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Abstract
This paper investigates correct variable selection in finite samples via $ell_1$ and 
$ell_1 + ell_2$ type penalization schemes. The asymptotic consistency of variable 
selection immediately follows from this analysis. We focus on logistic and linear 
regression models. The following questions are central to our paper: given a level 
of confidence $1 - delta$, under which assumptions on the design matrix, for which 
strength of the signal and for what values of the tuning parameters can we identify 
the true model at the given level of confidence? Formally, if $widehat{I}$ is an 
estimate of the true variable set $I^*$, we study conditions under which $mathbb
{P}(widehat{I} = I^*) geq 1 - delta$, for a given sample size $n$, number of 
parameters $M$ and confidence $1 - delta$. We show that in identifiable models, 
both methods can recover coefficients of size $frac{1}{sqrt{n}}$, up to small 
multiplicative constants and logarithmic factors in $M$ and $frac{1}{delta}$. The 
advantage of the $ell_1 + ell_2$ penalization over the $ell_1$ is minor for the 
variable selection problem, for the models we consider here. Whereas the former 
estimates are unique, and become more stable for highly correlated data matrices 
as one increases the tuning parameter of the $ell_2$ part, too large an increase in 
this parameter value may preclude variable selection. 
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