arXiv:1207.3106v1 [stat.CO] 12 Jul 2012

Maximum likelihood estimation of Gaussian cluster
weighted models and relationships with mixtures of
regression

Salvatore Ingrassid, Simona C. Minotfi

aDipartimento di Economia e Impresa, Univegsidi Catania (Italy)
Corso Italia, 55 - 95129 Catania (ltaly), s.ingrassia@utitc
bDipartimento di Statistica, Universitdi Milano-Bicocca (ltaly)
simona.minotti@unimib.it

Abstract

Cluster-weighted modeling (CWM) is a mixture approach fardeling the joint
probability of a response variable and a set of explanatanaliles. The parame-
ters are estimated by means of the expectation-maximizatgorithm according
to the maximum likelihood approach. We show that, undemablgt hypotheses,
the maximization of the likelihood function of Gaussianstker weighted models
leads to the same parameter estimates of finite mixtureggoéssion and finite
mixtures of regression with concomitant variables. In #esse, the latter ones
can be considered as nested models of Gaussian clusterteckigbdels.

Keywords: Cluster-weighted modeling, finite mixtures of regression,
EM-algorithm

1. Introduction

Cluster-weighted modeling (CWM) is a mixture approach todelimg the
joint probability density of a response variable and a sexplanatory variables.
The original formulation, proposed H);LG_QLsh_Qdféld_LiQWder Gaussian and
linear assumptions, was developed in the context of mediat#dogy in order to
build a digital violin with traditional inputs and reahstsound|(GershenfeM
1999; Gershenfeld, 1999; Schdner, 2000; Schoner anchErefedd| 2001
_,M) refers to such a model as the saturated mixture iggresiodel
.@) reformulated CWM from a statistical point of view imale framework; in
particular, under Gaussian assumptions (Gaussian CWMiwestigate the rela-

tionships between CWM and both finite mixtures of regres@dnR) (D r n
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11988; McLachlan and Peel, 2000; Frithwirth-Schnatter52@@d finite mixtures
of regression with concomitant variables (FMRC) (Daytod Mtacready, 1988;
Eagllﬂlz).

The parameters of cluster weighted models are estimatedghrthe EM al-
gorithm according to the maximum likelihood approach. lis thaper, we show
that, under suitable hypotheses, the maximization of tediliood function of
Gaussian CWM leads to the same parameter estimates of FMRMIRE. In this
sense, FMR and FMRC can be considered as nested models cfi@aG$VM.

The remainder of the paper is organized as follows. In Se@ijave review
CWM as a general framework for mixture modeling. In Secfipw& analyse the
complete-data likelihood function of Gaussian CWM andethe main steps of
the EM algorithm for parameter estimation. In Sectibn 4 wansthat, under suit-
able hypotheses, the maximization of the likelihood fumctdf Gaussian CWM
leads to the same parameter estimates of FMR and FMRC. fimabectior b,
we provide some conclusions and further research.

2. Cluster-Weighted Modeling

Let (X,Y’) be the pair of random vectoX and random variabl& defined
on §2 with joint probability distributionp(x,y), where X is the d-dimensional
input vector with values in some spagé C R? andY is a response variable
having values iy C R. Thus,(z,y) € X x Y C R¥*!, Suppose tha® can
be partitioned intd disjoint groups, sayl;, ..., Qq, thatisQ) = Q; U--- U Q.
CWM decomposes the joint probabilityx, y) as follows:

G
pla, y:0) = p(yle, Q) p(a|Qy) . (1)
g=1

wherep(y|x, §2,) is the conditional density of the response variablgiven the
predictor vectote and(2,, p(x|(2,) is the probability density of: givenQ),, 7, =
p(€2,) is the mixing weight of2,, (7, > 0 andz:f:1 T, =1),9=1,...,G,
and @ denotes the set of all parameters of the model. Hence, thedensity
of (X,Y’) can be viewed as a mixture of local modglg|x, (2,) weighted (in a
broader sense) on both local densifi¢s|<2,) and mixing weightsr,.

The posterior probability(€2, |, y) of unit (x, y) to come from the-th group
(9 =1,...,G)is given by:

p(@,y: Q) plyla, Q)p(@|Q)my
p(w,y) Zlep(y|w79j)p(w|ﬂj)ﬂj

p(Qylz,y) = (2)
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In particular, the classification of each unit depends oih lbadrginal and condi-
tional densities.

In the traditional framework, local densitipsz|<2,) are assumed to be mul-
tivariate Gaussian with parametes,, 3,), that is X |0, ~ Ng(p,, 3y), g =

., G. Moreover, conditional densitiegy|x, (2,) are modeled by Gaussian
distributions with variances? , around some deterministic function af say
wzx;B,), g = 1,...,G, so that the relationship betweéhand X in the g-th
group can be written &8 = u(x, 8,) + ¢, Wheres, ~ N(0, 02 ,). Such model
will be referred to as Gaussian CWM:

G
p(a,y;0) = > o(y; ul(x, B,),02,) Ga(w; g, 5) 7y,

g=1

where¢(-) denotes the probability density of Gaussian distributions

For sake of simplicity, we consider the case concerning itiomeél densities
based on linear mappings, thatjigz; 3,) = bl x + by, with 3 = (b, by)’,
b, € R? andb, € R:

G
Pl y;0) =Y oy blx + byo, 02,) Gal; prg, By) g, (3)

g=1

which will be referred to aBnear Gaussian CWM

3. Thelikelihood function of Gaussian CWM

Let (x1,v1),...,(xzy,yn) be a sample ofV independent observation pairs
drawn from model in[(3). Then, the corresponding likelihdodction is given

by:

G

N n
Lo(6; X, y) = [ [ (w0, vn; 6 H D (ynltn; X,) Gal@n; P )Ty |
n=1 n=1

g=1

wherex, = (8,, g) andvy, = (p,,%,). Maximization of Ly(6; X, y) with
respect t@ yields the maximum likelihood estimate 6f
Let us consider fully categorized data:

{w, :n=1,..., N} ={(xn,Yn,20) :n=1,...,N},



wherez,, = (21, ..., 2n,), With z,, = 1if (2,,y,) comes from the-th popu-
lation andz,, = 0 otherwise. Then, the complete-data likelihood functionmeo
sponding toW = (wy, ..., wy) can be written in the form:

Lo(6; X, y) = HH S(Un| s Xy [Ga( @ )| omine. (4)

n=1g=1
Taking the logarithm of[{4) after some algebra we get:

L(0; X, y) =InL(0; X, y)

N G
Z Z an In ¢ yn|mna Xg) + Zng In ¢d(wn7 T,ZJg) + “ng In ﬂ-g]

n=1 g=1
= L1c(x) + Loc(h) + Lse(m), (5)
where
N & Y 2
Li.(x) = % Z Z Zng {— In27 — In Uez,g - b (bﬁ" + boo) (6)
n=1 g=1 €9
1 N &
Loc(1h) = 5 Z Z Zng [—p In2r —In|3,| — (z, — Hg)lzgl(wn — p,g)} (7)
n=1 g=1
N
Loo(m) =Y Y zpglnmy). (8)
n=1 g=1

Log-likelihood function [[5) can be maximized through the Elorithm in
order to obtain the parameter estimales {x, ¥, w}. TheE-stepon the(k+1)-
th iteration of the EM algorithm requires the calculationtioé conditional ex-
pectation of the complete-data log-likelihood functifp(@; X ,y) in (8), say
Q(0,0"), evaluated using the current &t*) for 8. SinceL.(0; X,y) is lin-
ear in the unobservable datg,, this means calculating the current conditional
expectation otZ,,, given X andy, whereZ,,, is the random variable correspond-



ing to 2,4, that is

Q(60,6%) = Eyu {L.(0; X, y)}
N G

> ZEW{anm, U }@1(x,: 0%) + Qa(tp,; 6M) + In,)
n=1 g

G
Z [Q1(xy: 0") + Qa(th,; 0) + Inmy,

I
||M2

where
k

2(k
k) — 7T( ) (yn|$n;ﬁ(k) )qbd(a:n, ug ,2(’“))
"o NG 2(k k k
Z] 1 j (yn|wn7ﬁy ) ]( ))Cb (wn,[,l,§ ),E§ ))
provides the current value df|(2) on theteration and

[Yn — (B0 — bog)J?
06279

1
@x, 0%) = L [mor w2, -

1 _
Qa(v,; 0 = 3 [—pIn2r —In|Sy| — (, — p1,)'S, (0 — 1)) -
TheM-stepon the(k + 1)-th iteration of the EM algorithm requires the maxi-
mization of the conditional expectation of the completéadag-likelihood? (6, 0(’“))
with respect t@. The solutions for posterior probabilitieék“) and parameters

(H(kH 2(k+1 ) of local dens|t|e$bd(mn‘1p ),g=1,...,G, existin closed form

(e.g..McLachlan and Peel, QOO) that is:

N
1
et = 2T ©)
n=1
N k
pleD) — Dot Tég)wn
9 N k)
Zn—l T(LQ)
N k k+1 k+1
ssther) _ s 7o (@ — ) (@ — g™y
g N k ’
Zn lTT(LQ)

The updated* ), 5" ando?y*" for parameters of local densitiey, |z.; x, ).



g=1,...,G, are obtained by solving the equations:

N ok
Oy {Lelblzn )y _ 5 09 00Xy ) _, (10)
Obyo N vt g Obyo o
OBy {Lo(| s )} om (1 0Q1(x,: 0%)
g(k) c ns Yn _ ZT(k) 1 Xga _ O/ (11)
ob’ g ob’ ’
g n=1 g
OBg {Le(]n 1)} =y 9@ (x:6")
9(k) c ns Yn . Z (k) 1 Xga —0 (12)
Jo? N Tng Jo? o
€,9 n=1 €9
yielding
N k N k
plktl) _ M _ b(k+1)M
nT LA e
N k N k N k
b/(k-i—l) _ (Zn:l Tég)ynmgz o anl T?Sg)yn Zn:l Tr(zg)$%> %
g N k N k N k
Zn:l Tf(zg) anl Tf(zg) Zn:l Tf(zg)
1
N k N k 2
D one1 Tég)mnw;z -~ 2 one1 Tég)m/n
Yool Th Sy T ’
N k k+1
o2+1) Y1 7'7(19) [Yn — (béﬂl)w% + b§;0+ ))]2
€9 o N (k) ’
Zn:l Tng

See Appendix for computational details.

4. Maximum likelihood estimates of Gaussian CWM and relationships with
FMR and FMRC

In this section, we analyse the relationships between maxitikelihood es-
timates of Gaussian CWM and both FMR and FMRC. To begin with,sivow
in the following that, under suitable hypotheses, maxitnaraof the likelihood
function of Gaussian CWM leads to the same parameter estinwdtFMR and
FMRC. In this sense, FMR and FMRC can be considered as nesiddlsnof
Gaussian CWM.



4.1. Relationship with FMR

Let us consider the density function of FMR (De Sarbo and (1668 McLachlan and Peel,
2000; Frithwirth-Schnatfer, 2005):
G
fyla; ;) = Z (Yl Q) mg =D d(y: bz + bo, 02 ) 7,
g=1 g=1

where, denotes the overall parameters of the model.
The corresponding complete-data log-likelihood funcisn

N G
Lo(th; X,9) =D D (2ng I G (Ynl@n; Xy) + 2ng In 7p)

n=1 g=1
N G N G

= Z Z Zng ln¢(yn|mnu Xg) + Z Z “ng In Tg
n=1 g=1 n=1 g=1

Proposition 1. Inmodel [3), if local densities,(x; v,) have the same parameters
v’/)g - (I‘l’ga Eg) = (I’l’a 2) - 77[;! that |S

then maximum likelihood estimate d@f, r) in (I3) coincides with the corre-
sponding estimate inl5).

Proof. In order to prove the proposition, it is sufficient to showttheder the

assumption thath, = (pu,, Xy) = (, X) = 1, termsL;.(x) and L (7) in @)
do not depend oy, X,), g = 1,...,G. Indeed, undeif(14), the complete-data
log-likelihood function becomes:

L(0;X,y)=InL(6;X,y)

N G
- Z Z [an I A(Yn|Tn; X,) + 2ng I Ga(X0; ) + 259 In 7Tg]

n=1 g=1
= Lic(x) + L3.(¥) + Lse(m), (15)

whereL,.(v) in ({) is now replaced by

N
C5) =3 5 [pln2r (S|~ (2, — 'S @, — ).
n=1



sincey " | 2y =1forn=1,... N.
Moreover, in the E-step, the posterior probabi’vi,ﬁﬁ) in (3) becomes:

k k
Ly _ Ol X >¢d<wn|w> _ ol xd)
n k 9
T ol X ) da@aw®) S wP ol x )

n=1,....,Nandg=1,...,G.

Then, according td{9), ternds.(7) does not depend oth,. Thus, max-
imization of (3) can be attained by independently maxingzihe three terms
L1.(x), L5.(¢) and Ls.(7) and hence, maximization df (13) add{15) in the M-
step leads to the same estimateéyfm). This completes the proof. [

4.2. Relationship with FMRC

Let us consider the density function of FMRC (e.g. Dayton Kiatready,
11988):

G
y‘w Z(b Y; /gm+bg07ag,g>p(Qg|m7£) ) (16)
g=1

where the mixing weighp(£2,|x, £) is now a function depending an through
some parametegandd” is the augmented set of all parameters of the model.

Probabilityp(€2,|x, £) is usually modeled by a multinomial logistic distribu-
tion with the first component as baseline, that is:

exp(wy,T + wyp)

Qglx, &) = .
p(Qylx, §) Z] 1eXp(’w,-$+wjo)

(17)

In particular, equatiori(17) is satisfied if local densiti¢s|2,), g = 1,....G,
are assumed to be Gaussian with the same covariance mdm_qhma
The complete-data log-likelihood function correspondimdl®) is:

N G
Ec(l/)o; Xay) = ZZ [an In ¢(yn|wn§Xg) + Zng IHP(QQ|$,€)}

n=1 g=1

= Li.(x) + L3.(€) - (18)

Proposition 2. In model [3), if local densitieg,(x; 1/,,) have the same covariance
matrices¥, = 3, g = 1,..., G, and equal prior probabilities, = 1/G, then
maximum likelihood estimate dfy, &) in (18) can be derived from the estimate

of (x, %) in (B).



Proof. In order to prove the proposition, it is sufficient to showtthander
assumption&, = Y andm, = 1/G, g = 1,...,G, termsL,.(x) andLs.(7) in
() do not depend ofy,, ), g = 1,...,G. Indeed, we have:

N G
L(0; X, y) = [ [T 0nlmn: xp) ™ Gal@ns gy, ) 7o mns (19)
n=1g=1

and taking the logarithm of (19), after some algebra we get

L(0;X,y)=InL.(0;X,y)

= Lic(x) + L5:() + 7, (20)

whereL,.(v) in ({) is now replaced by

1 —
L5 (4 _Zzzng —pln2r —In|X| — (x, — p,)'E 1<$n_“g)} :

[\)

Once the estimates ¢fi,, ) have been obtained, quantjiff}, |, £) in (18) can
be obtained immediately, that is:

Ga(@n; prg, )T exp [—5(x — )Tz — )]

Pl ) T T e [h@ - )= @ -]

which can be written in forn{(17) for suitable constanis, w,, g = 1,...,G.
This completes the proof. [J

5. Conclusions

In this paper, we presented an analysis of the completeli#tatdnood func-
tion of Gaussian CWM and derived the parameter estimatesdiog to the EM
algorithm. Afterwards, theoretical results showed thaler suitable assump-
tions, both FMR and FMRC are nested models of Gaussian CWh4.iiriplies
that CWM is a quite general framework for local statisticaldaling.



Appendix

(k+1)

From equatior{I0), for b,," " (g9 =1, ..., G) we obtain:

0
n=1 ! abg()
yielding
N N N
’ k ’ k
S (o= (Bt b0) [ =0 = 3D bV = 0 DA
n=1 n=1 n=1
and then we get
N k N k
BHD) _ Donet T Yy (1) Dopet T
90 - N k g N k
D n=1 7'7(19) > n=1 TT(Lg)
(k+1) ; .
Forb,”"" (g =1,...,G), equation(LI)) leads to:
N (k)
0Q1 (xy: ™)
(k) g’ —_
; Tk b, -0 (21)

which implies

N
Sl [ — (byn + 05| 2 = 0
n=1

yielding
N k N k N k N k N k 2
D one1 T,Sg)ynac; B 2 on—1 Tég)yn D onet 77(19)“7% _y D one1 T,Sg)acnw; B (anl Téghf&)
N k N k N k g N k N %
anl 77(%1) anl 7'7(41) anl 7'7(41) anl 77(%1) anl Tég)
and finally
N k N k N k
pk+1) (anl Tr(tg)ynw; _ > on=i Tr(tg)yn D on=1 77(19)55;) )
g N k N k N k
Zn:l 7'7(19) Zn:l Tr(tg) anl Tr(tg)

N _(k N _(k 2
Zn:l TT(LQ) wnwéz . (Zn:l Tég)w;> (22)

25:1 7',&];) Zi:f:l Ty;)
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Furthermore, equatiof (12) leads to the current estlmatlaeof/arlancef(k)
(9=1,...,G)

i I ") _

da,
leading to

= 1 1 SE
k (k) k —
St -t i [ (680 )} -0

and furthermore

SN A [yn - (b('erl !, + b )r

k1) =1
Teg — — N _(k : (23)
En:l TT(LQ)

Finally, we remark that in general case the equatibhs (5)2fidare replaced by

al 6‘@1 xmw(’“))@u(wﬁg) -
2 ot By o, O

and [23) is replaced by

g

N (k) 2
2(k+1) _ Zn 1 Tng [yn - :u’(mvﬁg)] .

€,9 N k
En:l TT(LQ)
References

Anderson, J.A., 1972. Separate sample logistic discriti@naBiomtrka. 59, 19-
35.

De Sarbo, W.S., Cron, W.L., 1988. A maximum likelihood metblogy for clus-
terwise linear regression. JClass. 5, 248-282.

Dayton, C.M., Macready, G.B., 1988. Concomitant-Varidbdéent-Class Mod-
els, JASA. 83, 173-178.

Friuhwirth-Schnatter, S., 2005. Finite Mixture and Markewitching Models.
Springer, Heidelberg.

11



Gershenfeld, N., 1997. Non linear inference and Clusteigiited Modeling.
Annals of the New York Academy of Sciences. 808, 18-24.

Gershenfeld, N., Schoner, B., Metois, E., 1999. Clusteigimted modelling for
time-series analysis. Nature. 397, 329-332.

Gershenfeld, N., 1999. The Nature of Mathematical Modgll@ambridge Uni-
versity Press, Cambridge.

Ingrassia, S., Minotti, S.C., Vittadini, G., 2011. Localaftical Mod-
eling via a Cluster-Weighted Approach with Elliptical Dibutions.
http://EconPapers.repec.org/RePEc:  mis:wpaper:2@i11,10submitted to
JClass, 2nd revision.

McLachlan, G.J., Peel, D., 2000. Finite Mixture Models. &/jINew York.

Schoner, B., Gershenfeld, N., 2001. Cluster Weighted Mioge Probabilistic
Time Series Prediction, Characterization, and SynthasidVees, A.l. (Ed.),
Nonlinear Dynamics and Statistics. Birkhauser, Bostob;385.

Schoner, B., 2000. Probabilistic Characterization anuti8ssis of Complex Data
Driven Systems. Ph.D. Thesis, MIT.

Wedel, M., 2002. Concomitant variables in finite mixture raksd StNeerla.
56(3), 362-375.

12


http://EconPapers.repec.org/RePEc:

	1 Introduction
	2 Cluster-Weighted Modeling
	3 The likelihood function of Gaussian CWM
	4 Maximum likelihood estimates of Gaussian CWM and relationships with FMR and FMRC
	4.1 Relationship with FMR
	4.2 Relationship with FMRC

	5 Conclusions

