鄂西地应力测量与隧道岩爆预测分析

肖本职,罗超文,刘元坤

(长江科学院,湖北武汉 430010)

摘要:国家重点工程宜昌—万州(以下简宜万)铁路穿越鄂西灰岩山区,形成了大量深埋隧道。为了对设计进行优化 并指导施工,在宜万铁路沿线进行了多个钻孔的水压致裂法地应力测量,并通过地应力实测资料进行岩爆及塑性 大变形分析预测。测试结果表明:鄂西灰岩山区具有中等偏高应力水平,最大水平主应力方向主要为近 EW 向。 基于实测应力结果,通过工程岩体分级标准判别法、Russenes 判别法、Turchaninov 判别法、Hoek 判别法等 4 种 判别方法进行预测,埋深较深的坚硬岩石隧道有岩爆发生的可能,而软岩隧道也有可能发生塑性大变形。在施工 过程中应采取合理的开挖方式及防爆安全措施,防止灾害发生。

关键词:岩石力学;水压致裂法;岩爆;大变形;铁路隧道;鄂西地区
 中图分类号:TD 311;TU 459⁺.4
 文献标识码:A
 文章编号:1000-6915(2005)24-4472-06

IN-SITU STRESS MEASUREMENT AND PREDICTION ANALYSIS OF TUNNEL ROCKBURST IN WEST HUBEI

XIAO Ben-zhi , LUO Chao-wen , LIU Yuan-kun (Yangtze River Scientific Research Institute , Wuhan 430010 , China)

Abstract :The national key project ,Yichang—Wanzhou Railway ,passes through the limestone mountainous area in west Hubei ; and many deep-seated tunnels are needed to construct. In order to optimize the design and guide construction , hydro-fracturing stress measurements have been conducted for many boreholes along Yichang— Wanzhou Railway tunnel line in west limestone mountainous area of Hubei Province. It can be concluded that the in-situ stress magnitude in this area is classified as middle to high level ; and the direction of the maximal horizontal stress is near to East-West. Based on the in-situ stress results and four distinguish methods , which are engineering rock quality classification standard , Russenes method , Turchaninov method and Hoek method ; rockbursts are predicted during tunnel construction in deep-seated and hard rock tunnel conditions ; and large deformation are predicted during tunnel construction in deep-seated and soft rock tunnel condition. In order to avoid the disadvantage conditions , reasonable excavation method and safety precautions should be adopted during tunnel construction.

Key words : rock mechanics ; hydro-fracturing method ; rockburst ; large deformation ; railway tunnel ; west area of Hubei Province

1 引 言

我国地形东高西低,西部多为山区、高原;东 部多为平原、丘陵。东部地区与西部地区的地应力 状态大不相同,东部地区地应力量值较低,而西部 地区地应力量值较高,是我国的高地应力地区^[1,2]。 在低地应力地区,岩爆发生频率很低,而在高地应 力地区,岩爆发生的频率很高,如果是软弱岩层, 在地下洞室成洞期间极易发生塑性大变形,甚至发

收稿日期: 2004-07-23; 修回日期: 2004-09-21

作者简介:肖本职(1966 –),男,1987 年毕业于重庆大学矿山工程物理专业,现任长江科学院岩基研究所高级工程师,主要从事岩石力学与工程方面的研究工作。E-mail:xiaobenzhi1@ sina.com,xiaobz@mail.crsri.cn。

生洞室坍塌、无法成洞等现象。

随着国家对西部地区投资的增加,许多国家重 点工程将穿越广大中原地区,如西气东输、西电东 送、交通干线建设等。那么,在中部及中西部接合 地区,尤其是中西结合部的山地区域的地应力状态 如何,这些地区有无岩爆问题,洞室施工过程中是 否会发生塑性大变形现象,这些问题便自然地成为 了工程设计人员关心的问题。

宜万铁路东起湖北宜昌,西接重庆万州,中间 穿越湖北恩施,是我国连接东西部地区的重要交通 干线——沿江铁路的最重要也是施工难度最大的一 段。宜万线在穿过鄂西山区时形成了大量隧道,其 中很多隧道的埋设都较深。

宜万铁路鄂西段有大量深埋隧道,埋深较深的 有堡镇隧道、八字岭隧道、野山关隧道、齐岳山隧 道等,这些隧道基本都位于湖北省恩施与宜昌境内。 本文以距离相对集中的堡镇隧道、八字岭隧道、野 山关隧道 3 个隧道的地应力实测资料为例进行分 析。

堡镇隧道位于湖北省长阳县贺家坪镇和榔坪镇 之间,东起陈家新屋,西至青岩沟,中间穿越堡镇, 全长11608m。进口路肩高程835.87m,地面高程 845m;出口路肩高程801.15m,地面高程810m, 隧道最大埋深630m^[3]。八字岭隧道东起榔坪镇的救 古坪河,西至巴东县木龙河,隧道全长5867m。进 口路肩高程617m;出口路肩高程690m,隧道所经 地形最大高程1360m,路肩高程665m,最大埋深 695m^[4]。野三关隧道位于巴东县野三关镇碗口河和 支井河之间,全长13846m,为宜万铁路全线最长 的隧道。进口位于白家坡二溪河一小溪沟陡崖,路 肩高程为757.54m,出口位于支井河,路肩高程为 815.12m,为宜万铁路的重要控制工程^[5]。

水压致裂法地应力测量原理^[6]是利用一对可膨 胀的橡胶封隔器,在预定的测试深度封隔一段钻 孔,然后泵入液体对这段钻孔施压,根据压裂过程 曲线的压力特征值计算地应力。鄂西山区地层岩性 主要为灰岩,岩溶发育强烈,水文地质条件复杂, 钻孔中长期水位一般都很低。由于钻孔内无水或水 位很低,橡胶封隔器的静水压力使封隔器无法正常 回缩,试验将无法进行。本次测试通过一种专门研 制的卸压装置,保证了试验的顺利完成。

2 区域地质概况及测孔情况

2.1 区域地质概况

2.1.1 地形地貌

工程区属构造剥蚀、侵蚀及溶蚀山区。基本地 形为台原山地和深切峡谷。地势北高南低,山顶高 程1100~1600 m,地势相对高差200~1000 m。 受区域内 NE 向和 EW 向构造影响,山脉一般沿 NE 向和 EW 向延伸。地形条件对区内岩溶发育起明显 的控制作用,岩溶发育总体呈深切峡谷型特征。

早第三纪以来,地壳整体间歇缓慢抬升,在相 对稳定的停滞期塑造了三级剥夷面,高程分别为 1500~1300m,1100~1000m和850~800m。 晚更新世以来,地壳抬升的速率和幅度加快、加大, 导致河流深切,溶蚀作用在垂向加强,地貌塑造和 岩溶水排泄基准滞后于侵蚀基准的下移速度,使得 测区内广大地带基本保持了高原形貌格局,而岩溶 暗河和大泉则普遍具有悬挂性质。

2.1.2 区域地质构造

工程区域外围主要发育有天阳坪、仙女山等区 域性大断裂或地区性断层,这些断裂均为 NNW 和 NW 向;同时在工程区域还存在着长阳复式背斜, 其轴线方位为近 EW 向。

2.2 测孔情况

在堡镇隧道、八字岭隧道、野山关隧道各布置 了一个水压致裂法测孔,对应测孔编号分别为:JZ– III⁷03-堡1、JZ–III⁷03–八3、JZ–III⁷03–野7。3 个测孔间的距离分别为:JZ–III⁷03–堡1孔至JZ– III⁷03–八3孔约2.8 km,JZ–III⁷03–公3孔至JZ– III⁷03–野7孔约18.1 km,3个测孔均为 ϕ 91 mm 孔。其他情况各不相同:JZ–III⁷03–八3孔的长期 水位在孔深469.00 m处,JZ–III⁷03–野7孔的长期 水位在孔深205.68 m处,而JZ–III⁷03–堡1孔基 本为满孔水,各孔详细资料详见表1。

3 地应力测试成果及分析

3.1 测试成果

由于八字岭隧道 JZ – III⁷03 – 八 3 孔、野山关隧 道 JZ – III⁷03 – 野 7 孔 2 个孔的水位很低,测试难度 较大,测试成功率较低。经过努力,堡镇隧道 JZ – III⁷03 – 堡 1 孔、八字岭隧道 JZ – III⁷03 – 八 3 孔、野 山关隧道 JZ – III⁷03 – 野 7 孔分别于 2003 年 4 月、 2003 年 10 ~ 11 月及 2003 年 11 月完成现场测试工 作,3 个测孔分别获得了 16 段、12 段和 10 段实测 资料,其地应力实测值见表 2。

3.2 测试成果分析

洞辺	隧道	기성		长期水位	ゴロ宣程	隧道/吸	测计量十	宁氏测	 	陇沽丰	4년기 田	IN HZ 测	
<u> </u>) 歴 垣 夕称	ブレ1エ /mm	孔深/m	(引空)/m	JL口同f王 /m	隧道(站 启) 查程/m	测山取八 。空度/m	モルズノ火川	吸表力问	随道在 向// 9	扣儿主 积城是	远场测	孔内岩性
调与	口小	/111111		(JL/木)/III	/111	/月/同作王/Ⅲ	/木皮/111	FXXX	LIJ (X¥ X+X X)	<u> </u> ц/()	1포1/エ 与	17/11/01	十 田 上 三 小
JZ - Ⅲ ⁷ 03 - 堡 1	堡镇隧道	91	497.80	0.00	1 302.70	865.50	479.58	16	3	90	DK103+ 297 右 8.0 m	2003 年 4月	主要为叶岩、粉 砂岩和灰岩。孔 深 455.52 m 以 上主要为叶岩 和粉砂岩,孔深 455.52 m 以下 至孔底为灰岩
JZ - Ⅲ ⁷ 03 - 八 3	八字岭 隧道	91	561.37	469.00	1 212.13	661.04	545.80	12	3	309	DK106+120.8 左 19.6 m	2003 年 10~11 月	灰岩,呈灰~深 灰色或灰~灰 白色,中厚层 状,隐晶质结 构,含方解石脉
JZ - Ⅲ ⁷ 03 - 野 7	野山关 隧道	91	468.80	205.68	1 298.00	838.42	458.15	10	3	279	DK124+225 左14.0 m	2003 年 11 月	上部为灰岩、炭 质灰岩或白云 质灰岩,447 m 以下至孔底为 泥岩

表1 3个测试孔基本资料统计表

Table 1 Basic information of three test boreholes

(1) 区域应力场特征

应力量值:从表1可知,JZ-III⁷03-堡1、JZ-III⁷03-八3、JZ-III⁷03-野7三个测孔处隧道洞身 段所对应的孔深分别为437,551及460m,其对应 的测点深度分别为435.98,545.8和458.15m。3个 隧道对应洞身段的最大水平主应力分别为15.96, 14.95及18.88 MPa,最小水平主应力分别为10.56, 8.06及10.68 MPa。按岩石的容重为26.5 kN/m³所 计算出的自重应力分别为11.55,14.46及12.15 MPa。

3 个测孔实测资料一致表明,洞身段的最大水 平主应力基本都在 15 MPa 以上,洞身段区域属于 中等偏高应力水平。

应力方位:3 个测孔所获得的最大水平主应力 方位分别为 N113 E~N123 E, N68 E~N81 E, N79 E~N91 E,总体来讲,属于近 EW 向。由于 受长江、清江等河流的纵向切割作用,该工程区域 的最大水平主应力方位主要由工程区域地质构造所 决定,局部受地形地貌及小型地质构造影响。3 个 测孔对应于洞身段的实测最大水平主应力方位分别 为(或最接近于)N123 E, N78 E 及 N91 E。

(2) 地应力场与隧道轴线布置

隧道轴线方向的设计选择主要受整个工程布置 情况及地质条件决定,但地应力方向对其有重要影 响。对应表1及上述成果,3个测孔对应洞身段最 大水平主应力方向与隧道轴线走向之间的关系见 表 3。

根据表 3, 堡镇隧道洞身段最大水平主应力方 向与隧道走向的夹角较小,地应力场对隧道稳定较 为有利。八字岭隧道洞身段最大水平主应力方向与 隧道走向的夹角偏大,地应力场对隧道稳定稍有不 利。野山关隧道洞身段最大水平主应力方向与隧道 走向的夹角很小,地应力场对隧道稳定很有利。

4 隧道施工期岩爆及大变形分析

4.1 岩爆分析

岩爆是高地应力地区岩石地下工程中的一种常见灾害,常常表现为片状剥落、严重片帮,有时伴 有声响及岩片弹射,能量猛烈释放,洞室突然破坏, 往往给人员、设备等带来巨大损失^[7,8]。

目前有关岩爆发生机理的研究方法很多,总 结起来,主要有强度理论、刚度理论、能量理论、 失稳理论等^[9]。

强度理论是从岩石强度的角度来探讨岩爆发生的机制。研究者认为,岩爆是应力达到岩石一定强度时产生的破坏^[10]。

岩爆一般是坚硬岩体在高应力状态下应力突然 释放所发生的脆性破裂现象,因此根据地应力评估 来预测岩爆是可能的。

强度理论中普遍应用的有工程岩体分级标准判 别法、Russenes 判别法、Turchaninov 判别法、Hoek

	Table 2	2 In-situ stress values of hydro-fracturing tests for three test boreholes					
隧道名称/测孔编号	测段序号	测段深度/m	最大水平主应力 $\sigma_{ m H}/MPa$	最小水平主应力 $\sigma_{ m h}/{ m MPa}$	最大水平主应力方位角/()		
	1	150.31	7.10	5.10			
	2	167.58	8.88	5.88			
	3	193.27	9.63	6.43			
	4	219.27	8.99	5.79			
	5	289.20	11.69	7.69	113		
	6	315.08	10.55	6.95			
	7	341.70	11.22	8.42			
堡镇隧道 /	8	359.06	14.19	8.99			
JZ – III_{03}^7 – 堡 1	9	376.24	15.36	9.76			
	10	384.74	14.05	9.25			
	11	401.90	13.22	9.22			
	12	418.78	14.99	9.79	123		
	13	435.98	15.96	10.56			
	14	461.03	20.41	12.81			
	15	469.03	21.09	13.09	120		
	16	479.58	21.70	13.30			
	1	59.20	1.48	0.99			
	2	73.00	1.86	1.33			
	3	86.10	2.32	1.26			
	4	100.40	4.21	2.80	68		
	5	302.80	10.16	5.53			
八字岭隧道/	6	446.30	13.43	7.06	81		
$JZ - III_{03}^7 - 1/3$	7	460.90	12.72	6.71			
	8	528.80	12.98	6.99			
	9	533.20	14.32	8.33			
	10	537.90	13.37	7.18			
	11	541.60	13.91	7.72	78		
	12	545.80	14.95	8.06			
	1	156.00	8.32	5.06			
	2	168.17	10.26	5.78	79		
	3	223.00	11.09	5.83			
	4	251.57	12.58	7.12			
野山关隧道	5	307.54	12.84	7.58	83		
JZ - III703 - 野 7	6	365.13	15.41	8.75			
	7	379.35	15.45	8.99			
	8	438.04	15.94	9.68			
	9	449.35	17.05	9.99	91		
	10	458 15	18 88	10.68			

表 2 3 个测孔水压致裂法地应力实测值

表 3 最大水平主应力方向与隧道轴线走向对应关系表

 Table 3
 Relationship between direction of maximum horizontal principal stress and tunnel axes direction

		洞身段最大	隧道	隧道走向与最
隧道名称	测孔编号	水平主应力	走向	大水平主应力
		方向/(%	/()	方向夹角/()
堡镇隧道	JZ-III ⁷ 03- 堡 1	123	90	33
八字岭隧道	$JZ - III_{03}^7 - // 3$	78	309	51
野山关隧道	JZ – III ⁷ 03 – 野 7	91	279	8

判别法等 4 种判别方法。当然 , 国内外研究者也还 提出了很多其他的方法^[11~13] , 但应用尚不普遍。

4.1.1 岩爆判别准则

(1) 工程岩体分级标准判别法

文[14]相对完整地考虑了这些地应力因素对地 下洞室的成洞性及影响,并评价地下洞室开挖过程 中发生岩爆的可能性。

(2) Russenes 岩爆判别法

Russenes 岩爆判别法是根据洞室的最大切向应 力 σ_{θ} 与岩石点荷载强度 I_s 的关系,建立了岩爆烈度 关系图。把点荷载 I_s 换算成岩石的单轴抗压强度 σ_c ,并根据岩爆烈度关系图判别是否有无岩爆发 生。其判别关系如下:

(3) Turchaninov 岩爆判别法

Turchaninov 岩爆判别法是根据科拉岛希宾地 块的矿井建设经验,提出了岩爆活动性由洞室切向 应力 σ_{θ} 和轴向应力 σ_{L} 之和与岩石单轴抗压强度 σ_{c} 之比值确定:

$$\begin{array}{cccc} (\sigma_{\theta} + \sigma_{\rm L}) / \sigma_{\rm c} & 0.3 & ({\rm {\cal T}} 岩 \mbox{${\cal B}$}) \\ 0.3 < (\sigma_{\theta} + \sigma_{\rm L}) / \sigma_{\rm c} & 0.5 & ({\rm {\cal f}} 岩 \mbox{${\cal B}$} \mbox{${\rm othered}$} \mbox{${\rm othered}$} \\ 0.5 < (\sigma_{\theta} + \sigma_{\rm L}) / \sigma_{\rm c} & 0.8 & ({\rm {\it f}} \mbox{${\rm cz}$} \mbox{${\rm dz}$} \mbox{${\rm dz}$} \mbox{${\rm dz}$} \mbox{${\rm dz}$} \\ (\sigma_{\theta} + \sigma_{\rm L}) / \sigma_{\rm c} > 0.8 & ({\rm {\it f}} \mbox{${\rm mz}$} \mbox{${\rm dz}$} \mbox{$$$

(4) Hoek 岩爆判别法

Hoek 等总结了南非采矿巷道围岩破坏的观测 结果,提出了对岩爆分级的判别式:

$$\sigma_{\theta} / \sigma_{c} = \begin{cases} 0.34 & (少量片帮) \\ 0.42 & (严重片帮) \\ 0.56 & (需重型支护) \\ 0.70 & (有严重岩爆) \end{cases}$$
(3)

4.1.2 判别条件

岩爆分析以圆形隧道为基础,以八字岭隧道

JZ – III⁷₀₃ – 八 3 孔(隧道洞室轴线方向为 309)为例 进行分析,该隧道高程的地应力实测资料和岩石室 内力学试验获得的力学参数见表 4。

表4 岩爆预测使用的应力参数

Table 4 Parameters for the rock-burst prediction

岩石 类别	最大埋 深/m	岩石单轴 抗压强度 <i>R</i> _c /MPa	轴向应力 _{<i>o</i>L/MPa}	横截面最 大切向应 力 $\sigma_{ heta}/MPa$	横截面最大 初始应力 σ_{max}/MPa	洞室轴 线方位 /()
灰岩	545.8	64.6	10.8	31.2	14.46	309

4.1.3 岩爆预测结果

根据上述岩爆判别准则及上述有关参数,八字 岭隧道岩爆预测结果见表 5。

表 5 岩爆预测分析结果

Table 5 Prediction results of rockburst

洞室轴线	判别方法						
方位/()	岩体分级标准 判别法	Russenes 岩爆判别法	Turchaninov 岩爆判别法	Hoek 岩爆判别法			
	4.00 < 4.47 <	0.30 < 0.48 <	0.50 < 0.65 <	0.42 < 0.48 <			
309	7.00	0.55	0.80	0.56			
	可能出现岩爆	有中岩爆	肯定有岩爆	严重片帮			

从表 5 可知,无论采用哪种判别方法,预测均 有岩爆发生。

4.2 软弱岩石区大变形分析

通常,岩爆都是发生在高应力状态下的坚硬脆 性岩体中,而对于高应力状态下的软弱岩体,发生 岩爆的可能性不大,但发生大变形的可能性极大。 堡镇隧道和野山关隧道将穿越页岩和粉砂岩、泥岩 区。根据文[3,5,14],其预测结果如表6所示。

表 6 隧道施工期发生塑性大变形预测结果

 Table 6
 Prediction results of large deformation during

		constr	uction period	l of the tunn	eling	
隧道 名称	岩石 类别	隧道 埋深 /m	横断面内 最大初始应力 <i>o</i> max/MPa	单轴饱和 抗压强度 <i>R</i> 。/MPa	$R_{\rm c}/\sigma_{\rm max}$	分析结果
野山关 隧道	泥岩	460	12.15	8.84 ~ 40.30	< 4	可能发生 大变形
堡镇 隧道	页岩	437	14.75	6.50 ~ 13.10	< 4	可能发生

从表 6 可知,堡镇隧道和野山关隧道开挖通过 软弱岩体时,有可能发生大变形现象。

5 结 论

影响岩爆的因素很多,除地应力影响因素外,

还有岩石性状、地质结构及开挖方式等其他因素。 在应用岩爆预测结论时应对多种影响因素加以考虑,应进行综合分析。通过对宜万铁路堡镇隧道 JZ-III⁷03-堡111、八字岭隧道JZ-III⁷03-八31、 野山关隧道JZ-III⁷03-野713个测孔的水压致裂 法地应力实测资料分析,以及通过地应力实测资料 进行的岩爆及软弱岩体大变形预测分析,可以得出 以下基本结论:

(1)该工程区域隧道洞身段属于中等偏高地应 力区,最大水平主应力为15~19 MPa,最小水平主 应力为8~11 MPa。

(2) 最大水平主应力方位总体为近 EW 向。3 个测孔对应洞身段的最大水平主应力方位分别为 (或最接近于)N123 E, N78 E, N91 E。测试区地应 力场主要受区域地质构造影响。

(3) 地应力场对隧道围岩稳定性的影响分别 为:堡镇隧道较有利;八字岭隧道稍有不利;野山 关隧道很有利。

(4) 3 个隧道都将穿过较坚硬的灰岩地区,洞室处于较高地应力水平区。根据预测分析,该区域 埋深在 400 m 以上灰岩区隧道发生岩爆的可能性较大,而堡镇隧道和野山关隧道还将穿过软弱岩层,隧道在穿过软弱岩层区时存在发生大变形的可能。

(5) 在隧道施工中需要强化围岩、改造岩性, 选择合理的开挖方式,并加强支护和对围岩进行监测,防止岩爆等灾害的发生。

参考文献(References):

- [1] 刘允芳,尹健民,刘元坤.新疆下阪地水利枢纽地应力测量与研究[J]. 岩石力学与工程学报,2004,23(2):242-246.(Liu Yunfang, Yin Jianmin, Liu Yuankun. Measurement and study on in-situ stress for Xiabandi hydraulic project, Xinjiang[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 242-246.(in Chinese))
- [2] 刘允芳. 岩体地应力与工程建设[M]. 武汉 湖北科学技术出版社,
 2000.(Liu Yunfang. Geostress of Rock Mass and Engineering Construction[M]. Wuhan: Hubei Science and Technology Press,
 2000.(in Chinese))
- [3] 刘元坤. 万宜铁路榔贺段隧道堡 1[#]孔水压致裂法地应力测量报告[R]. 武汉:长江科学院,2003. (Liu Yuankun. Report of hydraulic fracturing stress measurement for Yichang—Wanzhou railway in borehole Bao-#1 of Langhe Tunnel[R]. Wuhan: Yangtze River Scientific Research Institute, 2003. (in Chinese))
- [4] 肖本职,刘元坤. 宜万铁路八字岭隧道 JZ-III⁷03-八3孔水压致
 裂法地应力测量报告[R]. 武汉:长江科学院,2004. (Xiao Benzhi, Liu Yuankun. Report of hydraulic fracturing stress measurement for

Yichang—Wanzhou railway in $JZ - III_{03}^7 - Ba3$ borehole of Baziling Tunnel[R]. Wuhan :Yangtze River Scientific Research Institute ,2004. (in Chinese))

- [5] 罗超文,艾凯. 宜万铁路野山关隧道 JZ-III⁷03</sub>-野7孔水压致 裂法地应力测量报告[R]. 武汉:长江科学院,2004.(Luo Chaowen, Ai Kai. Report of hydraulic fracturing stress measurement for Yichang—Wanzhou railway in JZ - III⁷03 - Ye7 borehole of Yeshanguan Tunnel[R]. Wuhan: Yangtze River Scientific Research Institute, 2004. (in Chinese))
- [6] 李方全.地应力测量[J].岩石力学与工程学报,1985,4(1):95 111.(Li Fangquan. Geostress measurement[J]. Chinese Journal of Rock Mechanics and Engineering,1985,4(1):95-111.(in Chinese))
- [7] 尹健民,罗超文,艾 凯. 某隧道区地应力测量与岩爆分析[J]. 岩 土力学,2003,24(增 1):28-30.(Yin Jianmin, Luo Chaowen, Ai Kai. Geostress determination and rockburst analysis of an expressway tunnel[J]. Rock and Soil Mechanics, 2003,24(Supp.1): 28-30.(in Chinese)).
- [8] 刘元坤,罗超文,尹健民.西部地应力测量与岩爆分析[J]. 岩土力
 学,2003,24(増1):94-95.(Liu Yuankun, Luo Chaowen, Yin Jianmin. Geostress measurement and rockburst analysis in West China[J]. Rock and Soil Mechanics, 2003,24(Supp.1):94-95.(in Chinese))
- [9] 王元汉,李卧东,李启光,等. 岩爆预测的模糊数学综合评价方法[J]. 岩石力学与工程学报,1998,17(5):493-501.(Wang Yuanhan,Li Wodong,Li Qiguang, et al. The fuzzy method of colligate evaluation for rockburst prediction[J]. Chinese Journal of Rock Mechanics and Engineering, 1998,17(5):493-501.(in Chinese))
- [10] 李燕辉. 对岩爆问题的探讨[J]. 四川水力发电, 1990, (3): 24-29.(Li Yanhui. Discussion of the rockburst problems[J]. Sichuan Hydraulic Power, 1990, (3): 24-29.(in Chinese))
- [11] 肖尚斌,张艳君.蒲石河抽水蓄能电站地下厂房地应力特征及岩爆判别[J].东北水利水电,1996,14(7):14-16.(Xiao Shangbin, Zhang Yanjun. Geostress characteristic and rockburst distinguish for the underground house of Pushihe pumped-storage power station[J]. Water Resources and Hydropower of Northeast China, 1996,14(7):14-16.(in Chinese))
- [12] 王敏强,侯发亮.板状破坏的岩体岩爆判别的一种方法[J].岩土力
 学,1993,14(3):53-60.(Wang Minqiang, Hou Faliang. A method of rockburst distinguish for rockmass which are destroyed as plate[J].
 Rock and Soil Mechanics,1993,14(3):53-60.(in Chinese))
- [13] 宋 岳. 岩爆问题[J]. 天津地质学会志, 1991, 9(3):50-55.(Song Yue. Question of rockburst[J]. Tianjin Geological Institute, 1991, 9(3):50-55.(in Chinese))
- [14] 中华人民共和国国家标准编写组. 工程岩体分级标准(GB50218-94)[S]. 北京:中国计划出版社, 1994.(The National Standards Compilation Group of People's Republic of China. Standard for Engineering Classification of Rock Masses(GB50218 94)[S].
 Beijing: China Planning Press, 1994.(in Chinese))