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Abstract
Longitudinal data tracking repeated measurements on individuals are highly valued 
for research because they offer controls for unmeasured individual heterogeneity 
that might otherwise bias results. Random effects or mixed models approaches, 
which treat individual heterogeneity as part of the model error term and use 
generalized least squares to estimate model parameters, are often criticized 
because correlation between unobserved individual effects and other model 
variables can lead to biased and inconsistent parameter estimates. Starting with an 
examination of the relationship between random effects and fixed effects 
estimators in the standard unobserved effects model, this article demonstrates 
through analysis and simulation that the mixed model approach has a ``bias 
compression'' property under a general model for individual heterogeneity that can 
mitigate bias due to uncontrolled differences among individuals. The general model 
is motivated by the complexities of longitudinal student achievement measures, but 
the results have broad applicability to longitudinal modeling.
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