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Abstract

Cluster-weighted modeling (CWM) is a mixture approach for modeling the joint
probability of a response variable and a set of explanatory variables. The parame-
ters are estimated by means of the expectation-maximization algorithm according
to the maximum likelihood approach. We show that, under suitable hypotheses,
the maximization of the likelihood function of Gaussian cluster weighted models
leads to the same parameter estimates of finite mixtures of regression and finite
mixtures of regression with concomitant variables. In thissense, the latter ones
can be considered as nested models of Gaussian cluster weighted models.

Keywords: Cluster-weighted modeling, finite mixtures of regression,
EM-algorithm

1. Introduction

Cluster-weighted modeling (CWM) is a mixture approach to modeling the
joint probability density of a response variable and a set ofexplanatory variables.
The original formulation, proposed by Gershenfeld (1997) under Gaussian and
linear assumptions, was developed in the context of media technology in order to
build a digital violin with traditional inputs and realistic sound (Gershenfeldet al.,
1999; Gershenfeld, 1999; Schöner, 2000; Schöner and Gershenfeld, 2001). Wedel
(2002) refers to such a model as the saturated mixture regression model. Ingrassiaet al.
(2011) reformulated CWM from a statistical point of view in awide framework; in
particular, under Gaussian assumptions (Gaussian CWM) we investigate the rela-
tionships between CWM and both finite mixtures of regression(FMR) (De Sarbo and Cron,
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1988; McLachlan and Peel, 2000; Frühwirth-Schnatter, 2005) and finite mixtures
of regression with concomitant variables (FMRC) (Dayton and Macready, 1988;
Wedel, 2002).

The parameters of cluster weighted models are estimated through the EM al-
gorithm according to the maximum likelihood approach. In this paper, we show
that, under suitable hypotheses, the maximization of the likelihood function of
Gaussian CWM leads to the same parameter estimates of FMR andFMRC. In this
sense, FMR and FMRC can be considered as nested models of Gaussian CWM.

The remainder of the paper is organized as follows. In Section 2, we review
CWM as a general framework for mixture modeling. In Section 3, we analyse the
complete-data likelihood function of Gaussian CWM and derive the main steps of
the EM algorithm for parameter estimation. In Section 4 we show that, under suit-
able hypotheses, the maximization of the likelihood function of Gaussian CWM
leads to the same parameter estimates of FMR and FMRC. Finally, in Section 5,
we provide some conclusions and further research.

2. Cluster-Weighted Modeling

Let (X, Y ) be the pair of random vectorX and random variableY defined
on Ω with joint probability distributionp(x, y), whereX is thed-dimensional
input vector with values in some spaceX ⊆ R

d andY is a response variable
having values inY ⊆ R. Thus,(x, y) ∈ X × Y ⊆ R

d+1. Suppose thatΩ can
be partitioned intoG disjoint groups, sayΩ1, . . . ,ΩG, that isΩ = Ω1 ∪ · · · ∪ ΩG.
CWM decomposes the joint probabilityp(x, y) as follows:

p(x, y; θ) =

G
∑

g=1

p(y|x,Ωg) p(x|Ωg) πg, (1)

wherep(y|x,Ωg) is the conditional density of the response variableY given the
predictor vectorx andΩg, p(x|Ωg) is the probability density ofx givenΩg, πg =

p(Ωg) is the mixing weight ofΩg, (πg > 0 and
∑G

g=1 πg = 1), g = 1, . . . , G,
andθ denotes the set of all parameters of the model. Hence, the joint density
of (X, Y ) can be viewed as a mixture of local modelsp(y|x,Ωg) weighted (in a
broader sense) on both local densitiesp(x|Ωg) and mixing weightsπg.

The posterior probabilityp(Ωg|x, y) of unit (x, y) to come from theg-th group
(g = 1, ..., G) is given by:

p(Ωg|x, y) =
p(x, y,Ωg)

p(x, y)
=

p(y|x,Ωg)p(x|Ωg)πg
∑G

j=1 p(y|x,Ωj)p(x|Ωj)πj

. (2)
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In particular, the classification of each unit depends on both marginal and condi-
tional densities.

In the traditional framework, local densitiesp(x|Ωg) are assumed to be mul-
tivariate Gaussian with parameters(µg,Σg), that isX|Ωg ∼ Nd(µg,Σg), g =
1, . . . , G. Moreover, conditional densitiesp(y|x,Ωg) are modeled by Gaussian
distributions with varianceσ2

ε,g around some deterministic function ofx, say
µ(x;βg), g = 1, . . . , G, so that the relationship betweenY andX in the g-th
group can be written asY = µ(x,βg) + εg whereεg ∼ N(0, σ2

ε,g). Such model
will be referred to as Gaussian CWM:

p(x, y; θ) =
G
∑

g=1

φ(y;µ(x,βg), σ
2
ε,g)φd(x;µg,Σg) πg,

whereφ(·) denotes the probability density of Gaussian distributions.
For sake of simplicity, we consider the case concerning conditional densities

based on linear mappings, that isµ(x;βg) = b′gx + bg0, with β = (b′g, bg0)
′,

bg ∈ R
d andbg0 ∈ R:

p(x, y; θ) =
G
∑

g=1

φ(y; b′gx+ bg0, σ
2
ε,g)φd(x;µg,Σg) πg, (3)

which will be referred to aslinear Gaussian CWM.

3. The likelihood function of Gaussian CWM

Let (x1, y1), . . . , (xN , yN) be a sample ofN independent observation pairs
drawn from model in (3). Then, the corresponding likelihoodfunction is given
by:

L0(θ;X,y) =

N
∏

n=1

p(xn, yn; θ) =

n
∏

n=1

[

G
∑

g=1

φ(yn|xn;χg)φd(xn;ψg)πg

]

,

whereχg = (βg, σ
2
g) andψg = (µg,Σg). Maximization ofL0(θ;X,y) with

respect toθ yields the maximum likelihood estimate ofθ.
Let us consider fully categorized data:

{wn : n = 1, . . . , N} = {(xn, yn, zn) : n = 1, . . . , N},

3



wherezn = (zn1, . . . , zng)
′, with zng = 1 if (xn, yn) comes from theg-th popu-

lation andzng = 0 otherwise. Then, the complete-data likelihood function corre-
sponding toW = (w1, . . . ,wN) can be written in the form:

Lc(θ;X,y) =
N
∏

n=1

G
∏

g=1

[φ(yn|xn;χg)]
zng [φd(xn;ψg)]

zngπzng

g . (4)

Taking the logarithm of (4) after some algebra we get:

Lc(θ;X,y) = lnLc(θ;X,y)

=

N
∑

n=1

G
∑

g=1

[zng lnφ(yn|xn;χg) + zng lnφd(xn;ψg) + zng ln πg]

= L1c(χ) + L2c(ψ) + L3c(π), (5)

where

L1c(χ) =
1

2

N
∑

n=1

G
∑

g=1

zng

[

− ln 2π − ln σ2
ǫ,g −

[yn − (b′gxn + b0g)]
2

σ2
ǫ,g

]

(6)

L2c(ψ) =
1

2

N
∑

n=1

G
∑

g=1

zng
[

−p ln 2π − ln |Σg| − (xn − µg)
′
Σ

−1
g (xn − µg)

]

(7)

L3c(π) =
N
∑

n=1

G
∑

g=1

zng[ln πg]. (8)

Log-likelihood function (5) can be maximized through the EMalgorithm in
order to obtain the parameter estimatesθ = {χ,ψ,π}. TheE-stepon the(k+1)-
th iteration of the EM algorithm requires the calculation ofthe conditional ex-
pectation of the complete-data log-likelihood functionLc(θ;X,y) in (5), say
Q(θ, θ(k)), evaluated using the current fitθ(k) for θ. SinceLc(θ;X,y) is lin-
ear in the unobservable datazng, this means calculating the current conditional
expectation ofZng givenX andy, whereZng is the random variable correspond-
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ing tozng, that is

Q(θ, θ(k)) = Eθ(k){Lc(θ;X,y)}

=

N
∑

n=1

G
∑

g=1

Eθ(k){Zng|xn, yn}[Q1(χg; θ
(k)) +Q2(ψg; θ

(k)) + ln πg]

=
N
∑

n=1

G
∑

g=1

τ (k)ng [Q1(χg; θ
(k)) +Q2(ψg; θ

(k)) + ln πg],

where

τ (k)ng =
π
(k)
g φ(yn|xn;β

(k)
g , σ

2(k)
g )φd(xn;µ

(k)
g ,Σ(k)

g )
∑G

j=1 π
(k)
j φ(yn|xn;β

(k)
j , σ

2(k)
j )φd(xn;µ

(k)
j ,Σ

(k)
j )

provides the current value of (2) on thek-iteration and

Q1(χg; θ
(k)) =

1

2

[

− ln 2π − ln σ2
ǫ,g −

[yn − (b′gxn − b0g)]
2

σ2
ǫ,g

]

,

Q2(ψg; θ
(k)) =

1

2

[

−p ln 2π − ln |Σg| − (xn − µg)
′
Σ

−1
g (xn − µg)

]

.

TheM-stepon the(k+ 1)-th iteration of the EM algorithm requires the maxi-
mization of the conditional expectation of the complete-data log-likelihoodQ(θ, θ(k))

with respect toθ. The solutions for posterior probabilitiesπ(k+1)
g and parameters

(µ
(k+1)
g , Σ(k+1)

g ) of local densitiesφd(xn|ψg), g = 1, . . . , G, exist in closed form
(e.g. McLachlan and Peel, 2000), that is:

π(k+1)
g =

1

N

N
∑

n=1

τ (k)ng , (9)

µ(k+1)
g =

∑N

n=1 τ
(k)
ng xn

∑N

n=1 τ
(k)
ng

,

Σ
(k+1)
g =

∑N

n=1 τ
(k)
ng (xn − µ

(k+1)
g )(xn − µ

(k+1)
g )′

∑N

n=1 τ
(k)
ng

.

The updatesb(k+1)
g , b

(k+1)
g0 andσ2(k+1)

ǫ,g for parameters of local densitiesφ(yn|xn;χg),
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g = 1, . . . , G, are obtained by solving the equations:

∂Eθ(k){Lc(ψ|xn, yn)}

∂bg0
=

N
∑

n=1

τ (k)ng

∂Q1(χg; θ
(k))

∂bg0
= 0, (10)

∂Eθ(k){Lc(ψ|xn, yn)}

∂b′g
=

N
∑

n=1

τ (k)ng

∂Q1(χg; θ
(k))

∂b′g
= 0

′, (11)

∂Eθ(k){Lc(ψ|xn, yn)}

∂σ2
ǫ,g

=

N
∑

n=1

τ (k)ng

∂Q1(χg; θ
(k))

∂σ2
ǫ,g

= 0, (12)

yielding

b
(k+1)
g0 =

∑N

n=1 τ
(k)
ng yn

∑N

n=1 τ
(k)
ng

− b(k+1)
g

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

,

b′(k+1)
g =

(

∑N

n=1 τ
(k)
ng ynx

′

n
∑N

n=1 τ
(k)
ng

−

∑N

n=1 τ
(k)
ng yn

∑N

n=1 τ
(k)
ng

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

)

×





∑N

n=1 τ
(k)
ng xnx

′

n
∑N

n=1 τ
(k)
ng

−

(

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

)2




−1

,

σ2(k+1)
ǫ,g =

∑N

n=1 τ
(k)
ng [yn − (b(k+1)

g x′

n + b
(k+1)
g0 )]2

∑N

n=1 τ
(k)
ng

.

See Appendix for computational details.

4. Maximum likelihood estimates of Gaussian CWM and relationships with
FMR and FMRC

In this section, we analyse the relationships between maximum likelihood es-
timates of Gaussian CWM and both FMR and FMRC. To begin with, we show
in the following that, under suitable hypotheses, maximization of the likelihood
function of Gaussian CWM leads to the same parameter estimates of FMR and
FMRC. In this sense, FMR and FMRC can be considered as nested models of
Gaussian CWM.
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4.1. Relationship with FMR
Let us consider the density function of FMR (De Sarbo and Cron, 1988; McLachlan and Peel,

2000; Frühwirth-Schnatter, 2005):

f(y|x;ψ
◦
) =

G
∑

g=1

p(y|x,Ωg)πg =

G
∑

g=1

φ(y; b′gx+ bg0, σ
2
ε,g) πg,

whereψ
◦

denotes the overall parameters of the model.
The corresponding complete-data log-likelihood functionis:

Lc(ψ◦
;X,y) =

N
∑

n=1

G
∑

g=1

(

zng lnφ(yn|xn;χg) + zng ln πg

)

=
N
∑

n=1

G
∑

g=1

zng lnφ(yn|xn;χg) +
N
∑

n=1

G
∑

g=1

zng ln πg

= L1c(χ) + L3c(π). (13)

Proposition 1. In model (3), if local densitiesφd(x;ψg) have the same parameters
ψg = (µg,Σg) = (µ,Σ) = ψ, that is

φd(x;ψg) = φd(x;ψ), g = 1, . . . G, (14)

then maximum likelihood estimate of(χ,π) in (13) coincides with the corre-
sponding estimate in (5).

Proof. In order to prove the proposition, it is sufficient to show that, under the
assumption thatψg = (µg,Σg) = (µ,Σ) = ψ, termsL1c(χ) andL3c(π) in (5)
do not depend on(µg,Σg), g = 1, . . . , G. Indeed, under (14), the complete-data
log-likelihood function becomes:

Lc(θ;X,y) = lnLc(θ;X,y)

=

N
∑

n=1

G
∑

g=1

[

zng lnφ(yn|xn;χg) + zng lnφd(xn;ψ) + zng ln πg

]

= L1c(χ) + L∗

2c(ψ) + L3c(π), (15)

whereL2c(ψ) in (7) is now replaced by

L∗

2c(ψ) =

N
∑

n=1

1

2

[

−p ln 2π − ln |Σ| − (xn − µ)
′
Σ

−1(xn − µ)
]

,

7



since
∑G

g=1 zng = 1 for n = 1, . . . , N .

Moreover, in the E-step, the posterior probabilityτ
(k)
ng in (3) becomes:

τ (k)ng =
π
(k)
g φ(yn|xn;χ

(k)
g )φd(xn|ψ

(k))
∑G

j=1 π
(k)
j φ(yn|xn;χ

(k)
j )φd(xn|ψ

(k))
=

π
(k)
g φ(yn|xn;χ

(k)
g )

∑G

j=1 π
(k)
j φ(yn|xn;χ

(k)
j )

,

n = 1, . . . , N andg = 1, . . . , G.
Then, according to (9), termL3c(π) does not depend onψg. Thus, max-

imization of (5) can be attained by independently maximizing the three terms
L1c(χ),L

∗

2c(ψ) andL3c(π) and hence, maximization of (13) and (15) in the M-
step leads to the same estimates of(χ,π). This completes the proof.

4.2. Relationship with FMRC

Let us consider the density function of FMRC (e.g. Dayton andMacready,
1988):

f ∗(y|x;ψ∗) =

G
∑

g=1

φ(y; b′gx+ bg0, σ
2
ε,g) p(Ωg|x, ξ) , (16)

where the mixing weightp(Ωg|x, ξ) is now a function depending onx through
some parametersξ andψ∗ is the augmented set of all parameters of the model.

Probabilityp(Ωg|x, ξ) is usually modeled by a multinomial logistic distribu-
tion with the first component as baseline, that is:

p(Ωg|x, ξ) =
exp(w′

gx+ wg0)
∑G

j=1 exp(w
′

jx+ wj0)
. (17)

In particular, equation (17) is satisfied if local densitiesp(x|Ωg), g = 1, . . . , G,
are assumed to be Gaussian with the same covariance matrices(Anderson, 1972).

The complete-data log-likelihood function correspondingto (16) is:

Lc(ψ◦
;X,y) =

N
∑

n=1

G
∑

g=1

[

zng lnφ(yn|xn;χg) + zng ln p(Ωg|x, ξ)
]

= L1c(χ) + L3c(ξ) . (18)

Proposition 2. In model (3), if local densitiesφd(x;ψg) have the same covariance
matricesΣg = Σ, g = 1, . . . , G, and equal prior probabilitiesπg = 1/G, then
maximum likelihood estimate of(χ, ξ) in (18) can be derived from the estimate
of (χ,ψ) in (5).
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Proof. In order to prove the proposition, it is sufficient to show that, under
assumptionsΣg = Σ andπg = 1/G, g = 1, . . . , G, termsL1c(χ) andL3c(π) in
(5) do not depend on(µg,Σg), g = 1, . . . , G. Indeed, we have:

Lc(θ;X,y) =

N
∏

n=1

G
∏

g=1

φ(yn|xn;χg)
zngφd(xn;µg,Σ)zngπzng (19)

and taking the logarithm of (19), after some algebra we get

Lc(θ;X,y) = lnLc(θ;X,y)

=
N
∑

n=1

G
∑

g=1

[

zng lnφ(yn|xn;χg) + zng lnφd(xn;µg,Σ)
]

+ π

= L1c(χ) + L∗∗

2c(ψ) + π, (20)

whereL2c(ψ) in (7) is now replaced by

L∗∗

2c(ψ) =
1

2

N
∑

n=1

G
∑

g=1

zng
[

−p ln 2π − ln |Σ| − (xn − µg)
′
Σ

−1(xn − µg)
]

.

Once the estimates of(µg,Σ) have been obtained, quantityp(Ωg|x, ξ) in (18) can
be obtained immediately, that is:

p(Ωg|xn, ξ) =
φd(xn;µg,Σ)π

p(xn)
=

exp
[

−1
2
(x− µg)

′
Σ

−1(x− µg)
]

∑G

j=1 exp
[

−1
2
(x− µj)

′Σ
−1(x− µj)

] ,

which can be written in form (17) for suitable constantswg, wg0, g = 1, . . . , G.
This completes the proof.

5. Conclusions

In this paper, we presented an analysis of the complete-datalikelihood func-
tion of Gaussian CWM and derived the parameter estimates according to the EM
algorithm. Afterwards, theoretical results showed that, under suitable assump-
tions, both FMR and FMRC are nested models of Gaussian CWM. This implies
that CWM is a quite general framework for local statistical modeling.
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Appendix

From equation(10), for b(k+1)
g0 (g = 1, . . . , G) we obtain:

N
∑

n=1

τ (k)ng

∂Q1(χg;ψ
(k))

∂bg0
= 0

yielding

N
∑

n=1

τ (k)ng

[

yn −
(

b
′(k)
g xn + b

(k)
g0

)]

= 0 ⇒

N
∑

n=1

τ (k)ng (yn−b
′(k)
g xn) = b

(k)
g0

N
∑

n=1

τ (k)ng

and then we get

b
(k+1)
g0 =

∑N

n=1 τ
(k)
ng yn

∑N

n=1 τ
(k)
ng

− b(k+1)
g

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

.

Forb(k+1)
g (g = 1, . . . , G), equation(11) leads to:

N
∑

n=1

τ (k)ng

∂Q1(χg;ψ
(k))

∂b′g
= 0

′ (21)

which implies
N
∑

n=1

τ (k)ng

[

yn −
(

b′gxn + b
(k)
g0

)]

x′

n = 0
′

yielding

∑N

n=1 τ
(k)
ng ynx

′

n
∑N

n=1 τ
(k)
ng

−

∑N

n=1 τ
(k)
ng yn

∑N

n=1 τ
(k)
ng

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

= b′g





∑N

n=1 τ
(k)
ng xnx

′

n
∑N

n=1 τ
(k)
ng

−

(

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

)2




and finally

b′(k+1)
g =

(

∑N

n=1 τ
(k)
ng ynx

′

n
∑N

n=1 τ
(k)
ng

−

∑N

n=1 τ
(k)
ng yn

∑N

n=1 τ
(k)
ng

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

)

·

·





∑N

n=1 τ
(k)
ng xnx

′

n
∑N

n=1 τ
(k)
ng

−

(

∑N

n=1 τ
(k)
ng x

′

n
∑N

n=1 τ
(k)
ng

)2




−1

. (22)
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Furthermore, equation (12) leads to the current estimate ofthe varianceσ(k)
ǫ,g

(g = 1, . . . , G):
N
∑

n=1

τ (k)ng

∂Q1(χg;ψ
(k))

∂σ2
ǫ,g

= 0

leading to

N
∑

n=1

τ (k)ng

{

−
1

σ
2(k)
ǫ,g

+
1

σ
4(k)
ǫ,g

[

yn −
(

b
′(k)
g xn + b

(k)
g0

)]2
}

= 0

and furthermore

σ2(k+1)
ǫ,g =

∑N

n=1 τ
(k)
ng

[

yn −
(

b(k+1)
g x′

n + b
(k+1)
g0

)]2

∑N

n=1 τ
(k)
ng

. (23)

Finally, we remark that in general case the equations (5) and(21) are replaced by

N
∑

n=1

τ (k)ng

∂Q1(χg;ψ
(k))

∂µ(x,βg)

∂µ(x,βg)

∂β′

g

= 0
′

and (23) is replaced by

σ2(k+1)
ǫ,g =

∑N

n=1 τ
(k)
ng

[

yn − µ(x,βg)
]2

∑N

n=1 τ
(k)
ng

.
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