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Abstract
We consider the least angle regression and forward stagewise algorithms for 
solving penalized least squares regression problems. In Efron, Hastie, Johnstone & 
Tibshirani (2004) it is proved that the least angle regression algorithm, with a small 
modification, solves the lasso regression problem. Here we give an analogous 
result for incremental forward stage-wise regression, showing that it solves a 
version of the lasso problem that enforces monotonicity. One consequence of this is 
as follows: while lasso makes optimal progress in terms of reducing the residual 
sum-of-squares per unit increase in $L_1$-norm of the coefficient $beta$, forward 
stage-wise is optimal per unit $L_1$ arc-length traveled along the coefficient path. 
We also study a condition under which the coefficient paths of the lasso are 
monotone, and hence the different algorithms coincide. Finally, we compare the 
lasso and forward stagewise procedures in a simulation study involving a large 
number of correlated predictors.
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