上海大学学报(自然科学版)

Journal of Shanghai University (Natural Science Edition)

首页 | 期刊介绍 | 编委会 | 投稿指南 | 期刊订阅 | 下载中心 | 联系我们 | 常见问题 | English Version

上海大学学报(自然科学版) » 2013, Vol. 19 » Issue (4): 429-436 DOI:

环境与化学工程

最新目录 | 下期目录 | 过刊浏览 | 高级检索

<< Previous Articles | Next Articles >>

水环境中双酚A污染及其对鱼类的毒性研究进展

许海1,2, 杨明1, 吴明红1

(1. 上海大学环境与化学工程学院, 上海200444; 2. 江苏大学环境学院, 江苏镇江212013)

Bisphenol A in the Aquatic Environment and Its Toxic Effects on FishXU

XU Hai1,2, YANG Ming1, WU Ming-hong1

- 摘要
- 参考文献
- 相关文章

Download: PDF (858KB) HTML (1KB) Export: BibTeX or EndNote (RIS) Supporting Info

摘要 双酚A(bisphenol A, BPA) 是公认的环境内分泌干扰物,广泛存在于水环境中,并对水生态系统的安全造成潜在威胁. 结合BPA 污染和毒理学的相关研究成果,综述了BPA 在不同水体中的污染现状,及其对鱼类的内分泌干扰作用、生殖毒性、免疫毒性和发育神经毒性. 在此基础上,进一步指出了研究BPA 的重要性和今后的研究 方向

关键词: 双酚A 内分泌干扰 免疫毒性 神经毒性 毒理学

Abstract: Bisphenol A (BPA) is a well-known endocrine-disrupting chemical present in aquatic environments, and has a potential threat on the aquatic ecosystem safety. Based on the studies, this paper reviews the literature concerning contamination status of BPA in various water bodies and its endocrine-disruptive, reproductive, immunological and neurotoxic effects on fish, shows the importance of the BPA study and suggests directions of the future research.

Keywords: bispehnol A (BPA), endocrine disruption, immunotoxicity, neurotoxicity, toxicology

Service

- ▶ 把本文推荐给朋友
- ▶ 加入我的书架
- ▶ 加入引用管理器
- ▶ Email Alert
- **▶** RSS

作者相关文章

基金资助:

国家自然科学基金资助项目(31100376, 11025526, 41173120)

作者简介:杨明(1979—),女, 副研究员, 博士, 研究方向为生态毒理学. E-mail: mingyang@shu.edu.cn

引用本文:

.水环境中双酚A污染及其对鱼类的毒性研究进展[J] 上海大学学报(自然科学版), 2013,V19(4): 429-436

.Bisphenol A in the Aquatic Environment and Its Toxic Effects on FishXU[J] J.Shanghai University (Natural Science Edition), 2013,V19(4): 429-436 链接本文:

http://www.journal.shu.edu.cn//CN/ 或 http://www.journal.shu.edu.cn//CN/Y2013/V19/I4/429

- [1] Burridge E. Chemical profile: bisphenol A [N/OL].
- [2] /13/9162868/Chemical-profile-bisphenol-A.html.
- [3] 肖云波,于海琴.双酚A在环境中迁移转化的研究进
- [4] 山西建筑, 2007, 33(6): 180-182.
- [5] 张想竹, 侯绍刚, 吴明书. 双酚A 的环境行为研究进
- [6] 安阳工学院学报, 2006, 20(2): 10-17.
- [7] 邓红梅, 梁春营, 陈永亨. 水环境中双酚A的污染及其生
- [8] Fuerhacker M. Bisphenol A emission factors from
- [9] industrial sources and elimination rates in a sewage
- [10] treatment plant [J]. Water Science and Technology,

[11]	03, 47(10): 117-122.
[12]	Yamamoto T, Yasuhara A, Shiraishi H, et al.
[13]	Bisphenol A in hazardous waste landfill leachates [J].
[14]	Chemosphere, 2001, 42(4): 415-418.
[15]	Zha J, Wang Z. Acute and early life stage toxicity
[16]	of industrial effluent on Japanese medaka (Oryzias
[17]	latipes) [J]. Science of the Total Environment, 2006,
[18]	7(1/2/3): 112-119.
[19]	Le H H, Carlson E M, Chua J P, et al. Bisphenol
[20]	A is released from polycarbonate drinking bottles and
[21]	mimics the neurotoxic actions of estrogen in developing
[22]	cerebellar neurons [J]. Toxicology Letters, 2008,
[23]	6(2): 149-156.
[24]	Jin X, Jiang G, Huang G, et al. Determination
[25]	of 4-tert-octylphenol, 4-nonylphenol and bisphenol A
[26]	in surface waters from the Haihe River in Tianjin by
[27]	gas chromatography-mass spectrometry with selected
[28]	ion monitoring [J]. Chemosphere, 2004, 56(11): 1113-
[29]	1119.
[30]	Peng X Z, Yu Y J, Tang C M, et al. Occurrence of
[31]	steroid estrogens, endocrine-disrupting phenols, and
[32]	acid pharmaceutical residues in urban riverine water
[33]	of the Pearl River Delta, South China [J]. Science of
[34]	the Total Environment, 2008, 397(1/2/3): 158-166.
[35]	Gong J, Ran Y, Chen D Y, et al. Occurrence and
[36]	environmental risk of endocrine-disrupting chemicals
[37]	in surface waters of the Pearl River, South China [J].
[38]	Environmental Monitoring and Assessment, 2009,
[39]	6(1/2/3/4): 199-210.
[40]	Xue X, Wu F, Zhang X, et al. Occurrence of
[41]	endocrine disrupting compounds in rivers and lakes
[42]	of Wuhan city, China [J]. Fresenius Environmental
[43]	Bulletin, 2008, 17(2): 203-210.
[44]	Yang F X, Xu Y, Pfister G, et al. Nonylphenol,
[45]	bisphenol-A and DDTs in Lake Donghu, China [J].
[46]	Fresenius Environmental Bulletin, 2005, 14(3): 173-
[47]	180.
[48]	Fu M, Li Z, Gao H. Distribution characteristics of
[49]	nonylphenol in Jiaozhou Bay of Qingdao and its adjacent
[50]	rivers [J]. Chemosphere, 2007, 69(7): 1009-1016.
[51]	Gong J, Ran Y, Chen D Y, et al. Occurrence of
[52]	endocrine-disrupting chemicals in riverine sediments
[53]	from the Pearl River Delta, China [J]. Marine Pollution
[54]	Bulletin, 2011, 63(5): 556-563.
[55]	Hashimoto S, Horiuchi A, Yoshimoto T, et
[56]	al. Horizontal and vertical distribution of estrogenic
[57]	activities in sediments and waters from Tokyo Bay,

[58]	Japan [J]. Archives of Environmental Contamination
[59]	and Toxicology, 2005, 48(2): 209-216.
[60]	Khim J S, Lee K T, Kannan K, et al. Trace organic
[61]	contaminants in sediment and water from Ulsan Bay
[62]	and its vicinity, Korea [J]. Archives of Environmental
[63]	Contamination and Toxicology, 2001, 40(2): 141-150.
[64]	Stachel B, Ehrhorn U, Heemken O P, et al.
[65]	Xenoestrogens in the River Elbe and its tributaries
[66]	Environmental Pollution, 2003, 124(3):
[67]	7-507.
[68]	Kle čka G M, Staples C A, Clark K E, et al.
[69]	Exposure analysis of bisphenol A in surface water systems
[70]	in North America and Europe [J]. Environmental
[71]	Science & Technology, 2009, 43(16): 6145-6150.
[72]	Staples C A, Dorn P B, Kle čka G M, et al. A
[73]	review of the environmental fate, effects, and exposures
[74]	of bisphenol A [J]. Chemosphere, 1998, 36(10):
[75]	49-2173.
[76]	Kolpin D W, Furlong E T, Meyer M T, et
[77]	al. Pharmaceuticals, hormones, and other organic
[78]	wastewater contaminants in US streams, 1999—2000:
[79]	a national reconnaissance [J]. Environmental Science
[80]	amp; Technology, 2002, 36(6): 1202-1211.
[81]	Wu M, Wang L, Xu G, et al. Seasonal and spatial
[82]	distribution of 4-tert-octylphenol, 4-nonylphenol and
[83]	bisphenol A in the Huangpu River and its tributaries,
[84]	Shanghai, China [J]. Environmental Monitoring and
[85]	Assessment, 2013, 185: 3149-3161.
[86]	Ike M, Jin C S, Fujita M. Biodegradation of
[87]	bisphenol A in the aquatic environmental [J]. Water
[88]	Science and Technology, 2000, 42(7/8): 31-38.
[89]	Klecka G M, Gonsior S J, West R J, et al.
[90]	Biodegradation of bisphenol A in aquatic environments:
[91]	river die-away [J]. Environmental Toxicology
[92]	and Chemistry, 2001, 20(12): 2725-2735.
[93]	Voordeckers J W, Fennell D E, Jones K, et al.
[94]	Anaerobic biotransfor-mation of tetrabromobisphenol
[95]	A, tetrachlorobisphenol A, and bisphenol A in
[96]	estuarine sediments [J]. Environmental Science &
[97]	Technology, 2002, 36(4): 696-701.
[98]	Belfroid A, Van Velzen M, Van Der H B, et
[99]	al. Occurrence of bisphenol A in surface water and
[100]	uptake in fish: evaluation of field measurements [J].
[101]	Chemosphere, 2002, 49(1): 97-103.
[102]	Lindholst C, Pedersen K L, Pedersen S N. Estragonic response of hisphonel A in reinhous
[103]	Estrogenic response of bisphenol A in rainbow

[104]	trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology,
[105]	00, 48(2/3): 87-94.
[106]	Honkanen J O, Holopainen I J, Kukkonen J
[107]	V. Bisphenol A induces yolk-sac oedema and other
[108]	adverse effects in landlocked salmon (Salmo salar m.
[109]	sebago) yolk-sac fry [J]. Chemosphere, 2004, 55(2):
[110]	7-196.
[111]	Ishihara K, Nakajima N. Improvement of marine
[112]	environmental pollution using eco-system: decomposition
[113]	and recovery of endocrine disrupting chemicals
[114]	by marine phyto- and zooplanktons [J]. Journal of
[115]	Molecular Catalysis B: Enzymatic, 2003, 23(2): 419-
[116]	424.
[117]	Tabata A, Kashiwad A S, Ohnishi Y, et al. Estrogenic
[118]	influences of estradiol-17 beta, p-nonylphenol
[119]	and bisphenol-A on Japanese Medaka (Oryzias
[120]	latipes) at detected environmental concentrations [J].
[121]	Water Science and Technology, 2001, 43(2): 109-116.
[122]	Van Den B K, Verheyen R, Witters H. Comparison
[123]	of vitellogenin responses in zebrafish and
[124]	rainbow trout following exposure to environmental
[125]	estrogens [J]. Ecotoxicology and Environmental
[126]	Safety, 2003, 56(2): 271-281.
[127]	Brian J V, Harris C A, Scholze M, et al. Accurate
[128]	prediction of the response of freshwater fish to
[129]	a mixture of estrogenic chemicals [J]. Environmental
[130]	Health Perspectives, 2005, 113(6): 721-728.
[131]	Arukwe A, Celius T, Walther B T, et al. Effects
[132]	of xenoestrogen treatment on zona radiata protein
[133]	and vitellogenin expression in Atlantic salmon (Salmo
[134]	salar) [J]. Aquatic Toxicology, 2000, 49(3): 159-170.
[135]	Lee C, Na J G, Lee K C, et al. Choriogenin
[136]	mRNA induction in male medaka, Oryzias latipes as
[137]	a biomarker of endocrine disruption [J]. Aquatic Toxicology,
[138]	02, 61(3/4): 233-241.
[139]	Nishizawa H, Morta M, Sugimoto M, et al.
[140]	Effects of in utero exposure to bisphenol A on mRNA
[141]	expression of arlhydrocarbon and retinaoid receptors
[142]	in murine embryos [J]. Journal of Reproduction and
[143]	Development, 2005, 51(3): 315-324.
[144]	林浩然. 鱼类生理学[M]. 广州: 中山大学出版社, 2011:
[145]	0-306.
[146]	Sohoni P, Tyler C R, Hurd K, et al. Reproductive
[147]	effects of long-term exposure to bisphenol a in
[148]	the fathead minnow (Pimephales promelas) [J]. Environmental
[149]	Science & Technology, 2001, 35(14): 2917-
[150]	2925.

[151]	Lee Y M, Seo J S, Kim I C, et al. Endocrine
[152]	disrupting chemicals (bisphenol A, 4-nonylphenol, 4-
[153]	tert-octylphenol) modulate expression of two distinct
[154]	cytochrome P450 aromatase genes differently in
[155]	gender types of the hermaphroditic fish Rivulus
[156]	marmoratus [J]. Biochemical Biophysical Research
[157]	Communications, 2006, 345(2): 894-903.
[158]	KishidA M, Mclellan M, Miranda J A, et al.
[159]	Estrogen and xenoestrogens upregulate the brain
[160]	aromatase isoform (P450aromB) and perturb markers
[161]	of early development in zebrafish (Danio rerio)
[162]	Comparative Biochemistry and Physiology
[163]	Part B: Biochemistry & Molelular Biology, 2001,
[164]	9(2/3): 261-268.
[165]	Kang I J, Yokota H, Oshima Y, et al. Effects of
[166]	bisphenol A on the reproduction of Japanese medaka
[167]	(Oryzias latipes) [J]. Environmental Toxicology and
[168]	Chemistry, 2002, 21(11): 2394-2400.
[169]	Haubruge E, Petit F, Gage M J. Reduced sperm
[170]	counts in guppies (Poecilia reticulata) following
[171]	exposure to low levels of tributyltin and bisphenol
[172]	Proceedings of the Royal Society B: Biological
[173]	Sciences, 2000, 267(1459): 2333-2337.
[174]	Lahnsteiner F, Berger B, Kletzl M, et al. Effect
[175]	of bisphenol A on maturation and quality of semen
[176]	and eggs in the brown trout, Salmo trutta f. fario [J].
[177]	Aquatic Toxicology, 2005, 75(3): 213-224.
[178]	Hatef A, Alavi S M, Abdulfatah A, et al.
[179]	Adverse effects of bisphenol A on reproductive physiology
[180]	in male goldfish at environmentally relevant
[181]	concentrations [J]. Ecotoxicology and Environmental
[182]	Safety, 2012, 76(2): 56-62.
[183]	Ramakrishnan S, Wayne N L. Impact of bisphenol
[184]	A on early embryonic development and reproductive
[185]	maturation [J]. Reproductive Toxicology, 2008, 25(2):
[186]	7-183.
[187]	Chan W K, Chan K M. Disruption of the
[188]	hypothalamic-pituitary-thyroid axis in zebrafish
[189]	embryo-larvae following waterborne exposure to
[190]	BDE-47, TBBPA and BPA [J]. Aquatic Toxicology,
[191]	12, 108: 106-111.
[192]	Mandich A, Bottero S, Benfenati E, et al.
[193]	In vivo exposure of carp to graded concentrations
[194]	of bisphenol A [J]. General and Comparative Endocrinology,
[195]	07, 153(1/2/3): 15-24.
[196]	Yokota H, Tsuruda Y, Maeda M, et al. Effect
[197]	of bisphenol A on the early life stage in Japanese

[198]	medaka (Oryzias latipes) [J]. Environmental Toxicology
[199]	and Chemistry, 2000, 19(7): 1925-1930.
[200]	Milla S, Depiereux S, Kestemont P. The effects
[201]	of estrogenic and androgenic endocrine disruptors on
[202]	the immune system of fish: a review [J]. Ecotoxicology,
[203]	11, 20(2): 305-319.
[204]	Thilagam H, Gopalakrishnan S, Bo J, et al.
[205]	Effect of 17 beta-estradiol on the immunocompetence
[206]	of Japanese sea bass (Lateolabrax japonicus) [J].
[207]	Environmental Toxicology and Chemistry, 2009,
[208]	(8): 1722-1731.
[209]	Harikrishnan T, Singaram G, Bo J, et al. The
[210]	effect of 17b-estradiol on the immunocompetence
[211]	of Japanese sea bass (Lateolabrax japonicus) [J].
[212]	Environmental Toxicology and Chemistry, 2009,
[213]	(8): 1722-1731.
[214]	Yin D Q, Hu S Q, Gu Y, et al. Immunotoxicity of
[215]	bisphenol A to Carassius auratus lymphocytes and
[216]	macrophages following in vitro exposure [J]. Journal
[217]	of Environmental Sciences, 2007, 19(2): 232-237.
[218]	Watanuki H, Yamaguchi T, Sakai M. Suppression
[219]	in function of phagocytic cells in common carp Cyprinus
[220]	carpio L. injected with estradiol, progesterone
[221]	or 11-ketotestosterone [J]. Comparative Biochemistry
[222]	and Physiology Part C: Toxicology and Pharmacology,
[223]	02, 132(4): 407-413.
[224]	Yamaguchi T, Watanuki H, Sakai M. Effects of
[225]	estradiol, progesterone and testosterone on the function
[226]	of carp, Cyprinus carpio, phagocytes in vitro [J].
[227]	Comparative Biochemistry and Physiology Part C:
[228]	Toxicology and Pharmacology, 2001, 129(1): 49-55.
[229]	Jin Y, Chen R, Liu W, et al. Effect of endocrine
[230]	disrupting chemicals on the transcription of genes
[231]	related to the innate immune system in the early
[232]	developmental stage of zebrafish (Danio rerio) [J].
[233]	Fish & Shellfish Immunology, 2010, 28(5/6): 854-861.
[234]	Moens L N, Van D V K, Van Remortel P, et
[235]	al. Expression profiling of endocrine-disrupting compounds
[236]	using a customized Cyprinus carpio cDNA
[237]	microarray [J]. Toxicological Sciences, 2006, 93(2):
[238]	8-310.
[239]	Wu M, Xu H, Shen Y, et al. Oxidative stress in
[240]	zebrafish embryos induced by short-term exposure
[241]	to bisphenol A, nonylphenol, and their mixture [J].
[242]	Environmntal Toxicology and Chemistry, 2011,
[243]	(10): 2335-2341.
[244]	Xu H, Yang M, Qiu W, et al. The impact of

[245]	endocrine-distruting chemicals on oxidative stress
[246]	and innate immune response in zebrafish embyros
[247]	Envrionmental Toxicology and Chemistry, 2013,
[248]	(8): 1793-1799.
[249]	Rubtsov A V, Rubtsova K, Kappler J W, et
[250]	al. Genetic and hormonal factors in female-biased
[251]	autoimmunity [J]. Autoimmunity Reviews, 2010,
[252]	7): 494-498.
[253]	Miao S, Gao Z, Kou Z, et al. Influence of bisphenol
[254]	a on developing rat estrogen receptors and some
[255]	cytokines in rats: a two-generational study [J]. Journal
[256]	of Toxicology and Environmental Health A, 2008,
[257]	(15): 1000-1008.
[258]	Bonefeld-Jorgensen E C, Long M, Hofmeister
[259]	M V, et al. Endocrine-disrupting potential of bisphenol
[260]	A, bisphenol A dimethacrylate, 4-n-nonylphenol,
[261]	and 4-n-octylphenol in vitro: new data and a brief
[262]	review [J]. Environmental Health Perspectives, 2007,
[263]	5(S1): 69-76.
[264]	Tsigos C, Chrousos G P. Hypothalamic-pituitaryadrenal
[265]	axis, neuroendocrine factors and stress [J].
[266]	Journal of Psychosomatic Research, 2002, 53(4): 865-
[267]	871.
[268]	Sathyanarayana S, Braun J M, Yolton K, et
[269]	al. Case report: high prenatal bisphenol a exposure
[270]	and infant neonatal neurobehavior [J]. Environmental
[271]	Health Perspectives, 2011, 119(8): 1170-1175.
[272]	Suzuki T, Mizuo K, Nakazawa H, et al. Prenatal
[273]	and neonatal exposure to bisphenol-A enhances
[274]	the central dopamine D1 receptor-mediated action in
[275]	mice: enhancement of the methamphetamine-induced
[276]	abuse state [J]. Neuroscience, 2003, 117(3): 639-644.
[277]	Mizuo K, Narita M, Yoshida T, et al. Functional
[278]	changes in dopamine D3 receptors by prenatal
[279]	and neonatal exposure to an endocrine disruptor
[280]	bisphenol-A in mice [J]. Addiction Biology,
[281]	04, 9(1): 19-25.
[282]	Iwakura T, Iwafuchi M, Muraoka D, et al. In
[283]	vitro effects of bisphenol A on developing hypothalamic
[284]	neurons [J]. Toxicology, 2010, 272(1/2/3): 52-58.
[285]	Lee Y M, Seong M J, Lee J W, et al. Estrogen
[286]	receptor independent neurotoxic mechanism of
[287]	bisphenol A, an environmental estrogen [J]. Journal
[288]	of Veterinary Science, 2007, 8(1): 27-38.
[289]	Veerann A, Shetty K T, Takahashi M, et al.
[290]	Cdk5 and MAPK are associated with complexes of

[292]	Research, 2000, 76(2): 229-236.
[293]	Negishi T, Ishii Y, Kyuwa S, et al. Inhibition of
[294]	staurosporine-induced neuronal cell death by bisphenol
[295]	A and nonylphenol in primary cultured rat hippocampal
[296]	and cortical neurons [J]. Neuroscience Letters,
[297]	03, 353(2): 99-102.
[298]	Vom S F S, Hughes C. An extensive new literature
[299]	concerning low-dose effects of bisphenol A shows the
[300]	need for a new risk assessment [J]. Environmental
[301]	Health Perspectives, 2005, 113(8): 926-933.
[302]	Wolstenholme J T, Rissman E F, Connelly
[303]	J J. The role of bisphenol A in shaping the brain,
[304]	epigenome and behavior [J]. Hormones and Behavior,
[305]	11, 59(3): 296-305.
[4]	日明左 溪岸港 权明 於友某女体明法古了甘利和亚斯A的八杉子达FF

cytoskeletal proteins in rat brain [J]. Molecular Brain

[291]

- [1] 吴明红,潘辰苑,杨明,钱冬英.鱼体胆汁中壬基酚和双酚A的分析方法[J].上海大学学报(自然科学版),2013,19(4):423-428
- [2] 刘志睿 吉永华.抗毒血清科技创新崎岖路上的簇星点点[J]. 上海大学学报(自然科学版), 2012,34(5): 299-303

Copyright by 上海大学学报(自然科学版)