Simultaneous estimation of the mean and the variance in heteroscedastic Gaussian regression

Xavier Gendre, Laboratoire J.-A. Dieudonné

Abstract

Let \$Y\$ be a Gaussian vector of \$R^{n}\$ of mean \$s\$ and diagonal covariance matrix \$Gamma\$. Our aim is to estimate both \$s\$ and the entries \$sigma_{i} =Gamma_{i,i}\$, for \$i=1,dots,n\$, on the basis of the observation of two independent copies of \$Y\$. Our approach is free of any prior assumption on \$s\$ but requires that we know some upper bound \$gamma\$ on the ratio \$max_{i}\$sigma_ {i}/min_{i} sigma_{i}\$. For example, the choice \$gamma=1\$ corresponds to the homoscedastic case where the components of \$Y\$ are assumed to have common (unknown) variance. In the opposite, the choice \$gamma>1\$ corresponds to the heteroscedastic case where the variances of the components of \$Y\$ are allowed to vary within some range. Our estimation strategy is based on model selection. We consider a family \${S_{m}} times Sigma_{m}\$, \$min mathcal{M}}\$ of parameter sets where \$S_{m}\$ and \$Sigma_{m}\$ are linear spaces. To each \$m in mathcal {M}\$, we associate a pair of estimators \$(hat{s}_{m}, hat{sigma}_{m})\$ of \$(s,sigma)\$ with values in \$S_{m}timesSigma_{m}\$. Then we design a model selection procedure in view of selecting some $\hat{m}\$ among $\hat{M}\$ in such a way that the Kullback risk of \$(hat{s}_{hat{m}}, hat{sigma}_{hat{m}})\$ is as close as possible to the minimum of the Kullback risks among the family of estimators $\{(hat\{s\}_{m},hat\{sigma\}_{m})\}$, $minmathcal\{M\}\}$. Then we derive uniform rates of convergence for the estimator $\frac{n}{s}_{hat\{m\}}$, hat {sigma}_{hat{m}})\$ over Hölderian balls. Finally, we carry out a simulation study in order to illustrate the performances of our estimators in practice.

AMS 2000 subject classifications: 62G08.

Keywords: Gaussian regression, heteroscedasticity, model selection, Kullback risk, convergence rate.

Full Text: PDF

Gendre, Xavier, Simultaneous estimation of the mean and the variance in heteroscedastic Gaussian regression, Electronic Journal of Statistics, 2, (2008), 1345-1372 (electronic). DOI: 10.1214/08-EJS267.

References

- [1] Akaike, H. (1969). Statistical predictor identification. Annals Inst. Statist. Math.. MR0286233
- [2] Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proceedings 2nd International Symposium on Information Theory, P. Petrov and F. Csaki, Eds. Akademia Kiado, Budapest, 267–281. MR0483125
- [3] Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans. on Automatic Control. MR0423716
- [4] Arlot, S. (2007). Rééchantillonnage et sélection de modèles. Ph.D. thesis, Université Paris 11.
- [5] Baraud, Y. (2000). Model selection for regression on a fixed design. Probab. Theory

- [6] Baraud, Y., Giraud, C., and Huet, S. (2006). Gaussian model selection with an unknown variance. To appear in Annals of Statistics.
- [7] Barron, A., Birgé, L., and Massart, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113, 301–413. MR1679028
- [8] Birgé, L. and Massart, P. (1997). From model selection to adaptive estimation. Festschrift for Lucien Lecam: Research Papers in Probability and Statistics. MR1462939
- [9] Birgé, L. and Massart, P. (2001a). Gaussian model selection. Journal of the European Mathematical Society 3, 3, 203–268. MR1848946
- [10] Birgé, L. and Massart, P. (2001b). A generalized c_p criterion for gaussian model selection. Prépublication 647, Universités de Paris 6 and Paris 7.
- [11] Boucheron, S., Bousquet, O., Lugosi, G., and Massart, P. (2005). Moment inequalities for functions of independent random variables. Annals of Probability 33, 2, 514–560. MR2123200
- [12] Comte, F. and Rozenholc, Y. (2002). Adaptive estimation of mean and volatility functions in (auto-)regressive models. Stochastic Processes and their Applications 97, 1, 111–145. MR1870963
- [13] DeVore, R. and Lorentz, G. (1993). Constructive approximation. Vol. 303. Springer-Verlag. MR1261635
- [14] Galtchouk, L. and Pergamenshchikov, S. (2005). Efficient adaptive nonparametric estimation in heteroscedastic regression models. Université Louis Pasteur, IRMA, Preprint. MR2187340
- [15] Laurent, B. and Massart, P. (2000). Adaptive estimation of a quadratic functional by model selection. Annals of Statistics 28, 5, 1302–1338. MR1805785
- [16] Mallows, C. (1973). Some comments on c_p . Technometrics 15, 661–675.
- [17] McQuarrie, A. and Tsai, C. (1998). Regression and times series model selection. World Scientific Publishing Co, Inc. MR1641582
- [18] R Development Core Team. (2007). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org.
- [19] Wang, L. and al. (2008). Effect of mean on variance function estimation in nonparametric regression. The Annals of Statistics 36, 2, 646–664. MR2396810