自重湿陷性黄土地区合理桩长初探

李 晋^{1,2},谢永利¹,冯忠居¹

(1. 长安大学 公路学院,陕西 西安 710064;2. 山东理工大学 建筑工程学院,山东 淄博 255049)

摘要:考虑桩周土体及桩 – 土接触的非线性,建立了空间轴对称有限元模型;结合此模型提出了计算自重湿陷性 黄土地区合理桩长的方法——叠加法,得出了当中性点上、下土层摩擦力分布形式相同时,应增加的桩长与摩擦 力的分布形式无关,而只与极限摩擦力的大小有关的结论。运用此方法分析了自重湿陷性黄土湿陷特性对桩基承 载性状的影响规律,结果表明:在极限荷载时,中性点深度与桩长有关;湿陷系数对桩剩余承载力的影响是非线 性的;定量给出了中性点深度及应增加桩长的范围。

关键词:土力学;自重湿陷性黄土;合理桩长;仿真分析;叠加法
 中图分类号:TU 473.1⁺2
 文献标识码:A
 文章编号:1000-6915(2005)09-1629-06

STUDY OF THE PROPER PILE LENGTH IN THE SELF-WEIGHT COLLAPSIBLE LOESS

LI Jin^{1,2}, XIE Yong-li¹, FENG Zhong-ju¹

(1. College of Highway Engineering, Chang'an University, Xi'an 710064, China; 2. School of Construction Engineering, Shandong University of Technology, Zibo 255049, China)

Abstract : The spatial axisymmetric finite element model is established considering the nonlinear of the soil and the interface between pile and soil. Based on the model , a superposition method is proposed to calculate proper pile length in the self-weight collapsible loess , and it is concluded that , when the distribution of skin friction at the upper and lower parts of soil is of same pattern ,added pile length ΔL has no significant influence on distribution of skin friction , but it has on ultimate friction resistance. By this method , the influence of property of the self-weight collapsible loess on pile bearing performance is analyzed. It is observed that : (1) when pile is under ultimate capacity , the depth of neutral point is related to pile length , and (2) the influence of collapse coefficient on rest bearing capacity of pile is nonlinear , and (3) the quantitative range of the depth of neutral point and the added pile length is given.

Key words : soil mechanics ; self-weight collapsible loess ; proper pile length ; simulation analysis ; superposition method

1 引 言

自重湿陷性黄土对桩基产生负摩擦力的机理是 由于水的浸入、土的结构发生变化以及土体发生下 沉,使得部分桩侧湿陷土层下沉量大于桩身的下沉 量,则该下沉土层将对桩身产生向下的摩擦力,从 而增大桩所受的轴向荷载。下沉土层作用于桩身上 的这种向下的摩擦力通常称为负摩擦力,亦称负摩 阻力^[1~3]。负摩擦力的确定是一个比较复杂的问题。 目前,国内外在考虑湿陷性黄土区域桩基础的设计 与施工时,均是在考虑黄土的湿陷性后,加大桩的 设计长度,使大部分桩体位于非湿陷性黄土层上。 而关于合理桩长的确定方法,至今仍没有合理、完

收稿日期:2004-01-12;修回日期:2004-03-19

基金项目:交通部西部交通建设科技项目(2001 318 000 17)

作者简介:李 晋(1976 –), 男, 1998 年毕业于长安大学公路学院, 现为长安大学公路学院岩土与隧道工程研究所博士研究生, 主要从事基础工程方面的研究工作。E-mail:sdzblijin@163.com。

善的设计理论。黄土地区桩基础设计理论中因选用 设计参数不合理,使桩的埋深过大或过小,导致了 不必要的浪费或工程隐患。据统计,湿陷性黄土地 区桥梁结构基础中桩基础占90%以上。因此,研究 湿陷性黄土地区桥梁桩基承载性状及其合理埋深是 十分必要的。

从有限元模型建立来说,要求自重湿陷性黄土 产生湿陷变形并对桩产生向下的摩擦力,同时要求 下部未湿陷土体不发生变形,这就要求上部湿陷土 层单元节点力不传递到下部未湿陷土体上,这一力 学模型很难实现。可能正是因为这个原因,对于自 重湿陷性黄土引起的桩基负摩擦力的数值分析研究 还鲜见报道。本文利用数值仿真方法,结合近年来 在黄土地区进行的桩基现场试验资料,提出了一种 确定自重湿陷性黄土地区合理桩长的方法——叠加 法,并进一步分析了土的湿陷性参数对桩基承载性 状的影响。

2 计算模型的建立

本文采用 MARC 建模,计算模型包括几何模型 与材料模型。非线性分析通过荷载增量法并结合牛 顿-拉弗森平衡迭代实现。

2.1 几何模型

分析在竖向荷载作用下的单桩时,完全可以采 用空间轴对称模型来模拟其力学性状。其几何模型 如图1所示。

2.2 材料本构模型

有限元数值计算结果精度主要取决于本构模型 的合理性和计算参数的准确性。本文对桩周土体采 用弹塑性体^[4]分析。桩 – 土接触面采用 Coulomb 摩 擦^[5-8],摩擦系数则要根据桩、土的性质来确定。

3 数值仿真可靠性论证

本文利用数值仿真,并结合近年来黄土地区桩 基现场试验资料,分析研究自重湿陷性黄土对桩基 承载力的影响因素及负摩擦力的分布规律,从而给 出在自重湿陷性黄土地区合理桩长的确定方法^[2,9]。

3.1 分析方法——叠加法

为了简化模型,假定:自重湿陷性黄土湿陷变 形的变化规律近似按线性分布;湿陷土层与非湿陷 土层分界明显。主要思路为:

(1) 计算不同湿陷系数、厚度为 h₀ 的湿陷土层沿竖向的沉降量;

(2)通过未湿陷土体模型确定计算荷载 P₀,计 算不考虑湿陷土层作用时桩身的沉降量,并与得到 的土层沿竖向的沉降量相叠加,得到中性点深度 h₁;

(3) 计算中性点以上土层的负摩擦力 P_{-} 与正摩 擦力值 P_{+} ,如果把 P_{0} 看作未发生湿陷时桩的极限承 载力,当考虑湿陷土层负摩擦力作用时,所对应的 承载力 P_{1} 应该为 $P_{1} = P_{0} - P_{-} - P_{+}$;

 (4) 计算折减系数 n (n = (P₀ - P₁)/P₀), 然后计 算给出合理桩长。

该方法从力学模型上说是合理的,经分析确定

Fig.1 FEM model for single pile under vertical load

用该方法计算,但其缺陷是不能直接得到湿陷土层 对 *Q*-s曲线、轴力分布及摩擦力的影响规律曲线, 而且计算量比较大。

在计算土层的摩擦力时,存在一个摩擦力分布 规律的问题,下面分析其分布规律对设计增加桩长 的影响。在中性点深度 *h*₁内,有

(1) 负摩擦力合力为

$$P_{\rm f}' = \int_0^{h_{\rm I}} \tau_{-}(x) U {\rm d}x \tag{1}$$

(2) 正摩擦力合力为

$$P_{\rm f} = \int_0^{h_1} \tau_+(x) U dx$$
 (2)

(3) 应增加桩长 ΔL 范围内正摩擦力合力为

$$P_{\Delta L} = \int_{L}^{L+\Delta L} \tau_{\rm d}(x) U {\rm d}x \tag{3}$$

(4) 负摩擦力产生的承载力折减系数 n 为

$$n = (P_{\rm f}' + P_{\rm f}) / P_0 \tag{4}$$

式中: $\tau_{+}(x)$ 为 h_{1} 内极限正摩擦力, $\tau_{-}(x)$ 为 h_{1} 内极限负摩擦力, *U*为桩身截面周长, $\tau_{d}(x)$ 为原设计桩长以下 ΔL 内的极限正摩擦力。

中性点深度 h_1 由于湿陷失去的承载力将由 ΔL 来承担,假定增加 ΔL 桩长后,桩端阻力占总荷载的百分比不变,设为 β ,则有

$$(1 - \beta)nP_0 = P_{\Lambda L} \tag{5}$$

将式(1)~(4)代入式(5),可得
(1-
$$\beta$$
) $\int_{0}^{h_{1}} [\tau_{+}(x) + \tau_{-}(x)]Udx = \int_{L}^{L+\Delta L} \tau_{d}(x)Udx$ (6)

假设在中性点深度 h₁ 及增加桩长 ΔL 范围内土 性都不变,则这两段摩擦力的分布规律曲线都是一 次或二次函数,即只有一个极大值。因此,其摩擦力 的分布函数可表示为其极大值的一次函数,则式(6) 变为

$$(1 - \beta)(a_1\tau_1 + a_2\tau_2)h_1U = a_3\tau_3\Delta LU$$
(7)

即

$$\Delta L = \frac{(1 - \beta)(a_1 \tau_1 + a_2 \tau_2)h_1}{a_3 \tau_3}$$
(8)

如果两段的摩擦力分布函数相同,则 $a_1 = a_2 = a_3$,式(8)变为

$$\Delta L = \frac{(1 - \beta)(\tau_1 + \tau_2)h_1}{\tau_3}$$
(9)

可以证明摩擦力按矩形、三角形或椭圆形分布 时均满足式(9)。因此,应增加的桩长ΔL与摩擦力 的分布形式没有关系,而与极限摩擦力的大小有关, 只要知道极限摩擦力的值即可求出ΔL。对于一般黄 土中的摩擦桩,由于土自重应力作用,下层土的侧 摩擦力要大于上层土的侧摩擦力,负摩擦力是由于 土体变形引起的主动摩擦力,其值比桩运动所引起 的被动摩擦力即正摩擦力还要小。因此,把中性点 上、下土层的摩擦力分布形式看成相同是偏于安全 的,可以满足工程要求。

3.2 模型验证

仿真分析能否反映实际情况,模型的合理性是 相当重要的。首先对芝川河特大桥 5 合同段 1[#]桩(浸 水)及 2[#] 桩(未浸水)建立仿真模型,然后给出 Q-s关 系曲线图,并与模型计算结果进行了对比,结果如 图 2 所示。

由图 2 可以看出,1[#]桩浸水后的极限承载力对 应的沉降量为 5 mm 左右,2[#] 桩对应的沉降量为 7 mm 左右,且由图上可以判断出试桩仍未达到极限 值。通过对芝川河特大桥、洛川大桥桩基试验结果 及相关的试验资料综合分析研究后认为,黄土地区 公路桥梁桩基承载力的控制沉降量取 10 mm 左右较 合理。因此,计算中把桩顶沉降 10 mm 时对应的荷 载值作为桩的极限承载力,该荷载也就是计算中性 点位置的计算荷载 P₀。

3.3 算例分析

以芝川河特大桥 1[#] 桩为例进行分析。1[#]桩桩径 1.2 m, 桩长 35 m, 计算该桩在湿陷土层厚 5 m, 湿 陷系数 $\delta = 0.045$ 时应增加的桩长 ΔL 。 通过有限元计算确定该桩的计算荷载 $P_0 =$ 12 500 kN,利用 P_0 计算出其在湿陷土层厚 5 m,中 等自重湿陷时的中性点深度 $h_1 = 4.8$ m。中性点位置的确定方法如图 3,4 所示。

Fig.4 Determination of the neutral point with collapsible loess of 5 m thick

中性点深度 h_1 内极限正、负摩擦力取值分别为 15 和 45 kPa,应增加的桩长 ΔL 内极限正摩擦力为 100 kPa, $\beta = 7\%$,则

$$\Delta L = \frac{(1 - \beta)(\tau_1 + \tau_2)h_1}{\tau_3} = \frac{(1 - 0.07) \times (15 + 45) \times 4.8}{100} = 2.678 \text{ m}$$

4 计算成果分析

4.1 计算参数的选取

本文利用叠加法计算了在不同桩体参数和土性 参数下的合理桩长^[9~12]。计算参数如表1所示。

表 1 计算参数 Table 1 Parameters for calculation

参数名称	取 值		
土体弹模 Es / MPa	25		
土体粘聚力 c / kPa	30		
土体内摩擦角 $arphi/(eal$	27		
桩体弹模 Es / MPa	30		
桩体泊松比 μ	0.167		
桩长 L / m	15 , 35 , 60		
桩径 D / m	0.8 , 1.2 , 1.6 , 2.0		
湿陷系数 δ	0.015 , 0.025 , 0.045 , 0.085		
湿陷土层深度 h_0/m	5 , 10 , 15		
负摩擦力/ kPa	15		
正摩擦力/ kPa	45 ~ 100		

4.2 计算成果分析

4.2.1 湿陷系数 δ 对中性点的影响

设中性点深度 h_1 与湿陷土层深度 h_0 之比为 α ($\alpha = h_1/h_0$)。图 5 分别显示了桩径为 1.2 m, h_0 分别

图 5 不同桩长下的 δ - α 的关系曲线

为 5,10,15 m 时,湿陷系数 δ - α 的关系曲线。由 图 5 可以看出, α 随湿陷系数及湿陷土层深度的增 大而增大,说明湿陷系数越大,中性点深度与湿陷 土层深度越接近;而且桩长越长, α 值越大,因为 这些中性点位置都是在极限荷载下求得的,桩长越 长对应的极限荷载越大,桩身的压缩性就越大,故 其中性点位置就越靠下。表 2 给出了 α 随湿陷系数 δ 及湿陷土层深度 h_0 的变化表。

表 2 α 随湿陷系数 δ 及湿陷土层深度 h_0 的变化表

Table 2Variation of α with different collapse coefficient δ and collapse thickness h_0

湿陷土层深 度 <i>h</i> _/m	α			
	$\delta = 0.015$	$\delta = 0.025$	$\delta = 0.045$	$\delta = 0.085$
5	0.88	0.95	0.96	0.980
10	0.95 ~ 0.97	0.97	0.98 ~ 0.99	0.990
15	0.98	0.98	0.99	0.993

4.2.2 湿陷系数对 P_1/P_0 的影响

设 P₀为土层未湿陷时桩的极限承载力,P₁为土 层发生湿陷后桩的极限承载力,P₁/P₀则是在负摩擦 力作用下桩基剩余极限承载力与原极限承载力之 比,该值反映了负摩擦力对桩极限承载力的影响程 度。

图 6 为湿陷性土层深度为 10 m 时,不同桩长、 桩径对应的 P_1/P_0 与湿陷系数 δ 的关系曲线。由图 6 可以看出: P_1/P_0 随湿陷系数 δ 的增大而减小,说明 当桩体参数相同时, δ 越大,湿陷作用对桩的承载 力的折减就越明显;从弱湿陷性(δ = 0.015)到中等 湿陷性(δ = 0.045)时, P_1/P_0 随 δ 变化较明显,中等 湿陷性之后(δ > 0.045)则曲线变缓,说明 δ > 0.045 时, δ 的变化对 P_1/P_0 值的影响已不再显著,由此说 明 δ 对桩剩余承载力的影响是非线性的。

4.2.3 $\Delta L \subseteq h_0$ 的关系及影响因素

为了考察 ΔL 与 h_0 的关系及其影响因素, 设 ΔL 与 h_0 之比为 m, 即 $m = \Delta L / h_0$ 。

图 6 不同桩长、桩径对应的 P_1/P_0 与湿陷系数 δ 关系曲线 Fig.6 Relation curves of P_1/P_0 and collapse coefficient δ under different pile lengths and diameters

图 7 为在桩顶与桩端摩擦力分布相同时所计算 的 *m* 值与桩径 *D* 和湿陷系数 δ 的关系曲线。由图 7 可以看出,*m* 值随湿陷系数的增大而增大,随桩径 的增大而逐渐减小,说明湿陷系数越大,需增加的 桩长 Δ*L* 越大;桩径越大,需增加的桩长 Δ*L* 就越小。 对比图 7(a)~(c)可发现,当桩顶与桩端摩擦力分布

图 7 m 值与桩径 D 和湿陷系数 δ 的关系曲线

Fig.7 Relations curves of m, pile diameter D and collapse coefficient δ

相同时, m 值为 0.410~0.570。

5 结 论

(1)提出了一种计算湿陷性黄土地区合理桩长的计算方法——叠加法,运用该法计算了不同桩、 土参数下的合理桩长;得出了当中性点上、下土层 摩擦力分布规律一致时,应增加的桩长与摩擦力的 分布形式没有关系,只与极限摩擦力的大小有关。

(2) 中性点深度 h₁ 与湿陷土层深度 h₀ 之比 α
 (α = h₁/h₀)随湿陷系数的增大而增大,随桩长的增大
 而增大,其取值范围为 0.860 ~ 0.993。

(3) 从弱湿陷性(δ = 0.015)到中等湿陷性(δ = 0.045)时, P_1/P_0 随湿陷系数 δ 变化较明显;中等湿陷性之后(δ > 0.045)则曲线变缓,说明 δ > 0.045 时, δ 的变化对 P_1/P_0 值的影响已不再显著。

(4) 桩位于湿陷土层范围内的部分与应增加的 桩长的桩侧摩擦力分布规律相同时,应增加的桩长 与湿陷土层深度之比m的变化范围为0.410~0.570。

参考文献(References):

- 胡人礼. 桥梁桩基础分析和设计[M]. 北京:中国铁道出版社,1987.
 (Hu Renli. Analysis and Design of Bridge Pile Foundation[M]. Beijing: China Railway Publishing House, 1987.(in Chinese))
- [2] 林天健,熊厚金,王利群. 桩基础设计指南[M]. 北京:中国建筑 工业出版社,1999.(Lin Tianjian,Xiong Houjin,Wang Liqun. Design

Manual of Pile Foundation[M]. Beijing : China Architecture and Building Press, 1999.(in Chinese))

- [3] Wong K S , Tech C I. Negative skin friction on piles in layered soil deposits[J]. Geotech. Eng. , 1995 , 121(6) : 457 – 465.
- [4] 龚晓南.土塑性力学[M].杭州:浙江大学出版社,1997.(Gong Xiaonan. Soil Plasticity Theory[M]. Hangzhou: Zhejiang University Press, 1997.(in Chinese))
- [5] MARC Analysis Research Corporation. Theory and user information, version K7[R]. [s. 1.]: MARC Analysis Research Corporation, 1997.
- [6] 许 斌,王大通,高大钊.群桩沉降计算中接触单元模型应用的 若干问题[J].同济大学学报,1998,26(2):149-152.(Xu bin,Wang Datong, Gao Dazhao. Some problems in application of contact element in settlement checking of the group pile[J]. Journal of Tongji University, 1998, 26(2): 149-152.(in Chinese))
- [7] 施健勇,赵维炳,周春儿. 钢桩负摩擦分析[J]. 岩土工程学报, 1995,17(3):53-59.(Shi Jianyong, Zhao Weibing, Zhou Chuner. Analysis of negative skin friction on a steel pile[J]. Chinese Journal of Geotechnical Engineering, 1995,17(3):53-59.(in Chinese))
- [8] 陈福全,龚晓南,马时东. 桩的负摩阻力现场试验及三维有限元 分析[J]. 建筑结构学报,2000,21(3):77-80.(Chen Fuquan,Gong Xiaonan, Ma Shidong. In-situ test and finite element analysis of negative skin friction on piles[J]. Journal of Building Structures, 2000,21(3):77-80.(in Chinese))
- [9] 李 晋,冯忠居,谢永利.大直径空心桩承载性状仿真分析[J].长 安大学学报(自然科学版),2004,24(4):36-39.(Li Jin, Feng Zhongju, Xie Yongli. Numerical emulation of large diameter hollow pile bearing performance[J]. Journal of Chang'an University (Natural Science Edition),2004,24(4):36-39.(in Chinese))
- [10] 刘祖典. 黄土力学与工程[M]. 西安:陕西科学技术出版社,
 1999.(Liu Zudian. Mechanics and Engineering of Loess[M]. Xi'an:
 Shanxi Science and Technology Press, 1999.(in Chinese))
- [11] 中华人民共和国国家标准编写组. 湿陷性黄土地区建筑规范 (GBJ25 - 90)[S]. 北京:中国计划出版社, 1991.(The National Standard Compilation Group of People's Republic of China. Building Code for Collapse Loess Area(GBJ25 - 90)[S]. Beijing: China Planning Press, 1991.(in Chinese))
- [12] 长安大学公路学院岩土与隧道研究所. 湿陷性黄土地区合理桩长研究[R]. 西安:长安大学公路学院岩土与隧道研究所,2003. (Research Institute of Geotechnical and Tunnel, Highway College of Chang'an University. Study on the proper pile length in the self-weight collapse loess[R]. Xi'an : Research Institute of Geotechnical and Tunnel, Highway College of Chang'an University, 2003.(in Chinese))