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Abstract
When applying the support vector machine (SVM) to high-dimensional classification 
problems, we often impose a sparse structure in the SVM to eliminate the 
influences of the irrelevant predictors. The lasso and other variable selection 
techniques have been successfully used in the SVM to perform automatic variable 
selection. In some problems, there is a natural hierarchical structure among the 
variables. Thus, in order to have aninterpretable SVM classifier, it is important to 
respect the heredity principle when enforcing the sparsity in the SVM. Many variable 
selection methods, however, do not respect the heredity principle. In this paper we 
enforce both sparsity and the heredity principle in the SVM by using the so-called 
structured variable selection (SVS) framework originally proposed in Yuan, Joseph 
and Zou (2007). We minimize the empirical hinge loss under a set of linear 
inequality constraints and a lasso-type penalty. The solution always obeys the 
desired heredity principle and enjoys sparsity. The new SVM classifier can be 
efficiently fitted, because the optimization problem is a linear program. Another 
contribution of this work is to present a nonparametric extension of the SVS 
framework, and we propose nonparametric heredity SVMs. Simulated and read data 
are used to illustrate the merits of the proposed method.
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