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Simultaneous estimation of the mean and the variance in
heteroscedastic Gaussian regression

Xavier Gendre, Laboratoire J.-A. Dieudonné

Abstract

Let $Y$ be a Gaussian vector of $R™M{n}$ of mean $s$ and diagonal covariance
matrix $Gamma$. Our aim is to estimate both $s$ and the entries $sigma_{i}
=Gamma_{i,i}$, for $i=1,dots,n$, on the basis of the observation of two
independent copies of $Y$. Our approach is free of any prior assumption on $s$ but
requires that we know some upper bound $gamma$ on the ratio $max_{i}sigma_
{i}/min_{i} sigma_{i}$. For example, the choice $gamma=1$ corresponds to the
homoscedastic case where the components of $Y$ are assumed to have common
(unknown) variance. In the opposite, the choice $gamma>1$ corresponds to the
heteroscedastic case where the variances of the components of $Y$ are allowed to
vary within some range. Our estimation strategy is based on model selection. We
consider a family ${S_{m} times Sigma_{m}$, $min mathcal{M}}$ of parameter
sets where $S_{m3}$ and $Sigma_{m3}$ are linear spaces. To each $m in mathcal
{M}$, we associate a pair of estimators $(hat{s}_{m}, hat{sigma} {m})$ of
$(s,sigma)$ with values in $S_{m}timesSigma_{m}$. Then we design a model
selection procedure in view of selecting some $hat{m}$ among $mathcal{M}$ in
such a way that the Kullback risk of $(hat{s}_<{hat{m}}, hat{sigma}_{hat{m}})$
is as close as possible to the minimum of the Kullback risks among the family of
estimators ${(hat{s} {m3},hat{sigma}_{m})$, Sminmathcal{M}}$. Then we
derive uniform rates of convergence for the estimator $(hat{s}_{hat{m}},hat
{sigma}_ {hat{m3}})$ over Hdlderian balls. Finally, we carry out a simulation study
in order to illustrate the performances of our estimators in practice.
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