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Abstract

Consider a nonlinear regression model : yi = g (xi, θ) + ei, i = 1, ..., n,

where the xi are random predictors xi and θ is the unknown parameter

vector ranging in a set Θ ⊂Rp. All known results on the consistency of

the least squares estimator and in general of M estimators assume that

either Θ is compact or g is bounded, which excludes frequently employed

models such as the Michaelis-Menten, logistic growth and exponential

decay models. In this article we deal with the so-called separable models,

where p = p1 + p2, θ =(α, β) with α ∈A ⊂ Rp1 , β ∈B ⊂ Rp2,and g

has the form g (x, θ) = βT
h (x, α) where h is a function with values in

Rp2 . We prove the strong consistency of M estimators under very general

assumptions, assuming that h is a bounded function of α, which includes

the three models mentioned above.

Key words and phrases: Nonlinear regression, separable models, con-

sistency, robust estimation.
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1 Introduction

Consider i.i.d. observations (xi, yi) , i = 1, ..., n, given by the nonlinear model

with random predictors:

yi = g (xi, θ0) + ei, (1)

where xi ∈ Rq and ei are independent, and the unknown parameter vector θ0

ranges in a set Θ ⊂ Rp. An important case, usually called separable, are models

where p = p1 + p2 and θ0=(α0, β0) with α0∈A ⊂ Rp1 and β0∈B ⊂ Rp2 , and g

of the form

g (x, θ) = g (x, α, β) =

p2∑

j=1

βjhj (x, α) , (2)

where hj (j = 1, ..., p2) are functions of X×Rp2 → R. Usually B is the whole of

Rp2 or an unbounded subset of it. Examples are the Michaelis-Menten model,

with

p1 = p2 = q = 1, x ≥ 0, α, β > 0, h (x, α) =
x

x+ α
, (3)

the logistic growth model, with

q = 1, p2 = 1, p2 = 1, x ≥ 0, αj > 0, β > 0, h (x, α) =
eα2x

1 + α1 (eα2x − 1)
,

(4)

the exponential decay model, with

q = 1, p2 = p1 + 1, x ≥ 0, αj < 0, βj ≥ 0, g (x, α, β) = β0 +

p1∑

j=1

βje
αjx, (5)

and the exponential growth model, like (5) but with αj > 0.

The classical least squares estimate (LSE) is given by

θ̂ = argmin
θ∈Θ

n∑

i=1

(yi − g (xi, θ))
2
.
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The consistency of the LSE assuming E (ei) = 0 and Var (ei) = σ2 < ∞

has been proved by several authors under the assumption of a compact Θ; in

particular Amemiya (1983), Jennrich (1969) and Johansen (1984). Wu (1981)

assumes that Θ is a finite set.

Richardson and Bhattacharyya (1986) do not require the compactness of Θ,

but they assume g (x, θ) to be a bounded function of θ, which excludes most

separable models.

Shao (1992) showed the consistency of the LSE without requiring the com-

pacity of Θ nor the boundedness of g, but requires assumptions on g that exclude

the simplest separable models. For example, in the case g (x, θ) = βeαx, for any

x0 > 0 one can make g (x0, θ) =constant with α → −∞ and β → 0. This fact

violates both “Condition 1” and “Condition 2” in page 427 of his paper.

The well-known fact that the LSE is sensitive to outliers has led to the devel-

opment of robust estimates that are simultaneously highly efficient for normal

errors and resistant to perturbations of the model. One of the most important

families of robust estimates are the M-estimates proposed by Huber (1973) for

the linear model. For nonlinear models they are defined by

θ̂n=argmin
θ∈Θ

n∑

i=1

ρ

(
yi − g (xi, θ)

σ̂

)
, (6)

where ρ is a loss function whose properties will be described in the next section

and σ̂ is an estimate of the error’s scale. However, at this stage of our research

we deal with the simpler case of known σ. Then it may be assumed without loss

of generality that σ = 1 and therefore we shall deal with estimates of the form

θ̂n=argmin
θ∈Θ

n∑

i=1

ρ (yi − g (xi, θ)) . (7)

All published results on the consistency of robust estimates for nonlinear
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models require the compacity of Θ. Oberhofer (1982) deals with the L1 esti-

mator. Vainer and Kukush (1998) and Liese and Vajda (2003, 2004) deal with

M estimates. The latter deal with O
(
n−1/2

)
consistency and asymptotic nor-

mality of M estimates in more general models. Stromberg (1995) proved the

consistency of the Least Median of Squares estimate (Rousseeuw, 1984), and

Čı́žek (2005) dealt with the consistency and asymptotic normality of the Least

Trimmed Squares estimate. Fasano et al. (2012) study the functionals related

to M estimators in linear and nonlinear regression; in the latter case, they also

assume a compact Θ.

In this article we will prove the consistency of M estimates for separable mod-

els without assuming the compactness of Θ, but assuming the boundedness of

the hjs; this case includes the exponential decay, logistic growth and Michaelis-

Menten models. It can thus be considered as a generalization of (Richardson

and Bhattacharyya, 1986).

2 The assumptions

It will be henceforth assumed that ρ is a “ρ–function” in the sense of (Maronna

et al, 2006). i.e., ρ (u) is a continuous nondecreasing function of |u|, such that

ρ (0) = 0 and that if ρ(u) < supu ρ(u) and 0 ≤ u < v then ρ(u) < ρ(v). We

shall consider two cases: unbounded ρ and bounded ρ. The first includes convex

function, in particular the LSE with ρ (x) = x2 and the well-known Huber

function

ρk(x) =





x2 if |x| ≤ k

2k |x| − k2 if |x| > k
(8)

and the second includes the bisquare function ρ (x) = min

{
1−

(
1− (x/k)

2
)3

, 1

}
,

where k is in both cases a constant that controls the estimator’s efficiency.
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Let h (x, α) = (h1 (x, α) , ..., hp2
(x, α))

′
where in general a′ denotes the

transpose of a.The necessary assumptions are:

A B is a closed set such that tβ ∈B for all β ∈B and t > 0.

B supα∈A E|ρ (y − β′h (x, α)) | <∞ for all β ∈B.

C The function Eρ (e− t) –where e denotes any copy of ei– has a unique min-

imum at t = 0. Put λ0 = Eρ (e) .

D h is continuous in α a.s. and

α 6= α0 ⇒ sup
β∈B

P {β′h (x, α) = β′
0h (x, α0)} < 1 (9)

E Let S = supt ρ (t) (which may be infinite). Then

δ =: sup
β 6=0, α∈A

P (β′h (x, α) = 0) < 1−
λ0
S
. (10)

F Call U the family of all open neighborhoods of α0. Then

sup
β

inf
U∈U

sup
α/∈U

P {β′h (x, α) = β′
0h (x, α0)} < 1.

G h is bounded as a function of α, i.e., supα∈A ‖h (x, α)‖ <∞ a.s.

We now comment on the assumptions.

For (A) to hold in examples (3)-(4)-(5) we must enlarge the range of βjs to

βj ≥ 0. However, to ensure the validity of (D) and (F), it will be assumed that

the elements of the “true” vector β0 are all positive.

If ρ is bounded, (B) holds without further conditions. Sufficient conditions

for Huber’s ρ and for the LSE are finite moments of e and of h (x, α) , of orders

one and two, respectively.
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A sufficient condition for (C) is that the distribution of e has an even density

f (u) that is nonincreasing for u ≥ 0 and is decreasing in a neighborhood of u = 0

(see Lemma 3.1 of Yohai (1987)). If ρ is strictly convex with a derivative ψ,

then a sufficient condition is Eψ (e) = 0, which for the LSE reduces to Ee = 0.

Assumption (D) is required for ensure uniqueness of solutions. For examples

(3)-(4) it is very easy to verify. For (5) it follows from the well-known linear

independence of exponentials.

If S = ∞, (E) just means that δ < 1 (since λ0 < ∞ by (B)). Otherwise it

puts a bound on δ. In our examples we have δ = 0, since β′h > 0 if β has a

single nonnull (positive) element.

Assumption (F) is required in the case of non-compact A, to prevent the

estimator α̂ from “escaping to the border”. In our examples the border for

the αjs is either zero of infinity, and (F) is easily verified by a detailed but

elementary calculation (taking into account the remark above that all elements

of β0 are positive). For example, in (3) it suffices to consider neighborhoods of

the form (α0/K,Kα0) with K sufficiently large.

Finally, (G) is easily verified for models (3)-(4)-(5).

3 The results

For separable models the M-estimate is given by

θ̂n =
(
α̂n, β̂n

)
=arg min

α∈A, β∈B

1

n

n∑

i=1

ρ (yi − β′h (xi, α)) .

We now state our main result.

Theorem 1 Assume model (2) with conditions A-B-C-D-E-F-G. Then the M

estimate
(
α̂n, β̂n

)
is strongly consistent for θ0.
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We shall first need an auxiliary result, based on a proof in (Bianco and

Yohai, 1996).

Lemma 2 Assume model (2) with conditions A-B-C-D-E and A compact. Then
∥∥∥β̂n

∥∥∥ is ultimately bounded with probability one.

Proof of the Lemma: Put

λ (α, β) = Eρ (y − β′h (x, α)) .

It follows from (C) that λ(α, β) attains its minimum only when β′h (x, α) =

β′
0h (x, α0) a.s. and by (9) this happens when (α, β) = (α0, β0) . Therefore

(α, β) 6= (α0, β0) ⇒ λ (α, β) > λ (α0, β0) = λ0. (11)

Let Γ = {γ ∈ B : ‖γ‖ = 1} . Then we may write β = tγ with t = ‖β‖ ∈ R+

and γ ∈ Γ.

We divide the proof into two cases.

Case I: bounded ρ : Assume that S = supu ρ (u) <∞. To simplify notation

it will be assumed without loss of generality that S = 1. For each (α, γ) ∈ A×Γ

we have

lim
t→∞

Eρ (y−tγ′h (x, α)) ≥ 1− δ > λ0,

where δ is defined in (10). Let

ξ = 1− δ − λ0 > 0, ε =
ξ

4
<

1− δ

4
.

Since (10) implies that P (|γ′h (x, α)| > 0) ≥ 1 − δ for γ ∈Γ, then for each

(α, γ) ∈ A× Γ there are positive a, b such that

P (|y| ≤ a, |γ′h (x, α)| ≥ b) ≥ 1− δ − ε. (12)
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Then by (12) there exists T > 0 such that t > T implies

E inf
t>T

ρ (y−tγ′h (x, α)) > 1− δ − 2ε. (13)

Therefore (13) implies that for each (α, γ) ∈ A×Γ there exist a neighborhood

U (α, γ) ⊂ A× Γ and T (α, γ) ∈ R+ such that

E inf
(α1,γ1

)∈U(α,γ)
inf

t>T (α,γ)
ρ (y−tγ′1h (x, α1)) > 1− δ − 2ε = λ0 +

ξ

2
. (14)

The neighborhoods {U (α, γ) : α ∈A, γ ∈ Γ} are a covering of the compact

setA×Γ, and therefore there exists a finite subcovering thereof: {Uj = U (αj , γj)}
N
j=1.

Let T0 = maxj T (αj , γj) .

We shall show that lim supn→∞

∥∥∥β̂n
∥∥∥ ≤ T0 a.s. Put for brevity

λn (α, β) =
1

n

n∑

i=1

ρ (yi − β′h (xi, α)) .

Then

inf
‖β‖>T0

inf
α∈A

λn (α, β) ≥
1

n

n∑

i=1

inf
α∈A,γ∈Γ

inf
t>T0

ρ (yi − tγ′h (xi, α))

= min
j=1,...,N

1

n

n∑

i=1

inf
(α,γ)∈Uj

inf
t>T0

ρ (yi − tγ′h (xi, α)) ,

and therefore (14) and the Law of Large Numbers imply

lim inf
n→∞

inf
‖β‖>T0

inf
α∈A

λn (α, β) ≥ λ0 +
ξ

2
a.s.,

while

λn

(
α̂n,β̂n

)
= inf

β∈B
inf
α∈A

λn (α, β) ≤ λn (α0, β0) → λ0 a.s.

which shows that ultimately
∥∥∥β̂n

∥∥∥ ≤ T0 with probability one.
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Case II: unbounded ρ : Here an analogous but simpler procedure shows

the existence of T0 and neighborhoods U (α, γ) such that the left-hand member

of (14) is larger than 2λ0, and the rest of the proof is similar.�

Proof of the Theorem: If A is not compact, we employ the same approach

as in (Richardson and Bhattacharyya, 1986): the Čech-Stone compactification

yields a compact set Ã ⊃ A such that each bounded continuous function on

A has a unique continuous extension to Ã. We have to ensure that (B), (D)

and (E) continue to hold for α ∈Ã. Since each element of Ã is the limit of a

sequence of elements of A, (B) and (E) are immediate; and (D) follows from

assumption (F). Therefore we can apply the Lemma to conclude that
(
α̂n,β̂n

)

remains ultimately in a compact a.s. The Theorem then follows from Theorem

1 of Huber (1967).�
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