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Abstract
This paper discusses a class of thresholding-based iterative selection procedures 
(TISP) for model selection and shrinkage. People have long before noticed the 
weakness of the convex $l_1$-constraint (or the soft-thresholding) in wavelets and 
have designed many different forms of nonconvex penalties to increase model 
sparsity and accuracy. But for a nonorthogonal regression matrix, there is great 
difficulty in both investigating the performance in theory and solving the problem in 
computation. TISP provides a simple and efficient way to tackle this so that we 
successfully borrow the rich results in the orthogonal design to solve the 
nonconvex penalized regression for a general design matrix. Our starting point is, 
however, thresholding rules rather than penalty functions. Indeed, there is a 
universal connection between them. But a drawback of the latter is its non-unique 
form, and our approach greatly facilitates the computation and the analysis. In fact, 
we are able to build the convergence theorem and explore theoretical properties of 
the selection and estimation via TISP nonasymptotically. More importantly, a novel 
Hybrid-TISP is proposed based on hard-thresholding and ridge-thresholding. It 
provides a fusion between the $l_0$-penalty and the $l_2$-penalty, and adaptively 
achieves the right balance between shrinkage and selection in statistical modeling. 
In practice, Hybrid-TISP shows superior performance in test-error and is 
parsimonious. 
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