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Abstract
Clustering analysis is one of the most widely used statistical tools in many 
emerging areas such as microarray data analysis. For microarray and other high-
dimensional data, the presence of many noise variables may mask underlying 
clustering structures. Hence removing noise variables via variable selection is 
necessary. For simultaneous variable selection and parameter estimation, existing 
penalized likelihood approaches in model-based clustering analysis all assume a 
common diagonal covariance matrix across clusters, which however may not hold in 
practice. To analyze high-dimensional data, particularly those with relatively low 
sample sizes, this article introduces a novel approach that shrinks variance 
together with mean parameters, in a more general situation with cluster-specific 
(diagonal) covariance matrices. Furthermore, selection of grouped variables via 
inclusion or exclusion of a group of variables altogether is permitted by a specific 
form of penalty, which facilitates incorporating subject-matter knowledge, such as 
gene functions in clustering microarray samples for disease subtype discovery. For 
implementation, EM algorithms are derived for parameter estimation, in which the 
M-steps clearly demonstrate the effects of shrinkage and thresholding. Numerical 
examples, including an application to acute leukemia subtype discovery with 
microarray gene expression data, are provided to demonstrate the utility and 
advantage of the proposed method. 
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