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Abstract

We are presenting a simple and numerical stable algorithm for the solution of the cone projection
problem which is suitable for relative small data sets and for simulation purposes needed for con-
vexity tests. Not even one pseudo-inverse matrix is computed because of a proper Gram-Schmidt
orthonormalization process that is used.
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THE CONE PROJECTION PROBLEM

We have the data set (xi, φi), i = 1, 2, . . . , n which
has emerged from a convex function f at least C(2)[x1, xn]
by the process:

φi = f(xi) + ǫi, ǫ ∼ iid(0, σ2 In) (1)

We want to find the vector y that has the smallest
euclidean distance from φ subject to the requirement of
convexity Ay ≥ 0, thus we have to solve the next primal
optimization problem:

min
{
∑n

i=1 (yi − φi)
2
= (y − φ)

T
(y − φ)

}

subject to: (−Ay) ≤ 0

(2)

There are two equivalent versions for the matrix A of
the convexity inequalities constraints. The first one is is

to observe that we have strict inequalities:

x1 < x2 < · · · < xn

so starting from the definition of convexity we proceed
to the inequalities:

yi+2−yi+1

xi+2−xi+1
≥ yi+1−yi

xi+1−xi

(yi+2 − yi+1) (xi+1 − xi) ≥ (yi+1 − yi) (xi+2 − xi+1)

(xi+2 − xi+1) yi + (xi − xi+2) yi+1 + (xi+1 − xi) yi+2 ≥ 0
(3)

By constructing now all the above inequalities for
i = 1, 2, . . . , n− 2 we have formulated the matrix A(i).

A(i) =








x3 − x2 x1 − x3 x2 − x1 0 · · · 0
0 x4 − x3 x2 − x4 x3 − x2 0 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 xn − xn−1 xn−2 − xn xn−1 − xn−2








(4)

The second way is obtained if we have equal spaced
xi-data. Then it is easy to eliminate the same positive
quantity ∆x = xj+1 − xj from all inequalities:

(xi+2 − xi+1) yi + (xi − xi+2) yi+1 + (xi+1 − xi) yi+2 ≥ 0

(∆x) yi − (2∆x) yi+1 + (∆x) yi+2 ≥ 0

yi − 2yi+1 + yi+2 ≥ 0
(5)

again with i = 1, 2, . . . , n−2 and create the matrix A(ii).

A(ii) =








1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
. . .

. . .
. . .

. . .
. . .

. . .

0 0 · · · 1 −2 1








(6)

Lemma .1. The polar component ρ∗ of the vector de-
composition φ = y∗ + ρ∗ with y∗ the solution of problem
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2 is a linear combination of the negative rows of matrix
A, while the coefficients are either zero (if the correspond-
ing constraint is not binding - inactive) or positive (if the
relevant constraint is binding - active).

Proof. The Lagrangian function of the problem and the
first order condition for y can be written as:

L (y, λ) = (y − φ)T (y − φ) + λT (−Ay) (7)

∂L(y,λ)
∂y

= 2 (y − φ) +
(
−AT

)
λ = 0

or
2 (y − φ) +

(
−AT

)
λ = 0

or
y = φ+ 1

2 A
T λ

(8)

So, for the optimal solution {y∗, λ∗} we have that it also
holds:

y∗ = φ+ 1
2 A

T λ∗

or
φ− y∗ = − 1

2 A
T λ∗

or

ρ∗ =
(
−AT

)
λ∗

2
or

ρ∗ =
(
−AT

)
λ̂∗

(9)

Thus the representation of the polar component of the
data vector, following the definitions of [1] and [3] in the
basis of the negative rows of A is half the Lagrange coef-
ficient vector of the optimization problem 2. The coeffi-
cients are zero or positive if the corresponding constraint
is inactive or active respectively, due to Karush Kuhn
Tucker complementarity slackness conditions.

A NUMERICAL STABLE GEOMETRIC

ALGORITHM FOR CONE PROJECTION

An illustrative example

Example .1. Let’ s start with a common convex func-
tion:

f(x) = x2 , x ∈ [0, 1] (10)

Let the vectors x = (0, 1
2 , 1,

3
2 , 2) and φ = (0, 1

2 ,
5
2 ,

15
4 , 4)

as presented at Figure 1 where we have drawn also the
chord connecting (x1, φ1) and (x5, φ5). If our data was
convex then all (xi, φi) should lie above the chord, so
clearly we have not convexity here.
The demand for convexity takes the form of the next

inequality constraints, using matrix A(ii) because of the

FIG. 1: The statement of the convex projection problem for
n = 5

equal spaced xi:

Ay ≥ 0

A =





1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1





(11)

We define the matrix:

R = −A =





−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1





We pre-multiply vector φ by R:

Rφ =





− 3
2

3
4
1





If all components of the result were negative, then for the
matrix A it should hold Aφ ≥ 0, so our data should be
convex. So, if we seek for the greatest deviation from
convexity then it is natural to pick the component that is
the greatest positive. This is compatible with (i) deviation
from convexity and with (ii) Lemma .1.
Here we observe the greatest entrance to be the 3rd one,
so we pick up the 3rd row of R as the best chance to
obtain a component of the polar vector and proceed by
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taking the orthogonal projection of φ onto that row:

R1 = rT3 =









0
0
−1
2
−1









µ1 =
(

〈φ,r3〉
〈r3,r3〉

)

=
(
1
6

)
=
(
0.166666 . . .

)
=
(
0.16

)

ρ1 = R1 µ1 =









0
0
− 1

6
1
3

− 1
6









y1 = φ− ρ1 =









0
1
2
8
3
41
12
25
6









R1 y1 =





− 5
3

17
12
0





Now the greatest entry is the 2nd one, so we pick up the
2nd row of R and continue by taking the matrix with the
2nd and 3rd rows of R. It is important to notice that we
are always sorting our indices in ascending order.

R2 =
(
rT2 rT3

)
=









0 0
−1 0
2 −1
−1 2
0 −1









Now there exist two ways for projecting our data φ on
the two columns of R2:

1. The traditional way, i.e. the OLS estimator, which
involves the pseudo inverse matrix and implies
many numerical instabilities

2. The new proposed way of taking the projection on
the orthonormal base produced from them via the
Gram-Schmidt procedure.

We choose 2nd way and first construct for R2 with Gram-
Schmidt the matrix with orthonormal columns:

V =










0 0

−
√
6
6 −

√
30
15√

6
3

√
30
30

−
√
6
6

2
√
30

15

0 −
√
30
10










Then we just take the projections of φ on the two
columns of V:

µ2 = V T φ =

( √
6
8

3
√
30

20

)

=

(
0.3061862179
0.8215838362

)

The reader who is familiar with the active set methodol-
ogy has to notice that our vector is not identical anymore
to the λ vector of that method, because of the orthonor-
malization process. This is the cost for the numerical
stabilization of our algorithm.We continue executing our
algorithm:

ρ2 = V µ2 =









0
− 17

40
2
5
19
40

− 9
20









y2 = φ− ρ2 =







37
40
21
10
131
40
89
20







R2 y2 =





− 1
4
0
0





We observe that there exist no polar edge vector to be
inserted in our algorithm, so we exit with the solutions:

ρ∗ = ρ2 =









0
− 17

40
2
5
19
40

− 9
20









y∗ = y∗2 =







37
40
21
10
131
40
89
20







We check again our solution:

Ay∗ =





1
4
0
0





〈y∗, ρ∗〉 = 0

It is expected to find that we will have two distinct lines
for our cone projection plot and the second line has to be
the OLS line for the set {(xi, φi), i = 2, 3, 4, 5}, because
only then we have a sequence of vanishing constraints.
This fact is easily observed at Figure 2.

The algorithm

By increasing the dimension of our problem until
a rather big n we continue to apply the same actions,
i.e. we have established an algorithm for cone projection.

We start by testing if our data is convex, so there is no
need for cone projection at all. If it is not convex, then
we multiply it by the R matrix and seek for the maximum
component and for its position. That direction is more
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FIG. 2: The geometry of convex projection problem for n = 5
in xy-plot

probable to be an edge of the polar cone, so we find the
projection of our data onto the ith row of R matrix. Now
we have found the first approximations of the vectors ρ
and y = φ−ρ. We multiply again this y with R (b = Ry)
and seek again for the maximum component and for its
position. The new direction forms a set together with the
previous one and we always sort the indices. The sorted
indices construct the X matrix by taking the correspond-
ing rows of R matrix as the columns of X. Then we apply
the Gram-Schmidt orthonormalization procedure on the
columns of X and construct the matrix V. Now our µ

vector can be calculated and then we find the next ρ and
y approximation. We continue our algorithm until we
reach at least one of the next three termination criteria:

1. The algorithm is terminated if some b vector is
‘practically’ zero

2. The algorithm is terminated if there is no improve-
ment in the value of b

3. The algorithm is terminated if next index i of
R−row has already been chosen.

Finally we exit from the algorithm with the set of in-
dices J, where we have that the convexity constraints are
satisfied as equalities (the active set indices, but without
calculating the corresponding Lagrange coefficients), the
polar component ρ∗ and the cone projection component
y∗ of our initial data φ. We do not compute even one
time any kind of pseudo-inverse matrix, which is the
fundamental tool of every regression technique. This
is due to the use of Gram-Schmidt orthonormalization
process in order to do our orthogonal projections.

This makes the algorithm numerical stable for using
it for simulation purposes : we can establish the cone
projection solution for every random set of vectors.
This cannot be done with the traditional OLS solution,
because of the existence of almost singular matrices for
floating point arithmetic computations. The pseudo-
code of the Algorithm is presented below.

A Gram-Schmidt polar basis

Cone Projection Algorithm

Find y∗ = argmin
︸ ︷︷ ︸

y

‖y − φ‖2

subject to Ay ≥ 0

INITIALIZE

{ǫ1, ǫ2, J = {}, R = −A, b = Rφ, bold = b+ θ, θ > 0}

• IF {b ≥ 0} THEN {ρ = 0, y = φ}
BREAK

• ELSE

FIRST PROJECTION
{
s = max

︸︷︷︸

j=1,...,n−2

bj i = arg
︸︷︷︸

j=1,...,n−2

(bj = s) J = sort (J ∪ {i})
}

ρ = projectriφ

y = φ− ρ, b = Ry

NEXT PROJECTIONS
{
s = max

︸︷︷︸

j=1,...,n−2

bj i = arg
︸︷︷︸

j=1,...,n−2

(bj = s) J = sort (J ∪ {i})
}

IF {s ≤ ǫ1} THEN BREAK

DO WHILE ‖b− bold‖1 ≥ ǫ2

{
X =

(
rTi1 . . . r

T
ik

)
, ij ∈ J

V = GramSchmidt(X)

}

ρ = projectV φ

y = φ− ρ, b = Ry
{
s = max

︸︷︷︸

j=1,...,n−2

bj i = arg
︸︷︷︸

j=1,...,n−2

(bj = s) J = sort (J ∪ {i})
}

– IF {s ≥ ǫ1} THEN

{J = sort (J ∪ {i})}

– IF {i ∈ J} THEN BREAK

– ELSE BREAK

END DO

CHECK SOLUTION |〈y, ρ〉| ≤ ǫ1
RETURN {J, ρ, y}

We have developed our algorithm in four proper
languages:

1. First in Maple symbolic algebra system, where with
just one page code we are able to execute our algo-
rithm in absolute accuracy by using rational num-
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bers as input data.

2. Second in R suite, where we have floating point
arithmetic, but it is an ‘alter ego’ for the statistician
community.

3. Third in Matlab/Octave, for those who are familiar
with the benefits of them.

4. Fourth in FORTRAN, one of the fastest ways to
execute any numerical algorithm.

CONCLUSION

The presented algorithm for solving the cone projec-
tion problem is quite simple because:

• We don’ t take care about the sign of Lagrange
multipliers since we don’ t compute them

• We just include one component of the polar basis
every time

The algorithm is numerical stable for every kind of initial
random vector φ because all projections are done via a

Gram-Schmidt procedure and not with the common OLS
pseudo-inverse matrix, which is very often close to singu-
lar for floating point arithmetic computations.
The algorithm is useful for convexity tests where we need
to compute the weights of the weighted χ2 or Beta dis-
tribution that emerges for the corresponding statistical
test, see for example [2].
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