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Abstract
Support Vector Machine (SVM) is a popular classification paradigm in machine 
learning and has achieved great success in real applications. However, the 
standard SVM can not select variables automatically and therefore its solution 
typically utilizes all the input variables without discrimination. This makes it difficult 
to identify important predictor variables, which is often one of the primary goals in 
data analysis. In this paper, we propose two novel types of regularization in the 
context of the multicategory SVM (MSVM) for simultaneous classification and 
variable selection. The MSVM generally requires estimation of multiple discriminating 
functions and applies the argmax rule for prediction. For each individual variable, 
we propose to characterize its importance by the supnorm of its coefficient vector 
associated with different functions, and then minimize the MSVM hinge loss function 
subject to a penalty on the sum of supnorms. To further improve the supnorm 
penalty, we propose the adaptive regularization, which allows different weights 
imposed on different variables according to their relative importance. Both types of 
regularization automate variable selection in the process of building classifiers, and 
lead to sparse multiclassifiers with enhanced interpretability and improved 
accuracy, especially for high dimensional low sample size data. One big advantage 
of the supnorm penalty is its easy implementation via standard linear programming. 
Numerious examples and one real gene data analysis demonstrate the outstanding 
performance of the adaptive supnorm penalty in various data settings.
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