of Pr³⁺ at 20K

的激发带对应着 Pr³⁺ 的 4f5d 吸收,由于晶场的作 用分裂为若干个子带.硼酸盐的基质吸收带一般在 150~170nm 左右,从图 4 的激发谱上可以看出在这 三个样品中,基质的吸收弱于 Pr³⁺ 的 4f5d 吸收, 这说明在 SBO:Pr 、 LBO:Pr 及 LMBO:Pr 中 Pr³⁺ 可以直接吸收 VUV 光子的能量而不需要来自基质 的能量传递.现在多数 VUV 激发下的硼酸盐发光 材料都是通过基质吸收激发光的能量,然后传递给 发光中心,这样的过程必然伴随着较多的能量损 失.如果通过发光中心直接有效地吸收 VUV 光子 的能量,那么将大大提高发光材料的发光效率.

从图 4 中还可以看出在 LBO:Pr 和 LMBO:Pr 中除了 Pr³⁺ 的 4*f*5*d* 吸收带外,在 214nm 处还 观察到了一个尖锐的激发峰,它对应着 Pr³⁺ 的 ³ $H_4 \rightarrow {}^{1}S_0$ 跃迁.由于 ${}^{3}H_4 \rightarrow {}^{1}S_0$ 跃迁是宇称选 择定则所禁止的,所以 ${}^{3}H_4 \rightarrow {}^{1}S_0$ 跃迁远弱于 4*f*5*d* 吸收. ${}^{3}H_4 \rightarrow {}^{1}S_0$ 跃迁多数情况下很难在激发 谱上观察到,如在 SBO:Pr 中就没有测到该跃迁. 文献中少数报道的也是在氟化物体系中 [^{5,6,17]}.由 激发谱中 ${}^{3}H_4 \rightarrow {}^{1}S_0$ 跃迁的位置, Pr³⁺ 的 ${}^{1}S_0$ 能 级在 LBO:Pr 和 LMBO:Pr 中的位置可以被确定为 46728cm⁻¹.图 4 中 LBO:Pr 和 LMBO:Pr 的激发谱 上 Pr³⁺ 的 4*f*5*d* 吸收分别起始于 206nm(48543cm⁻¹) 和 208nm(48076cm⁻¹),从而在 LBO:Pr 和 LMBO:Pr 中 Pr³⁺ 的 ${}^{1}S_0$ 能级和最低的 4*f*5*d* 能级间的能量差 可以被确定为 1815 和 1348cm⁻¹.

需要指出的是由于 Pr³⁺ 光子级联发射的第一个 光子处于不利于显示的紫光和紫外光波段,所以 单掺 Pr³⁺ 的光子级联发射材料并没有多少应用前 景,需要通过共掺其他离子将 Pr³⁺ 的第一步发光 转化为有利于人眼辨别的可见光. Mn²⁺ 就是一 个合适的离子,我们已经研究了 Pr³⁺ 和 Mn²⁺ 共 掺的 SBO 及 LMBO 中 Pr³⁺ →Mn²⁺ 的能量传递, 成功的将部分 Pr³⁺ 级联发射的第一步发光转化为 Mn²⁺ 的红光发射^[18],使得级联发射的两步过程都 处于便于人眼观察的可见光波段.

4 结论

测量了 SrB₄O₇:Pr³⁺、LaB₃O₆:Pr³⁺及 LaMgB₅-O₁₀:Pr³⁺低温下的发射光谱和激发光谱.从激发谱 上看在这三种材料中 Pr³⁺能够有效地吸收 VUV 光 子的能量而不需要来自基质的能量传递.在LaB₃O₆ 及LaMgB₅O₁₀的激发谱上观测到了Pr³⁺离子的 ³ $H_4 \rightarrow {}^{1}S_0$ 跃迁,从而在实验上确定了在这两 种材料中Pr³⁺离子的 ${}^{1}S_0$ 能级分别位于最低的 4f5d能级下1815和1348cm⁻¹.从发射谱上看, SrB₄O₇:Pr³⁺、LaB₃O₆:Pr³⁺及LaMgB₅O₁₀:Pr³⁺ 中都存在光子级联发射,但是第二步发射过程由 于硼酸盐体系中过高的声子振动能量导致的无辐 射弛豫过程而变得非常微弱.

参考文献

- Sommerdijk J L, Bril A, Jager A W. J. Lumin., 1974, 8: 341–343.
- [2] Pieper W W, de Luca J A, Ham F S. J. Lumin., 1974, 8: 344–348.
- [3] 杨 智,林建华,苏勉曾,等.化学学报, 2001, 59 (9): 1372-1375.
- [4] Sokolska I, Kuck S. Chem. Phys., 2001, 270 (2): 355-362.
- [5] Kuck S, Sokolska I. Chem. Phys. Lett., 2002, 364 (3-4): 273–278.
- [6] Kuck S, Sokolska I. J. Electrochem. Soc., 2002, 149 (2): J27–J30.
- [7] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1997, 144 (7): L190–L192.
- [8] Srivastava A M, Doughty D A, Beers W W. J. Electrochem. Soc., 1996, 143 (12): 4113–4116.
- [9] Srivastava A M, Beers W W. J. Lumin., 1997, 71 (4): 285– 290.
- [10] Kuck S, Sololska I, Henke M, et al. J. Lumin., 2003, 102
 (5): 176–181.
- [11] Makhov V N, Khaidukov N M, Lo D, et al. J. Lumin., 2003, **102** (5): 638–643.
- [12] Vink A, Dorenbos P, de Haas J, et al. J. Phys.: Condens. Matt., 2002, 14 (38): 8889–8899.
- [13] van der Kolk E, Dorenbos P, van Eijk C W E. Opt. Commun., 2001, 197 (4-6): 317–326.
- [14] 王育华,远腾忠,都云昆,等 (WANG Yu-Hua *et al*). 无机
 材料学报 (Journal of Inorganic Materials), 2004, 19 (4):
 772-778.
- [15] 刘晓瑭,石春山,庄国雄,等 (LIU Xiao-Tang *et al*). 无机 材料学报 (Journal of Inorganic Materials), 2005, **20 (2)**: 475-478.
- [16] van Dijk J M, Schuurmans M F. J. Chem. Phys., 1983, 78
 (9): 5317.
- [17] Kuck S, Sokolska I, Henke M, et al. Phys. Rev. B, 2005, 71 (16): 165112-1-15.
- [18] Chen Y H, Shi C S, Yan W Z, et al. Appl. Phys. Lett., 2006, 88 (6): 061906.1-3.