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Abstract

In this paper we describe a general probabilis-
tic framework for modeling waveforms such
as heartbeats from ECG data. The model
is based on segmental hidden Markov mod-
els (as used in speech recognition) with the
addition of random effects to the generative
model. The random effects component of the
model handles shape variability across differ-
ent waveforms within a general class of wave-
forms of similar shape. We show that this
probabilistic model provides a unified frame-
work for learning these models from sets of
waveform data as well as parsing, classifica-
tion, and prediction of new waveforms. We
derive a computationally efficient EM algo-
rithm to fit the model on multiple waveforms,
and introduce a scoring method that evalu-
ates a test waveform based on its shape. Re-
sults on two real-world data sets demonstrate
that the random effects methodology leads to
improved accuracy (compared to alternative
approaches) on classification and segmenta-
tion of real-world waveforms.

1 Introduction

Automatically parsing and recognizing waveforms
based on their shape is a classic problem in pattern
recognition (Fu, 1982). Applications include auto-
mated classification of heartbeat waveforms in ECG
data analysis (Koski, 1986), interpretation of wave-
forms from turbulent flow experiments (Bruun, 1995),
and discrimination of nuclear events and earthquakes
in seismograph data (Bennett & Murphy, 1986). Typ-
ically in these applications it is impractical for a hu-
man to continuously monitor the time-series data in
real-time (or to scan large archives of such data) and
there is a need for accurate and automated real-time

waveform detection. Other applications of waveform
modeling occur in database systems and information
retrieval, for systems that can take a waveform as an
“input query” and search a large database to find simi-
lar waveforms that match this query (e.g., Yi & Falout-
sos, 2000). While the human visual system can easily
recognize the characteristic signature of a particular
waveform shape (a heartbeat waveform for example)
the problem can be quite difficult for automated meth-
ods. For example, as Figure 1(a) shows, there can be
significant variability in shape among waveforms be-
longing to the same general class.

A generally useful approach to these problems is to
construct a generative model for the waveform and
then use this model to detect and parse new wave-
forms. For example, syntactic grammars decompose
the waveform into a set of component parts gener-
ated by a set of grammatical rules. To model shape
variability these grammars require the addition of a
stochastic component, and to learn such models from
data requires a likelihood function expressing the prob-
ability of an observed set of waveforms given a model
and its parameters. In this general context relatively
simple statistical grammars such as hidden Markov
models (HMMs) have been pursued (e.g., Koski, 1996;
Hughes et al., 2003), given that stochastic grammars
with richer representations are generally much more
difficult to learn. The parameters of these models can
be learned from a set of examplar waveforms—new
waveforms can then be parsed and classified based on
the likelihood of the new waveform given the trained
model.

A potentially useful extension of standard HMMs
for shape modeling is the so-called segmental hidden
Markov model, originally introduced in the speech
recognition community (Levinson, 1986; Ostendorf et
al., 1996) and proposed for more general waveform
modeling in Ge & Smyth (2000). The segmental model
allows for the observed data within each segment (a
sequence of states with the same value) to follow a

UAI 2004 KIM ET AL. 309



0 50 100 150 200 250

−3

−2

−1

0

1

2

time

y 
(m

ea
su

re
m

en
ts

)

0 50 100 150 200 250

−3

−2

−1

0

1

2

time

y 
(m

ea
su

re
m

en
ts

)

(a) (b)

0 50 100 150 200 250

−3

−2

−1

0

1

2

time

y 
(m

ea
su

re
m

en
ts

)

0 50 100 150 200 250

−3

−2

−1

0

1

2

time

y 
(m

ea
su

re
m

en
ts

)

segmental HMMs
waveform data

(c) (d)

Figure 1: Bubble-probe interaction data: (a) a set
of waveforms obtained from bubbles that are split by
a probe during interaction, (b) an example of single
waveform, (c) piecewise linear approximation of (b),
and (d) segmental HMMs fit to a test waveform.

general parametric regression form, such as a linear
function of time with additive noise. This allows us
to model the shape of the waveform directly, in this
case as a sequence of piecewise linear components, as
shown in Figure 1(c).

A limitation of the standard segmental model is that
it assumes that the parameters of the model are fixed.
Thus, the only source of variability in an observed
waveform arises from variation in the lengths of the
segments and observation noise added to the func-
tional form in each segment. The limitation of this
can clearly be seen in Figure 1(d), where a segmen-
tal model has been trained on the data in Figure 1(a)
and then used to parse the specific waveform in Figure
1(b) (“parsing” means inferring the most likely state
sequence given the model). We can see that the slopes
and intercepts provided by the model do not match the
observed data particularly well in each segment, e.g.,
in the first segment the intercept is clearly too low
on the y-axis, in the second segment the slope is too
small, and so forth. By using the same fixed parame-
ters for all waveforms, the model cannot fully account
for variability in waveform shapes.

To overcome this limitation, in this paper we com-
bine segmental HMMs with random effects models
(Laird & Ware, 1982). The general idea of model-
ing with random effects is to allow parameters to have
individual-level (or waveform-level) random variation,
while still being coupled together by an overall “pop-
ulation prior.” By extending the segmental HMM to

include random effects, we can allow the slopes and in-
tercepts of each waveform to vary according to a prior
distribution, within each segment. The parameters of
this prior can be learned from data in the form of sets
of waveforms in an unsupervised manner. In fact the
resulting model can be viewed as a directed graphical
model, allowing for application of standard methods
for inference and learning. For example, we can in
principle learn that the slopes across multiple wave-
forms for the first segment in Figure 1(c) tend to have
a characteristic mean slope and standard deviation.
The random effects approach provides a systematic
mechanism for allowing variation in “shape space” in
a manner that can be parametrized.

The primary contributions of this paper are to (a) pro-
pose the use of random effects segmental HMMs for
general waveform modeling applications, (b) derive a
computationally efficient EM procedure for learning
such models (reducing complexity by a factor of T 2

where T is the length of a waveform), (c) propose two
separate likelihood-based scores for shape and for noise
(which are then shown to improve recognition accuracy
over using just likelihood alone), and finally (d) illus-
trate on two real waveform data sets how these mod-
els can be used for waveform parsing, classification,
and prediction. The closest related work is Holmes &
Russell (1999) who explored a similar idea for using a
distribution over parameters in segmental HMMs, in
the context of speech recognition. Our work extends
these ideas by deriving a provably correct EM algo-
rithm, showing how the computational complexity of
this EM algorithm can be significantly reduced, and
generalizing the applicability of the method.

We begin our discussion by introducing segmental
HMMs in Section 2. In Section 3, we extend this model
to incorporate random effects models, and describe the
EM algorithm for parameter estimation as well as the
inference algorithms and the scoring methods for test
waveforms. In Section 4, we evaluate our model on two
applications involving bubble-probe interaction data
and ECG data, with conclusions in Section 5.

2 Segmental HMMs

Standard discrete-time finite-state HMMs impose a
geometric distribution on run lengths (or segment
lengths) for each state value and assume that obser-
vations are conditionally independent with a constant
mean within such segments. Segmental HMMs relax
these modeling constraints by allowing (a) arbitrary
distributions on run lengths and (b) “segment mod-
els” (regression models) that allow the mean to be a
function of time within each segment.

A segmental HMM with M states is described by an
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M × M transition matrix, plus a duration distribu-
tion and segment distribution for each state k, where
k = 1, . . . ,M . The transition matrix A (which is sta-
tionary in time) has entries akl, namely, the probabil-
ity of being in state k at time t+1 given state l at time
t. The initial state distribution can be included in A

as transitions from state 0 to each state k. In wave-
form modeling, we typically constrain the transition
matrix to allow only left-to-right transitions and no
self-transitions. Thus, there is an ordering on states,
each state can be visited at most once, and states can
be skipped.

In this paper, we model the duration distribution of
state k, using a Poisson distribution,

P (d|θdk
) =

e−λkλk
d−1

(d− 1)!
d = 1, 2, . . .

(shifted to start at d = 1 to prevent a silent state).
Other choices for the duration distribution could also
be used. Once the process enters state k, a duration
d is drawn, and state k produces a segment of obser-
vations of length d from the segment distribution. In
what follows we assume that the shape of waveforms
can be approximated as a sequence of linear segments,
and model the rth segment of observations of length d,
yr, generated by state k, as a linear regression function
in time,

yr = Xrβk + er er ∼ Nd(0, σ2Id), (1)

where βk is a 2× 1 vector of regression coefficients, er

is a d × 1 vector of Gaussian noise with variance σ2

in each component, and Xr is a d × 2 design matrix
consisting of a column of 1’s (for the intercept term)
and a column of x values representing the time values.
Note that this model can easily be generalized to allow
nonlinear polynomial functions of x that are still linear
in the parameters βk. For simplicity, σ2 is assumed to
be common across all states; again this can be relaxed.
One could enforce continuity of the mean functions
across segments in the probabilistic model, but this is
not discussed in the present paper.

Treating the unobserved state sequences as missing, we
can estimate the parameters, θ = {A,θd = {λk|k =
1, . . . ,M},θf = {βk, (σ2)|k = 1, . . . ,M}}, using the
EM algorithm with the forward-backward (F-B) algo-
rithm as a subroutine for inference in the E step (Deng
et al., 1994). The F-B algorithm for segmental HMMs,
modified from that of standard HMMs to take into ac-
count the duration distribution, recursively computes

αt(k) = P (y1:t, stay in state k ends at t|θ)

α∗

t (k) = P (y1:t, stay in state k starts at t + 1|θ) (2)

in the forward pass, and

βt(k) = P (yt+1:T |stay in state k ends at t,θ)

β∗

t (k) = P (yt+1:T |stay in state k starts at t + 1,θ) (3)

in the backward pass, and returns the results to the M
step as sufficient statistics (Rabiner & Juang, 1993).

Inference algorithms for segmental HMMs provide a
natural way to evaluate the performance of the model
on test data. The F-B algorithm scores a previously
unseen waveform y by calculating the likelihood

p(y|θ) =
∑

s

p(y, s|θ) =
∑

k

αT (k). (4)

In addition, the Viterbi algorithm can be used to pro-
vide a segmentation of a waveform by computing the
most likely state sequence. The addition of duration
distributions in segmental HMMs increases the time
complexity of both the F-B and Viterbi algorithms
from O(M2T ) for standard HMMs to O(M 2T 2), where
T is the length of the waveform (i.e. the number of ob-
servations).

3 Segmental HMMs with Random

Effects

A random effects model is a general statistical frame-
work when the data generation process can be seen as
having hierarchical structure. At each level of the gen-
erative process, the model defines a prior distribution
over the individual group parameters, called random
effects, of one level below. Typically, the random ef-
fects are not observable, so the EM algorithm is a pop-
ular approach to learning model parameters from the
observed data (Dempster et al., 1981; Laird & Ware,
1982). By combining segmental HMMs and random
effects models we can take advantage of the strength
of each in waveform modeling.

3.1 The Model

Beginning with the segmental HMMs described in Sec-
tion 2, we can extend the segment distributions of
the model as follows. Consider the rth segment yi

r

of length d from the ith individual waveform gener-
ated by state k. Following the discussion in Laird &
Ware (1982), we describe the generative model as a
two-stage process. At stage one, we model the ob-
served data yi

r as

yi
r = Xi

rβk + Xi
ru

i
k + ei

r ei
r ∼ Nd(0, σ2Id), (5)

where ei
r is the measurement noise, Xi

r is a d × 2 de-
sign matrix for the time measurements corresponding
to yi

r, (βk + ui
k) are the regression coefficients, and

1 ≤ i ≤ N (for N waveforms). βk represents the mean
regression parameters for segment k, and ui

k represents
the variation in regression (or shape) parameters for
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the ith individual waveform. At this stage, the individ-
ual random effects ui

k as well as βk and σ2 are viewed
as parameters. At the second stage, ui

k is viewed as a
random variable with distribution

ui
k ∼ N2(0,Ψk), (6)

where Ψk is a 2× 2 covariance matrix, and ui
k is inde-

pendent of ei
r. In this setup, it can be shown that yi

r

and ui
k have the following joint distribution:

(

yi
r

ui
k

)

∼ Nd+2

( (

Xi
rβk

0

)

,

(

Xi
rΨkX

i
r

′

+ σ2Id Xi
rΨk

ΨkX
i
r

′

Ψk

) )

. (7)

Also, from Equation (7), the posterior distribution of
ui

k can be written as

ui
k|y

i
r,βk,Ψk, σ2 ∼ N2

(

β̂
i

k,Ψ ˆβ
i

k

)

, (8)

where

β̂
i

k = (Xi
r

′

Xi
r + σ2(Ψk)−1)−1Xi

r

′

(yi
r −Xi

rβk), (9)

and

Ψ ˆβ
i

k

= σ2(Xi
r

′

Xi
r + σ2(Ψk)−1)

−1
. (10)

Figure 2(a) is a plate-like diagram that illustrates how
the segment model described above generates a sin-
gle waveform segment yi

r when the duration d of the
state is given. As we enter state si

1 (that then re-
peats itself for d time steps), the model generates the
individual random effects parameter vector ui

r from
Equation (6), and, then, generates the observed data
yi

r = {yi
1, . . . , y

i
d} from Equation (5). ui

k belongs to
the individual waveform i, whereas Ψ, β, and σ2 are
global parameters.

3.2 Inference

To handle the random effects component in the F-
B and Viterbi algorithms for segmental HMMs, we
notice from Equation (7) that the marginal distri-
bution of a segment yi

r generated by state k is

Nd(X
i
rβk, Xi

rΨkX
i
r

′

+ σ2Id), and that this corre-
sponds to Equation (1) with the covariance matrix

σ2Id replaced by (Xi
rΨkX

i
r

′

+ σ2Id). Replacing the
two-level segment distribution with this marginal dis-
tribution, and collapsing the hierarchy into a single
level, as shown in Figure 2(b), we can use the same
F-B and Viterbi algorithm as in segmental HMMs in
the marginalized space over the random effects.

The F-B algorithm recursively computes the quanti-
ties in Equations (2) and (3). These are then used in

lyi
1

lyi
2

lyi
d

lsi
1

lsi
2

lsi
d

lu
i
k

lΨ

�
��
β, σ2

- -. . .

. . .
? ? ?RRR RRU

	R

i = 1 : N

lyi
1

lyi
2

lyi
d

lsi
1

lsi
2

lsi
dlΨ

�
��
β, σ2

- -. . .

. . .
? ? ?RRR RRU

i = 1 : N

(a) (b)

Figure 2: Plate-like diagrams for the segment distribu-
tion of random effects segmental HMMs. This shows
the generative process for one segment, yi

1, . . . , y
i
d given

the duration d of state si
1 = si

2 = · · · = si
d. (a) shows a

two-stage model with random effects parameters, and
(b) the model after integrating out random effects pa-
rameters.

the M step of the EM algorithm. The likelihood of a
waveform y, given fixed parameters θ = {A,θd,θf =
{βk,Ψk, (σ2)|k = 1, . . . ,M}}, but with states s and
random effects u unknown, is evaluated as

p(y|θ) =
∑

s

∫

p(y, s,u|θ)du (11)

=
∑

s

p(y, s|θ) =
∑

k

αT (k).

As in segmental HMMs, the Viterbi algorithm can be
used as a method to segment a waveform by computing
the most likely state sequence.

What appears to make the inference in random ef-
fects segmental HMMs computationally much more
expensive than in segmental HMMs is the inversion of
the d × d covariance matrix, Xi

rΨkX
i
r

′

+ σ2Id, of the
marginal segment distribution during the evaluation of
the likelihood of a segment. For example, in the F-B
algorithm, the likelihood of a segment yi

r of length d
given state k, p(yi

r|βk,Ψk, σ2), needs to be calculated
for all possible durations d in each of the αt(k) and
βt(k) expressions at each recursion. The naive compu-
tation of a segment likelihood using direct inversion of
the d×d covariance matrix would require O(T 3) com-
putations, where T is the upper bound for d, leading to
an overall time complexity of O(M 2T 5). This can be
computationally impractical when we have long wave-
forms with a large value of T , (for example, T = 256
for the data shown in Figure 1).

In the discussion of computational issues for random
effects models, Dempster et al. (1981) suggest an ex-
pression for the likelihood that is simple to evaluate.
Applying their method to the segment distribution of
our model, we rewrite, using Bayes’ rule, the likelihood
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of a segment yi
r generated by state k as

p(yi
r|βk,Ψk) =

p(yi
r,u

i
k|βk,Ψk, σ2)

p(ui
k|y

i
r,βk,Ψk, σ2)

,

where the numerator and the denominator of the right-
hand side are given as Equations (7) and (8), respec-
tively. The right-hand side of the above equation holds

for all values of ui
k. By setting ui

k to β̂
i

k as given in
Equation (9), we can simplify the expression for the
segment likelihood to a form that involves only O(d)
computations for each step, where previously this in-
volved O(d3) computations in the case of the naive
approach with matrix inversions. Thus, the time com-
plexity of the F-B and Viterbi algorithms is reduced
to O(M2T 3). As shown in Mitchell et al. (1995) for
segmental HMMs we can further reduce this compu-
tational complexity to O(M 2T 2) by precomputing the
segment likelihood and storing the values in a table—
however, this precomputation is not possible with ran-
dom effects models, leading to the additional factor of
T in the complexity term.

3.3 Parameter Estimation

In this section, we describe how to obtain maximum
likelihood estimates of the parameters from a train-
ing set of multiple waveforms for a random effects
segmental HMM using the EM algorithm. We can
augment the observed waveform data with both (a)
state sequences and (b) random effects parameters
(both are considered to be hidden). The log likelihood
of the complete data of N waveforms, Dcomplete =
(Y,S,U) = {(y1, s1,u1), . . . , (yN , sN ,uN )}, where
the state sequence si implies Rsi segments in wave-
form i, is:

log L(θ|Dcomplete) =

N
∑

i=1

log p(yi, si,ui|A,θd,θf )

=

N
∑

i=1

Rsi
∑

r=1

log P (si
r|s

i
r−1,A) (12)

+

N
∑

i=1

Rsi
∑

r=1

log P (di
r|θdk

, k = si
r) (13)

+

N
∑

i=1

Rsi
∑

r=1

log p(yi
r|u

i
k,βk, σ2, k = si

r, d
i
r) (14)

+

N
∑

i=1

Rsi
∑

r=1

log p(ui
k|Ψk, k = sr). (15)

As we can see from the above equation, given the com-
plete data, the log likelihood decouples into four parts,
where the transition matrix, the duration distribution
parameters, the bottom level parameters βk, σ2, and

the top level parameters ui
k of random effects models

appear in each of the four terms. If we had complete
data, we could optimize the four sets of parameters
independently. When only parts of the data are ob-
served, by iterating between the E step and the M
step in the EM algorithm as described in the following
section, we can find a solution that locally maximizes
the likelihood of the observed data.

3.3.1 E Step

In the E step, we find the expected log likelihood of
the complete data,

Q(θ(t),θ) = E[log L(θ|Dcomplete)], (16)

with respect to

p(S,U|Y,θ(t)) = p(U|S,Y,θ(t))P (S|Y,θ(t))

=

N
∏

i=1

Rsi
∏

r=1

p(ui
r|s

i
r = k,yi

r,θ
(t))P (si

r = k|yi
r,θ

(t)), (17)

where θ(t) is the estimate of the parameter vector
from the previous M step of the tth EM iteration.
P (si

r = k|yi
r,θ

(t)) in Equation (17) can be obtained
from the F-B algorithm. The sufficient statistics,

E
[

ui
k|s

i
r = k,Y,θ(t)

]

and E
[

ui
ku

i
k

′

|si
r = k,Y,θ(t)

]

,

for P (ui
k|s

i
r = k,yi

r,θ
(t)) in Equation (17) can be

directly obtained from Equations (9) and (10). The
computational complexity for an E step is O(M 2T 3N)
where N is the number of waveforms.

3.3.2 M Step

In the M step, we find the values of the parameters
that maximize Equation (16). As we can see from
Equations (12)-(15) and Equation (16), the optimiza-
tion problem decouples into four parts each of which
involves a distinct set of parameters (the equations are
omitted here due to lack of space but are provided in
Kim et al., 2004). The computational complexity for
each M step is O(MT 3N).

3.4 Model Evaluation and Score Functions

An obvious choice for evaluating a new test waveform
based on a probabilistic model is to compute the likeli-
hood of the waveform given the parameters, as shown
in Equation (11). A different method that we propose
in this section uses the fact that waveforms are scored
based on two different aspects of how the model fits
the test waveform.

Each level of the random effects model models a dif-
ferent source of variability. At stage two, the covari-
ance matrix Ψk in Equation (6) explains the amount
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Scoreshape = −158.551 Scoreshape = 10.8451
Scorenoise = 343.032 Scorenoise = 170.174

(a) (b)

Figure 3: Scores for test waveforms from the random
effects segmental HMM trained using the data shown
in Figure 1(a).

of noise in shape space. Unlike segmental HMMs,
where the variance σ2 in Equation (4) is forced to ex-
plain both shape deformations and measurement noise,
random effects models allow for modelling them sepa-
rately with a hierarchical structure. However, the like-
lihood in effect mixes both “lack of fit” terms into a
single score. Consequently, smooth waveforms that are
well approximated by linear segments with little mea-
surement noise but with a considerable error in shape
(as shown in Figure 3(a)) can receive the same likeli-
hood score as waveforms with high measurement noise
and little shape deformation from the mean shape (as
shown in Figure 3(b)).

From the decomposition of the complete data likeli-
hood in Equations (12)-(15), we notice that Equation
(15) is a contribution from stage two of the random
effects component, and that Equation (14) is a contri-
bution from stage one. Equations (12) and (13) can
be viewed as representing the shape deformation ex-
plained by the segmental HMM part of the model. The
score decomposition is,

Scoreshape = E[(

Rs
∑

r=1

log P (sr|sr−1,A))

+(

Rs
∑

r=1

log P (dr|θdk
, k = sr))

+(

Rs
∑

r=1

log p(uk|Ψk, k = sr))|y,θ],

Scorenoise = E[

Rs
∑

r=1

log p(yr|uk,βk, σ2, k = sr)|y,θ],

where the expectation is taken with respect to the pos-
terior distribution of the unobserved data, p(s,u|y,θ)
(Equation (17)). Figure 3 shows examples of wave-
forms with these two scores. The results from our
experiment in Section 4 demonstrate that using this

score decomposition (i.e., using both scores as features
instead of a single likelihood score) improves the recog-
nition accuracy.

4 Experiments

We apply our model to two real world data sets, hot-
film anemometry data in turbulent bubbly flow and
ECG heartbeat data. In all of our experiments, we
compare the results from our new model with those
from segmental HMMs. We use several methods to
evaluate the models:

LogP Score We compute log p(y|θ) scores (Equa-
tions (4) and (11) for each model) for test wave-
forms y to see how well the parameters θ learned
from the training data can model test waveforms.

Segmentation Quality To evaluate how well the
model can segment test waveforms, we first ob-
tain the segmentations of test waveforms with the
Viterbi algorithm, estimate the regression coeffi-
cients β̂ of each segment, and calculate the mean
squared difference between the observed data and
Xβ̂ (good segmentations produce low scores).

One-Step-Ahead Prediction To evaluate the pre-
dictive power of the models, we use one-step-
ahead prediction on test waveforms. Given all of
the observations up to time step (t− 1) for a test
waveform y, we compute the logP scores of the
observed value at time t and the mean squared
error of the predicted values, for the next time
step.

In all of these experiments, we use five-fold cross vali-
dation. To evaluate the performance of our model for
classification, we include in the test set negative ex-
amples of the shape that we are modeling, and build
a k-nearest neighbor classifier with varying values for
k using the scores from the model as a feature vector
for each waveform. For the model from each of the
five-fold cross validation runs, using the positive ex-
amples in the test set for that model and the negative
examples, we use three-fold cross validation to obtain
the classification accuracy of the classifier.

4.1 Hot-film Anemometry in Turbulent

Bubbly Flow

Hot-film anemometry is a technique commonly used in
turbulent bubbly flow measurements in fluid physics.
Interactions between the bubbles and the probe in tur-
bulent gas flow, such as splitting, bouncing, and pen-
etration, lead to characteristic interaction waveform
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Table 1: Performance on Bubble-probe Interaction Data

One Step Ahead Prediction
LogP Scores LogP Mean Squared Error Segmentation Error

Segmental HMMs -75.92 -0.2824 0.1035 0.0231
Random Effects Segmental HMMs 248.68 0.9863 0.0247 0.0050

Table 2: Performance on ECG Data for Normal Heartbeats

One Step Ahead Prediction
LogP Scores LogP Mean Squared Error Segmentation Error

Segmental HMMs 64.59 0.2073 0.0630 0.00620
Random Effects Segmental HMMs 394.71 1.9393 0.0068 0.00052

shapes. Physicists are interested in detecting the oc-
currence and type of interactions automatically from
such waveforms (Bruun, 1995). There can be large
variability in the shape of the waveforms caused by
various factors such as velocity fluctuations and dif-
ferent gas fractions during measurement. Labels are
available for the type or class of each interaction based
on high-speed image recordings of the event obtained
simultaneously with the interaction signal. In the re-
sults of this paper, we model waveforms for one specific
type of interaction where the probe splits the bubble.
Our data consist of 50 waveforms such as those shown
in Figures 1(a) and (b). We randomly sampled 20
waveforms from this data set to form a training set for
each of five-fold cross validation runs. Given that Fig-
ure 1(c) is a reasonable piecewise linear approximation
of the general shape, we subjectively chose M = 6 as
the number of states for both segmental HMMs and
random effects segmental HMMs.

Figure 4(a) illustrates visually that the quality of the
segmentations of the waveforms using the Viterbi al-
gorithm is much better with random effects than with-
out. Table 1 shows a reduction of approximately 80%
in squared error from using random effects for these
segmentations. Table 1 also shows a significant in-
crease in logP scores for the test waveforms in the
models with random effects parameters as well as sig-
nificantly better one-step-ahead predictions. To eval-
uate the performance of the models for classification,
we used 72 additional waveforms of negative examples
labeled as bouncing, penetrating, and glancing inter-
action types, and plot the classification accuracy in
Figure 5. In addition to the two probabilistic models,
we include the results of using the direct mean squared
distance between two waveforms as a distance mea-
sure in k-nearest neighbor algorithms (as a baseline
method). Using the two decomposed scores improves
the accuracy of k-nearest neighbor classifiers signifi-
cantly over just using the likelihood.

4.2 ECG Data

The shape of heartbeat cycles in ECG data can be used
to diagnose the heart condition of a patient (Koski,
1996; Hughes et al. 2003). For example, Figure 4(b)
shows the typical shape of normal heartbeats, whereas
Figure 4(c) is taken from a heart experiencing a pre-
mature ventricular contraction. However, even among
heartbeat recordings for the same heart condition from
the same individual, there is a significant variability
in terms of shape and length. We chose an ECG
recording from the MIT-BIH Arrhythmia database,
and manually divided it into individual waveforms to
obtain 28 normal heartbeats and 28 abnormal heart-
beats of a premature ventricular contraction. 10 wave-
forms from each of the resulting data sets were used
to train the models with the number of states M = 9
in normal cases and M = 6 in abnormal cases. The
results from 5-fold cross validation are shown in Table
2 and 3. Again we see a significant improvements for
the random effects model. In terms of classification
(details not shown) our new models were 100% accu-
rate in all experiments versus an average accuracy of
98% for segmental HMMs.

5 Conclusions

In this paper, we proposed a probabilistic model that
extends segmental HMMs to include random effects.
This model allows an individual waveform to vary
its shape in a constrained manner via a prior dis-
tribution over individual waveform parameters. We
demonstrated that random effects segmental HMMs
can achieve a significant improvement in modeling,
segmentation, and classification of waveforms.
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Table 3: Performance on ECG Data for Premature Ventricular Contractions

One-Step-Ahead Prediction
LogP Scores LogP Mean Squared Error Segmentation Error

Segmental HMMs 28.82 -0.1738 0.0550 0.0075
Random Effects Segmental HMMs 323.79 1.5179 0.0141 0.0014
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(a) Bubble-probe interaction data
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(b) ECG data - normal heartbeats
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(c) ECG data - premature ventricular contractions

Figure 4: Examples for the segmentation of waveforms
by the Viterbi algorithm for segmental HMMs (left)
and for random effects segmental HMMs (right)
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