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ABSTRACT

Our bulk-visco-clastic theory is extended to the case, as recently discovered in ultrasonic absorption
mecasurements, in which there arc present more than one rclaxation times. This multi-relaxational
theory is applied to the study of acoustic dispersion phenomena. The bearing of our relaxational
theory in general on classical hydrodynamics is further examined. Iustrative calculations from
certain available experimental data are given and their indications discussed.

It scems now well accepted that the excessive absorption of sound in
fluids is due to relaxational molecular processes. A relaxational bulk-visco-
elastic theory, assuming a single relaxational process, has been glvcn by the
writer'. Certain ultrasonic experimental data on sound absorption”? have
shown the existence of more than one relaxation times for a single fluid-
substance. More than one relaxational molecular processes are, indeed, to be
expected in view of the existence of several vibration modes in the case of
a gas and of the possible existence of several ways of molecular rearrangement
in the case of a liquid. This fact necessitates an extension of our relaxational
theory previously given.

1. MULTI-RELAXATIONAL VISCO-ELASTIC THEORY

Assume the simultaneous existence of several components or alternative
molecular processes with different relaxation times 7,, 7., ..., 7;, .... Let
n;/n be the fractional occurrence of the 7th relaxational process. Then
> n;=n. Recollecting that the compressibility, B,, of a fluid e¢fement due

1

to a constant change of the applied pressure is composed of two parts, one, By,

1. Hoff Lu, Chinese J. Phys. T (1950), 365.
2. W. H. Pielemcier, Jour. Acous. Soc. Am. 15 (1943), 25
3. E. A, Alexander and J. D. Lambert, Proc. Roy. Soc, A, 179 (1942), 199,
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representing an instantaneous compression and another, B, representing a
relaxational compression due to volume viscosity, the time variation of relative

compression, s = — a V/V, may be represented by
with
ds; __ S0 — 8
= Beogr dt ﬁa e @

where s,=B, (p-p,) is the equilibrium value of s ultimately produced by a
constant pressure p =p(p). As before, we may formally arrive at (2) if
we define the ith coefficient of volume viscosity 7. by

“n (%),

where
(), =B oo s _ g
dt dt dt ® 4t

p is the mean dynamic pressure of hydrodynamics, being equivalent to a static
pressure p as far as the steady value of s is concerned, and pi=p’ (o) is an
effective dynamic pressure that determines the actual s; according to

& =B (pi— po) . )

Equation (2) shows a relaxation time

T = Bo s )

for the part of compressional strain depending on 7.
Since obviously

1. 1
S=;2”isi=;302ni(p:—ﬂ0)

§

=B (- Bl — ) = Bo ('~ 1)
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the effecuve dynamic pressure is
;1 )
po=— X, (6)
The overall volume viscosity 7. as defined by
5 = A)

1s, by (3) and (6),

7 = %;Zﬂnzz.-(

i (i) ®

2. DISPERSION AND ABSORPTION OF SOUND
Writing si=Cie a; X, iw (t — x/v,) =C, e iw (t — xv¥) ,

we have, for the practical case w>> a; v, approximately.

t',*2 T2 +.2 0w, 9)
and

ol = (b* + %u*)/ﬂ , (10

where k7 =1/8f is the complex bulk modulus and #* the complex shear
modulus. (2) yields

BY = B + —P— (11)

1 + I'ng; ’

while #* has been found' for two cases.

In the case of a gas or a more gas-like liquid, #*=/wn,and we find, by
comparing the real parts of (9) and (10),
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2.2
2 ] )80 + :Boo w 72‘. 17
N R Wl (123
o By + P, w1
Thus, there are as many sound velocities as there are relaxational processes
causing the volume viscosity. However, in the following limiting cases, these
velocities all merge into one, viz.,

as wrs's —> 0, v —> v, = 1/(o ) : (13)
as @Tu's —> 0, 0 —> 1 =10 B)¥; (14)
giving

P Bo=p1h B =1. (15)

The inflectional point of each dispersion curve, 3 versus log w, is found
to be at the frequency (w,); = B,/ Boo Tsi = v%/ 12 T

Comparing the imaginary parts of (9) and (10), we find

W 4 BB __ '
=g L3ty ] e

The experimentally measured coefficient of absorption is usually the intensity
coefficient per wave length, ie, 7 as defined in [ = [,e-72 = [ p=2a= 50 that
7 = 2Xa. Thus, we have

_ _ 4 B + B w2t B
Ti=7,;+7,=2 ol 7 - 9i ————— 1
mw Bl 37 BolBot Powtcl) 7 ﬁ,+ﬁww2r%] )

The observed absorption coefficient per wave length is
1
T = '; Z T, (18)

As on s =0, ToT=2ref [fat B S 0]0 a9

as wTy's —> 0, T —> 7Ty =2rw By [f% n+ B — ;*] 20
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The part of 7 due to 7. has its maximum value cqual to

7n; " - 2, o 7 Uy
L Mmar = Ty s = S 2D
n Tedme n T (B B 2 n " e v, (21
and at the frequency
, L \
((Om),‘ = (Bu/Bw)“//TZ,' = Uy /Z’o Tai (22)

These equations are found to be satisfactory in representing the observed
dispersion phenomena. An illustrative calculation of 7,;, Bo, and By, in the
case of dry COy, 1s given in ¥ 4.

For a more solid-like liquid, we had' p* = piwt, /(1 +iw7)), where 7. is
Maxwell’s relaxation time for the shearing process, i.c. Ti=mn/p. Likewise,
we may find the corresponding expressions for z; and 1, the results being
as follows:

1 <4 pw? Tl Bs + Bw 0?73
2 1 (4 ROy, P Pe @ty
v= o3 Tyt ﬁg+5~;mzr;,.>‘ (23)
L
As wt, —> 0,and w1, s — 0, v—> v, = 1/(p B ; 24
) 4 L -
as 0T —> O, andwTy’s —> 0, U U = [(/"oo + 3 y)/p]“ .25
- @ [4 1 BB ,
T 200 .['3 I+ o B L 0t n ] (26)
As wt, —> 0, and w1, s — 0,
— 4 B " .
T——)To~27rwﬁa[3m+ B, Z” 772,-], 27)
as w7, —> @, and w7y '’s —> 2,
_ 2B qA L B o 1
T e = [3 77:+Ba/32wzn vg,-]' (28)

0+ 3 uba)

There does not exist absorption data of solid-like liquids at frequencies
ncar the dispersion region to allow a test of these equations.
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3. ON THE GENERALIZED CLASSICAL HYDRODYNAMICS

Classical hydrodynamics has been generalized' to embody the effect of
7. by assuming

h = 2 ds. - 2 yds o dse
b—p'_(&+Sn.)((ﬂ)m—(m3,;,)Kdt o)

— a2 . db.

where 2 and 7: are Lamé’s type coefficients. The equation of motion then
becomes

00 —pf—vpt+(

dt gm+7iz)VV-v+rhv2,,+,725mvdn. (29)

dt

This equation differs in form from the classical equation first explicitly

given by Tisza® and also used by Eckart® merely in the presence of the extra
term g, 5wv—‘é—?. It is seen that Tisza’s hydrodynamics neglects the instant-
ancous  dilatational strain  and corresponds to the approximation
v ~-(ds | db)es implying that dse /dt <<(ds] dl)ys- We note that for
an incompressible fluld, v-» =0 and dp/dt =0, we have p’ = p and (29)
reduces to -

o ‘(f;;:pf— VitanVie,

so that the effect of 7. vanishes. Since hydrodynamics is ordinarily applied
to fluids that may be regarded as incompressible, we see why 7. remains
unnoticed for so long. We further note that in (29) the effect of any shear
modulus that may exist has been neglected. How this may be included
has been indicated by Frenkel’.

Classical hydrodynamics as here generalized according to (29) leads to!
the approximate expression

. a}2 i ,Br
a= o (3 mt qz) (30)

4. Tisza, L., Phys. Rev. 61 (1942), 531,
S. Eckart, C., Phys. Ree. 73 (1948), 68.
6. Frenkel, ., Kinetic Theory of Liguids (Clarendon Press, Oxford, 1946), 1V, 10, pp. 248-219.
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for the amplitude coeflicient of absorption at sufficiently low frequencies.
This is seen to be the same as the limiting form of our visco-elastic theory
for wr,> 0 and wr,’s > 0 with

1
N = ;; 2 i s . (31)

It 1s to be noted that the hydrodynamical equation involving 7. employed
by Tisza!, Eckart’, and others is the one obtained from (79) by dropping
the last term which represents the effect of instantaneous strain.  Such an
equation leads to the approximate expression

= 22 (fnen)

for sufhciently low frequencies. vComparing this with (16) and (26), we
see that

i 2i
ﬁ ﬁ Z 2 ﬁ)" +_B°° (‘DvT?‘ ’ (33>

or - ,3 Z " -2 for sufficiently low frequencics, plays the role of an eflective

volume v1sc051ty for such a hydrodynamical theory.

4. ILLUSTRATIVE CALCULATIONS

Results of calculations of the volume viscosity and the static and
instantaneous compressibilities from the observed maxima of sound absorp-
tion in the case of a single rclaxation time have been given elsewhere’ for
a number of polyatomic gases. It turns out that 7. is several thousand times
greater than 7 and that 8, = By /10.

Pielemeier* has shown that Fricke’s absorption curve for dry CO, at
23°C may be resolved into two components, one having its peak of 0.215
at 17 ke while the other having its peak of 0.043 at about 37 kc. Assuming
these values, let us calculate the two relaxation times and hence the two
coefficients of volume viscosity of dry CQ,. Since, practically, we have
(7/7) (1)) max = 0215 and (/1) (3,)max = 0043, we get (3,) oy = 0.258,
and #n,/n=5/6 and n,/n=1/6. By (21), we hnd vy lv,=1.042. Since

7. Hoft Lu, Jour. Acous. Soc. Am. 23 (1951). 12.



12 IOFF LU Vol. §

(wm)1 =272 X17X10° and  (wm)s = 27 X 37 X 10°, we have, by (22),
T =9.76 10 sccond and 72 =4.48>10" sccond. Taken from Handbook
of Chemistry and Physics, p=1.81 X107 gm/cm’, and 2,=268 m/scc, so that,
by (15), we get B,=7.69xX107 ecm*/dyne and B, =7.09x10" cm’/dyne, and,
by (5), (7:),=12.7 poises and (7:),=5.82 poiscs. At frequencies much below
those of the dispersion region (ie., for w<<(w);), we have, by (31), 7.==11.5
poises.

For liquids, r, is, in general, so small (~10"" sec) that the dispersion
region is usually at inaccessibly high frequencies.  As a result, only the
effective viscosity 5, B,/B, can be calculated from the observed attenuation
coefficient. The results” of such caleulations for a number of liquids have
shown that the value of 5, 8,/B, ranges from several to several ten times
greater than 7. Sensibly, the same values for 3, B./8, are obtained” from the
results® of Liebermann’s experiment on a hydrodynamical effect of the volume
VisCosity.

One case of Liebermann’s data is of interest. Ethyl formate
(HCOOC,Hs) is the only liquid that has its dispersion region fall in the
experimental range of frequencies in Licbermann’s experiment. Hence, for
this case, Liebermann’s #n’' /2 is

Using the first and last data, this formula yields », 8,/8,=2.3 poises and

B 7.=1.9271G7 poise-cm’/dyne. The theoretical curve thus given is drawn
in Fig. 1, the experimental points being also given (crossed) for comparison.
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8. L. N. Licbermann, Phys. Rev. 75 (1949), 1415,
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Taking B~ 110 “oem?/dyne, we have, for ethyl formate ar 174°C,

2000 poises, 7207 see, Bz Bs, and B=Lx10" cm’ dyne. Un-
fortunntcly, there are too few experimental points to enable us say anything
as to whether there exists an extra relaxation time that causes one of the
point go oft the theoretical curve considerably.

5. CONCLUDING REMARKS

We note that in all cases o which we have been able to caleulate B,
and By, it turns ot that B, < B, which means that s, <5, so the we expect
(ds/dt)e < dsg/dt and, hence, Tisza’'s simplifiecd type of  generalized
hydrodynamics will not be expected to apply i these cases, as 15 already
known from the observed dependence of sound attenuation on frequency.
However, for the more common fluids whose dispersion region is so remote
that no appreciable cffect of frequency 1s observable, Tisza’s type of equation
will be applicable, and for this case our theory would indicate that B, > B,

or B,=x0.



