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Function Distribution Based on Puri–Rubin Characterization.
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We construct integral and supremum type goodness-of-fit tests for the family of power

distribution functions. Test statistics are functionals of U−empirical processes and are

based on the classical characterization of power function distribution family belonging to

Puri and Rubin. We describe the logarithmic large deviation asymptotics of test statis-

tics under null-hypothesis, and calculate their local Bahadur efficiency under common

parametric alternatives. Conditions of local optimality of new statistics are given.
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1 Introduction.

Testing goodness-of-fit for parametric families of distributions remains one of important and
interesting statistical problems. Let P be the family of power function distributions with the
distribution functions (d.f.)

F (x) = xλ, x ∈ (0, 1), λ > 0. (1.1)

It is the member of the beta family and is the ”inverse” of Pareto distribution. Power function
distribution often appears in applications, e.g. in the study of service periods of queueing
systems [4], in the economic models of lead-time and pricing [19], and in the reliability of
electric systems [11].

We are interested in goodness-of-fit tests for this family which are independent of unknown
parameter λ. As far as we know, the only attempt to build such tests has been traced by
Martynov [9], [10] who proposed to use the well-known Durbin’s approach [3] based on the
empirical process with estimated parameters.

In this paper we develop completely different way introducing and analyzing two tests based
on characterization of the power function distribution. Consider the following characterization
by Puri and Rubin [17]:

Let X and Y be i.i.d. non-negative random variables. Then the equality in law of X and
min(X

Y
, Y
X
) takes place iff X has some d.f. from the family P.

It should be noted that this result has been obtained by means of monotonic transformation
from the characterization of exponentiality obtained in [17]. This is a common and traditional
method to restate the characterization theorems. However, as noted in [5, p.169], ”while a
property can be interesting for one distribution, it may lose its appeal after a transformation.”
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But we find the characterization of the power function distribution family stated above rather
convenient for goodness-of-fit purposes.

Let X1, X2, . . . be i.i.d. observations with the continuous d.f. F.We are interested in testing
the hypothesis H0 : F ∈ P against the general alternative H1 : F /∈ P, assuming, however, that
the alternative d.f. is also concentrated on (0, 1).

Let Fn(t) = n−1
∑n

i=1 1{Xi < t}, t ∈ R1, be the usual empirical d.f. based on the sample
X1, . . . , Xn. According to the Puri-Rubin characterization we introduce the so-called U -empirical
d.f., see [7], [8], by

Hn(t) =

(

n

2

)−1
∑

1≤i<j≤n

1{min(
Xi

Xj
,
Xj

Xi
) < t}, t ∈ (0, 1).

Consider two statistics which can be used for testing H0 against H1 :

IPR
n =

∫ 1

0

(Hn(t)− Fn(t)) dFn(t), (1.2)

DPR
n = sup

t∈[0,1]
| Hn(t)− Fn(t) | . (1.3)

The first of this statistics is of integral type and resembles the classical ω1
n-statistic while the

second is of Kolmogorov type. We will describe their limit distributions under H0 and we will
calculate their local Bahadur efficiency under certain parametric alternatives. To this end we
need their rough large deviation asymptotics under H0. Moreover, we will discuss the conditions
of their local optimality in the Bahadur sense.

For basic information on Bahadur theory we refer to [1], [2] and [12]. This type of efficiency
is most pertinent in our problem as the Kolmogorov type statistics have non-normal distribution
and hence the Pitman approach is not applicable.

In Bahadur theory the measure of efficiency of the sequence of statistics {Tn} is the exact
slope cT (θ) describing the exponential decrease rate of ther P−values under the alternative. It
is well-known (it is the so-called Bahadur-Raghavachari inequality [1], [12]) that always

cT (θ) ≤ 2K(θ),

where K(θ) is the Kullback-Leibler ”distance” between the null-hypothesis and the alternative
which is indexed by real parameter θ. Therefore we may define the local Bahadur efficiency as

eff(T ) := lim
θ→0

cT (θ)/2K(θ).

2 Statistic IPRn

The statistic IPR
n is asymptotically equivalent to the U -statistic of degree 3 with the centred

kernel

ΨPR(X, Y, Z) =
1

3

(

1{min(
X

Y
,
Y

X
) < Z}+ 1{min(

X

Z
,
Z

X
) < Y }+ 1{min(

Y

Z
,
Z

Y
) < X}

)

− 1

2
.
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Note that both statistics IPR
n and DPR

n under H0 are invariant with respect to the change
of variable X → X1/λ. Therefore we may take λ = 1, i.e. we can assume that the initial sample
is uniform on (0, 1).

It is well-known, see, e.g. [6], [8] that non-degenerate U - and V -statistics are asymptotically
normal. To prove that the kernel ΨPR(X, Y, Z) is non-degenerate, let calculate its projection
ψPR. For fixed X = s we have

ψPR(s) := E(ΨPR(X, Y, Z) | X = s) =
2

3
P{min(

s

Y
,
Y

s
) < Z}+ 1

3
P{min(

Y

Z
,
Z

Y
) < s} − 1

2
.

First probability can be evaluated as follows:

P{min(
s

Y
,
Y

s
) < Z} = 1−

∫ 1

s

s

y
dy −

∫ s

0

y

s
dy = 1 + s ln s− 1

2
s,

and it results from the above characterization that

P{min(
Y

Z
,
Z

Y
) < s} = P{Y < s} = s, 0 ≤ s ≤ 1.

Hence we get the final expression for the projection of the kernel:

ψPR(s) =
1

6
+

2

3
s ln s, 0 ≤ s ≤ 1. (2.1)

The variance of the projection is given by

∆2
PR =

∫ 1

0

ψ2
PR(s)ds =

5

972
,

and is positive. Hence, the kernel ΨPR(X, Y, Z) is non-degenerate. Due to Hoeffding’s theorem
[6], [8]

√
nIPR

n
d−→ N (0,

5

108
).

The kernel ΨPR is centred, non-degenerate and bounded. Applying the theorem on large
deviations for non-degenerate U -statistics from [15], see also [2], [13], we get:

Theorem 2.1. For a > 0 it holds true that

lim
n→∞

n−1 lnP(IPR
n > a) = −f(a),

where the function f is analytic for sufficiently small a > 0, and that

f(a) ∼ a2

18∆2
PR

=
54

5
a2, a→ 0.

In case of uniform null-distribution, and more generally, for the power function distribution,
there are no accepted standard alternatives. Therefore we consider in this paper three alterna-
tives: the contamination alternative and two other unnamed alternatives concentrated on (0, 1).
The expressions of these alternative d.f.’s are as follows:

G1(x, θ) = (1− θ)x+ θxr, 0 ≤ θ ≤ 1, r > 1, x ∈ (0, 1).

G2(x, θ) = x− θ sin(πx), 0 ≤ θ < 1/π, x ∈ (0, 1).

G3(x, θ) = x+ θ
∫ x

0

(

1
6
+ 2

3
y ln y

)

dy, 0 ≤ θ ≤ 1, x ∈ (0, 1).
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The formulas for corresponding densities gj(x, θ), j = 1, 2, 3 are straightforward.
We will need in the sequel the expressions as θ → 0 of the Kullback-Leibler ”distance”

between the null-hypothesis and the considered alternatives. Note that the null-hypothesis is
the composite one. We will establish now some general form for this distance as θ → 0.

Lemma 2.2. Let g(x, θ) be any alternative density on (0, 1) which is sufficiently regular so that
any differentiation under the sign of integral in the proof is justifiable and the Kullback-Leibler
information (2.2) is well-defined. Put

K(θ) = inf
λ>0

∫ 1

0

ln
g(x, θ)

λxλ−1
g(x, θ)dx. (2.2)

Then

2K(θ) ∼ θ2

[

∫ 1

0

(g
′

θ(x, 0))
2dx−

(
∫ 1

0

g
′

θ(x, 0) lnxdx

)2
]

, θ → 0. (2.3)

Proof. The infimum in (2.2) is attained for λ = −(
∫ 1

0
g(x, θ) lnxdx)−1 and equals

K(θ) =

∫ 1

0

g(x, θ) ln g(x, θ)dx+

∫ 1

0

g(x, θ) lnxdx+ ln(−
∫ 1

0

g(x, θ) lnxdx) + 1. (2.4)

As θ → 0 the function K(θ) has the following form:

K(θ) ∼ K(0) +K ′(0) · θ + 1

2
K ′′(0) · θ2.

It is easy to see that K(0) = 0 and that K ′(0) = 0.
Differentiating in θ two times the right-hand side of (2.4) we get

K ′′(θ) =

∫ 1

0

g′′θ2(x, θ)(1 + ln g(x, θ) + ln x)dx+

∫ 1

0

g′θ
2(x, θ)

g(x, θ)
dx+

+

∫ 1

0

g′′θ2(x, θ) ln x dx

(
∫ 1

0

g(x, θ) lnxdx

)−1

−
(

∫ 1

0
g′θ(x, θ) ln xdx

∫ 1

0
g(x, θ) lnxdx

)2

.

Substituting θ = 0, one obtains the required expression.

Let calculate the local Bahadur exact slope and the local efficiency of the sequence of statis-
tics IPR

n for the alternative d.f. G(x, θ) and the density g(x, θ) assuming their regularity and
the possibility of differentiating under the integral sign. These conditions are valid for all three
alternatives we consider. Denote also h(x) = g′θ(x, 0). Note that

∫ 1

0
h(x)dx = 0.

According to the Law of Large Numbers for U -statistics [8] the limit in probability of the
sequence IPR

n under any such alternative is equal as θ → 0 to

bI(θ) = Pθ(min(
X

Y
,
Y

X
) < Z)−1

2
= 2

∫ 1

0

g(z, θ)dz

∫ 1

0

g(y, θ)G(yz, θ)dy−1

2
∼ J(0)+J ′(0)·θ.
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It is easy to see that J(0) = 0, while J ′(0) = 2
∫ 1

0
h(z)zdz + 2

∫ 1

0
dz
∫ 1

0
dy
∫ yz

0
h(x)dx. Chan-

ging two times the order of integration, we get

∫ 1

0

dz

∫ 1

0

dy

∫ yz

0

h(x)dx =

∫ 1

0

dz

∫ z

0

h(x)
(

1− x

z

)

dx =

∫ 1

0

h(x) (x ln x− x) dx.

It follows therefore that

bI(θ;PR) ∼ 3θ

∫ 1

0

ψPR(x)h(x)ds. (2.5)

Contamination alternative. After elementary calculations we get by (2.5) as θ → 0 that
bI(θ) ∼ (r − 1)2/2(r + 1)2 · θ. Therefore the local exact slope of the sequence of statistics IPR

n

as θ → 0 admits the representation

cI(θ;PR) ∼
108

5
b2I(θ;PR) =

27(r − 1)4

5(r + 1)4
θ2.

It is easy to show using (2.3) that for the alternative d.f. G1

2K(θ) ∼ (r − 1)4

r2(2r − 1)
θ2, θ → 0. (2.6)

Hence the local Bahadur efficiency of our test is equal to

eff(r; IPR) = lim
θ→0

cI(θ;PR)

2K(θ)
=

27(2r − 1)r2

5(r + 1)4
.

This efficiency is reasonably high for moderate values of r, its maximum is attained for
r = 2 +

√
3 and equals 0.970.

Second alternative The calculation of local Bahadur efficiency in the case of alternative
G2 is quite similar. We have by (2.5) bI(θ;PR) ∼ 0.224 · θ2, so that the local exact slope of IPR

n

as θ → 0 admits the representation cI(θ;PR) ∼ 1.083 · θ2.
According to (2.3), the Kullback-Leibler information in this case satisfies

2K(θ) ∼ 1.505 · θ2, θ → 0. (2.7)

Consequently, the local Bahadur efficiency of our test is eff(IPR) = 0.719.
Third alternative. In the case of the third alternative the calculations are alike, and we

obtain after some calculations that cI(θ;PR) ∼ 5θ2

972
as θ → 0. The Kullback-Leibler information

also satisfies in this case the relation

2K(θ) ∼ 5θ2

972
, θ → 0. (2.8)

Therefore, the local Bahadur efficiency is equal to 1, and the integral test is locally optimal
in Bahadur sense [12, Ch. 6]. We will return to the cause of this phenomenon in the last section.
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Table 2.1. Local Bahadur efficiency for the statistic IPR
n .

Alternative Efficiency
G1 0.970, r ≈ 3.7
G2 0.719
G3 1. 000

3 Statistic DPR
n

Now we consider the Kolmogorov type statistic (1.3). In this case for fixed t the difference
Hn(t)− Fn(t) is a family of U -statistics with the kernels

ΞPR(X, Y ; t) = 1{min(
X

Y
,
Y

X
) < t} − 1

2
1{X < t} − 1

2
1{Y < t},

depending on t ∈ (0, 1). The projection of this kernel for fixed t ∈ (0, 1) has the form

ξPR(s; t) := E (ΞPR(X, Y ; t)|X = s) = P{min(
s

Y
,
Y

s
) < t} − 1

2
1{s < t} − 1

2
P{Y < t}.

After easy calculations we get

ξPR(s; t) = 1{s < t}(1
2
− s

t
) + st− 1

2
t. (3.1)

Now let calculate the variance δ2PR(t) of this projection. We have after some simple calcula-
tions

δ2PR(t) := Eξ2PR(X1; t) =
1

12
t(1 + t− 2t2), 0 < t < 1. (3.2)

It is easy to see that the supremum of the function δ2PR(t) is attained in the point t∗ = 1+
√
7

6

and equals δ2PR ≈ 0.044. Hence our family of kernels ΞPR(X ; t) by [13] is non-degenerate.
The limiting distribution of the statistic DPR

n is unknown. Using the mehods developed in
[18], one can show that the U -empirical process

ηn(t) =
√
n (Hn(t)− Fn(t)) , t ∈ (0, 1),

converges weakly as n → ∞ to some centered Gaussian process η(t) with complicated covari-
ance. Then the sequence of statistics

√
nDPR

n converges in distribution to the random variable
supt |η(t)| whose distribution we are not able to find. Hence we suggest to use statistical mod-
elling to evaluate the critical values for the statistics DPR

n .
The family of kernels {ΞPR(X, Y ; t)}, t ∈ (0, 1) is not only centred but bounded. Using

the results of [13] on large deviations of families of non-degenerate U -statistics, we obtain the
following result.

Theorem 3.1. For sufficiently small a > 0 it holds true that

lim
n→∞

n−1 lnP(DPR
n > a) = −k(a),
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where the function k is analytic, and moreover

k(a) =
a2

8δ2PR

(1 + o(1)) ∼ 2.84 a2, as a→ 0.

Contamination alternative. Let calculate the local Bahadur slope and local efficiency of
the statistic (1.3) for the alternative d.f. G1(x, θ). By Glivenko-Cantelli theorem for U -empirical
d.f.’s [7] the limit of DPR

n almost surely under any alternative is equal as θ → 0 to

bD(t, θ;PR) = sup
0≤t≤1

|2
∫ 1

0

g(y, θ)G(ty, θ)dy−G(t, θ)|. (3.3)

Assuming the regularity of the alternative d.f., we can deduce

bD(t, θ;PR) ∼ 2 sup
0≤t≤1

|
∫ 1

0

ξPR(s; t)h(s)ds| · θ, (3.4)

where ξPR(s; t) is from (3.1). Applying this formula we get for our alternative

bD(t, θ;PR) ∼
(r − 1)2

r + 1
r−

r

r−1θ, θ → 0.

Hence, the local exact slope of the sequence of statistics DPR
n as θ → 0 admits the representation

cD(θ;PR) ∼
5.68(r − 1)4r−

2r

r−1

(r + 1)2
θ2.

The Kullback-Leibler information satisfies (2.6). Hence the local Bahadur efficiency of our test
is equal to

eff(r;DPR) =
5.68(2r − 1)r−

2

r−1

(r + 1)2
.

It can be shown that the maximal value of the local efficiency for the sequence {DPR
n } is

attained for r = 4.64 and is equal to 0.636 while its values for 3 ≤ r ≤ 12 are larger than 0.5.
Second alternative. The calculation of local Bahadur efficiency in the case of alternative

G2 is quite similar. We have as θ → 0 by (3.4) bD(θ;PR) ∼ 0.367 · θ. Therefore the local exact
slope of DPR

n admits the asymptotics cD(θ;PR) ∼ 0.765 · θ2. The Kullback-Leibler information
in this case is given by (2.7). Hence the local Bahadur efficiency of our test is eff(DPR) = 0.508.

Third alternative. In this case we get for the alternative d.f. G3(x, θ) as θ → 0 that
bD(θ;PR) ∼ 0.0249 · θ. Hence the local exact slope of the sequence of statistics DPR

n as θ → 0
admits the representation cD(θ;PR) ∼ 0.00352 · θ2. We know that the Kullback-Leibler infor-
mation in this case satisfies (2.8). Thus the local Bahadur efficiency of our test is equal to 0.685.

It is seen that the Kolmogorov statistic is less efficient than the integral statistic IPR
n as

usually in goodness-of-fit testing [12].
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Table 3.2. Local Bahadur efficiency for statistic DPR
n .

Alternative Efficiency
G1 0.636, for r ≈ 4.64
G2 0.508
G3 0.685

4 Conditions of local asymptotic optimality

In this section we are interested in conditions of local asymptotic optimality (LAO) in Bahadur
sense for both sequences of statistics IPR

n and DPR
n . This means to describe the local structure

of the alternatives for which the given statistic has maximal potential local efficiency so that
the relation

cT (θ) ∼ 2K(θ), θ → 0,

holds, see [12],[16]. Such alternatives form the domain of LAO for the given sequence of statistics.
Consider the functions

H(x) = G
′

θ(x, θ) |θ=0, h(x) = g
′

θ(x, θ) |θ=0 .

We will assume that the following regularity conditions are true, see also [16]:
∫ 1

0

h2(x)dx <∞ where h(x) = H ′(x), (4.1)

∂

∂θ

∫ 1

0

g(x, θ)q(x)dx |θ=0 =

∫ 1

0

h(x)q(x)dx ∀q ∈ L1(0, 1). (4.2)

Denote by G the class of densities g(x, θ) with d.f.’s G(x, θ), satisfying the regularity conditions
(4.1) - (4.2). We are going to deduce the LAO conditions in terms of the function h(x).

For alternative densities from G the arguments of Lemma 2.2 are true, hence the asymptotics

2K(θ) ∼
{

∫ 1

0

h2(x)dx−
(
∫ 1

0

h(x) ln xdx

)2
}

θ2, θ → 0,

is valid.
First consider the integral statistic IPR

n with the kernel ΨPR(x, y, z) and its projection
ψPR(x) =

1
6
+ 2

3
x ln x. Let introduce the auxiliary function

h0(x) = h(x)− (ln x+ 1)

∫ ∞

0

lnuh(u)du.

Simple calculations show that
∫ 1

0

h2(x)dx−
(
∫ 1

0

h(x) ln xdx

)2

=

∫ 1

0

h20(x)dx,

∫ 1

0

ψPR(x)h(x)dx =

∫ 1

0

ψPR(x)h0(x)dx,

∫ 1

0

ξPR(x; t)h(x)dx =

∫ 1

0

ξPR(x; t)h0(x)dx for any t ∈ (0, 1).
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Hence the local asymptotic efficiency by (2.5) takes the form

eff(IPR
n ) = lim

θ→0
b2I(θ;PR)/

(

9∆2
PR · 2K(θ)

)

=

=

(
∫ 1

0

ψPR(x)h0(x)dx

)2

/

(
∫ 1

0

ψ2
PR(x)dx ·

∫ 1

0

h20(x)dx

)

.

By Cauchy-Schwarz inequality we obtain that the expression in the right-hand side is equal
to 1 iff h0(x) = C1ψPR(x) for some constant C1 > 0, so that h(x) = C1ψPR(x)+C2(ln x+1) for
some constants C1 > 0 and C2. The set of distributions for which the function h(x) has such
form generate the domain of LAO in the class G. The example of such alternative is the density
g(x, θ) which for small θ > 0 satisfies the formula

g(x, θ) = 1 + θ

(

1

6
+

2

3
x ln x

)

, 0 ≤ x ≤ 1. (4.3)

This explains why the third alternative leads to asymptotic optimality of the test based on IPR
n .

It is in perfect agreement with the findings of the paper [14] where similar problems were solved
for the simple null-hypothesis.

Now let consider the Kolmogorov type statistic DPR
n with the family of kernels ΞPR(X, Y ; t)

and their projections ξPR(x; t) = 1{x < t}(1
2
− x

t
)+xt− t

2
. In this case it is easy to see that the

following asymptotics is true:

bD(θ;PR) ∼ 2θ sup
t∈(0,1]

|
∫ 1

0

ξPR(x; t)h0(x)dx | . (4.4)

Hence the local efficiency takes the form

eff(DPR) = lim
θ→0

[

b2D(θ;PR)/ sup
t∈(0,1)

(

4δ2PR(t)
)

· 2K(θ)

]

=

= sup
t∈(0,1)

(
∫ 1

0

ξPR(x; t)h0(x)dx

)2

/ sup
t∈(0,1)

(
∫ 1

0

ξ2PR(x, t)dx ·
∫ 1

0

h20(x)dx

)

≤ 1.

We can apply once again the Cauchy-Schwarz inequality to the integral in (4.4). It follows
that the sequence of statistics DPR

n is locally asymptotically optimal, and eff(DPR) = 1 iff

h(x) = C3ξPR(x, t0) + C4(ln x + 1) for t0 = arg supt∈(0,1) δ
2
PR(t) = 1+

√
7

6
and some constants

C3 > 0 and C4. The distributions with such h(x) form the domain of LAO in the class G. The
simplest example of such alternative density g(x, θ) which for small θ > 0 is given by the formula

g(x, θ) = 1 + θ

(

1{x < t0}
(

1

2
− x

t0

)

+ xt0 −
t0
2

)

, 0 ≤ x ≤ 1, where t0 =
1 +

√
7

6
. (4.5)

Hence we see that there exist special alternative densities (4.3) and (4.5) of relatively simple
form for which our sequences of statistics are locally asymptotically optimal. This stresses their
merits and potential utility.
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