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Abstract

The Macaulay2 package GraphicalModels contains algorithms for the algebraic study of graphical

models associated to undirected, directed and mixed graphs, and associated collections of conditional

independence statements. Among the algorithms implemented are procedures for computing the vanish-

ing ideal of graphical models, for generating conditional independence ideals of families of independence

statements associated to graphs, and for checking for identifiable parameters in Gaussian mixed graph

models. These procedures can be used to study fundamental problems about graphical models.

1 Graphical models

A graphical model is a statistical model associated to a graph, where the nodes of the graph represent random
variables and the edges of the graph encode relationships between the random variables. Graphical models
are an important class of statistical models used in many applications (see standard textbooks [5, 8]) because
of their ability to model complex interactions between several random variables, by specifying interactions
using only local information about connectivity between the vertices in a graph.

There are two natural ways to specify a graphical model, through either conditional independence state-
ments specified by the graph or via a parametric representation (often called a “factorization”). Every
distribution that factors according to the graph satisfies the conditional independence statements implied by
the graph. This leads to the question: Which distributions satisfy the conditional independence statements
implied by the graph, but do not factor?

Once we specify the types of random variables under consideration (e.g., discrete random variables
or Gaussian random variables) it is possible to address the questions in the preceding paragraph using
(computational) algebraic geometry. Indeed, in these cases, the set of all probability distributions satisfying
a family of conditional independence constraints is a semialgebraic set. For discrete random variables, that
semialgebraic set is a subset of the probability simplex, and can be represented by a certain homogeneous ideal
generated by quadrics. For Gaussian random variables, this set of distributions corresponds to a semialgebraic
subset of the cone of positive definite matrices. Similarly, the parametrized family of probability distributions
also is a semialgebraic set (of the probability simplex for discrete random variables, and of the cone of positive
definite matrices for Gaussian random variables). This algebraic perspective has been studied by different
authors [3, 4, 6], and the book [1] provides details.

The Macaulay2 package GraphicalModels allows the user to compute the ideals of conditional indepen-
dence statements for any collection of statements for discrete or Gaussian random variables. It can also
compute the vanishing ideal of a graphical model in these cases. A number of auxiliary functions are useful
for doing further analyses of graphical models.

For example, consider the directed acyclic graph G with five vertices {a, b, c, d, e} and edge set {a →
d, b → d, c → d, c → e, d → e}. The following commands compute the associated conditional independence
ideal for the set of global Markov statements, CIglobal(G), and the vanishing ideal IG of the Gaussian graphical
model on G. In the following examples, version 1.4 of Macaulay2 was used.
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i1 : loadPackage "GraphicalModels";

i2 : G = digraph{{a,d},{b,d},{c,{d,e}},{d,e}};

i3 : R = gaussianRing G

o3 : PolynomialRing

i4 : gens R

o4 = {s , s , s , s , s , s , s , s , s , s , s , s ,

a,a a,b a,c a,d a,e b,b b,c b,d b,e c,c c,d c,e

s , s , s }

d,d d,e e,e

i5 : I = conditionalIndependenceIdeal(R,globalMarkov(G));

i6 : J = gaussianVanishingIdeal(R);

i7 : flatten degrees J

o7 = {1, 1, 1, 2, 3, 3}

GraphicalModels uses the package Graphs and a number of fundamental constructs and relationships
associated with graphs. First we create a polynomial ring that contains the entries of the covariance matrix
Σ of a jointly normal random vector as its indeterminates. Information about the underlying graph is stored
in the polynomial ring. Hence some methods take just a ring as input, but require that it be created with
gaussianRing, or markovRing in the discrete case.

For directed acyclic graphs it is known that V (CIglobal(G))∩PDm = V (IG)∩PDm, in particular, the set
of positive definite matrices satisfying the conditional independence constraints equals the set of covariance
matrices in the image of the parametrization. Unfortunately, this does not imply that CIglobal(G) = IG. In
the case of Gaussian random variables, a larger ideal, the trek ideal TG, generated by all subdeterminants
of the covariance matrix that vanish on the model, and satisfying CIglobal(G) ⊆ TG ⊆ IG is sometimes equal
to IG (see [7]), as the following example shows.

i8 : isSubset(I,J)

o8 = true

i9 : I == J

o9 = false

i10 : J == trekIdeal(R,G)

o10 = true

Similar computations can also be performed for graphical models with discrete random variables, and
with other graph families. The mathematical explanation of these graphical models and their associated
ideals appear in the remaining sections.

2 Computing conditional independence ideals

Conditional independence constraints on discrete or Gaussian random variables translate to rank conditions
on certain matrices associated to the probability densities. We briefly explain these constructions here and
how to generate these constraints in Macaulay2 using GraphicalModels. See [1, Ch. 3] for more detail.

Let X = (X1, . . . , Xn) be a discrete random vector where each random variable Xi has state space
[di] = {1, 2, . . . , di}. Let d = (d1, . . . , dn). A probability distribution for X is a tensor in Rd1 ⊗ · · · ⊗ Rdn ,
all of whose coordinates are nonnegative and sum to one. The set of all such distributions is the probability
simplex ∆d. Let pi1···in = P(X1 = i1, . . . , Xn = in) denote the probability of a primitive event. The
polynomial ring in these quantities is created using the command markovRing.

i11 : d = (2,3,2); R = markovRing d

o11 : PolynomialRing

i12 : gens R

o12 = {p , p , p , p , p , p , p , p , p ,

1,1,1 1,1,2 1,2,1 1,2,2 1,3,1 1,3,2 2,1,1 2,1,2 2,2,1

p , p , p }

2,2,2 2,3,1 2,3,2
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For A ⊆ [n], let XA = (Xa)a∈A be the subvector indexed by A. Let A,B,C be disjoint subsets of [n]. The
conditional independence statement XA ⊥⊥ XB|XC holds if and only if the conditional distribution satisfies

P(XA = iA, XB = iB|XC = iC) = P(XA = iA|XC = iC) · P(XB = iB|XC = iC)

for all iA, iB, iC . This translates into vanishing 2×2 minors of certain matrices in the probabilities pi1···in .
Those matrices are computed with the function markovMatrices, and the ideal generated by the 2× 2
minors is computed with conditionalIndependenceIdeal. In the following example, the two conditional
independence statements are X1 ⊥⊥ X2|X3 and X1 ⊥⊥ X3 (:= X1 ⊥⊥ X3|X∅). The ideal of vanishing minors
has 7 quadratic generators.

i13 : s = {{{1},{2},{3}}, {{1},{3},{}}}

i14 : compactMatrixForm=false;

i15 : markovMatrices(R,s)

o15 = {| p p p |, | p p p |,

| 1,1,1 1,2,1 1,3,1 | | 1,1,2 1,2,2 1,3,2 |

| | | |

| p p p | | p p p |

| 2,1,1 2,2,1 2,3,1 | | 2,1,2 2,2,2 2,3,2 |

| p + p + p p + p + p |}

| 1,1,1 1,2,1 1,3,1 1,1,2 1,2,2 1,3,2 |

| |

| p + p + p p + p + p |

| 2,1,1 2,2,1 2,3,1 2,1,2 2,2,2 2,3,2 |

i16 : I = conditionalIndependenceIdeal(R,s);

o16 : Ideal of R

i17 : flatten degrees I

o17 = {2, 2, 2, 2, 2, 2, 2}

In statistics literature, there are three main lists of conditional independence statements associated to a
graph G whose nodes correspond to random variables. For example, the list of local Markov statements of an
undirected graph G is the set of conditional independence statements of the form Xi ⊥⊥ XV \{i∪N(i)}|XN(i),
where N(i) is the set of neighbors of i in the graph G. The methods pairMarkov, localMarkov, and
globalMarkov compute the pairwise, local, and global Markov statements, respectively, for both directed
and undirected graphs.

i18 : G = graph{{1,2},{2,3},{3,4},{4,5},{1,5}};

i19 : localMarkov G

o19 = {{{1}, {3, 4}, {5, 2}}, {{1, 2}, {4}, {5, 3}}, {{1, 5}, {3}, {4, 2}},

{{2, 3}, {5}, {4, 1}}, {{2}, {4, 5}, {1, 3}}}

For example, the first conditional independence statement produced is X1 ⊥⊥ (X3, X4)|(X2, X5). In the
context of conditional independence, the graphical model consists of all distributions satisfying one of these
collections of independence statements associated to the graph G.

A Gaussian random vector, X = (X1, . . . , Xn) ∼ N (µ,Σ), is an n-dimensional random vector with state
space Rn and density function

f(x) =
1

(2π)n/2(det Σ)1/2
exp

(

−
1

2
(x− µ)TΣ−1(x− µ)

)

,

where µ ∈ Rn and Σ = (σs,t) ∈ PDn, the cone of n×n symmetric positive definite matrices. The Gaussian
random vectorX satisfies the conditional independence statementXA ⊥⊥ XB|XC if and only if the submatrix
ΣA∪C,B∪C := (σs,t)s∈A∪C,t∈B∪C has rank ≤ #C. Hence the set of all Gaussian random vectors satisfying
a given collection of conditional independence statements yields a subset of PDn that can be studied via a
determinantal conditional independence ideal in the polynomial ring Q[σs,t : s, t ∈ [n]]. This ring is generated
using the command gaussianRing. Computations involving conditional independence ideals with Gaussian
random variables were exemplified in Section 1.
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3 Computing the vanishing ideal of a model

The fact that graphical models can be described in two possible ways (either by a recursive factorization of
probability distributions or by conditional independence statements) corresponds to the algebraic principle
that varieties can be presented either parametrically or implicitly. The vanishing ideal of a model is the set
of homogeneous polynomial relations in the joint probability distributions (for discrete random variables) or
in the variance-covariance parameters (for Gaussian random variables). GraphicalModels has the capability
of computing the vanishing ideals of graphical models on directed graphs (for discrete random variables) and
also of graphical models on directed, undirected, or mixed graphs (for Gaussian random variables). The
vanishing ideal of an undirected graphical model for discrete random variables is a toric ideal and should be
computed using the Macaulay2 package FourTiTwo.

The method discreteVanishingIdeal implements this capability for graphical models on discrete ran-
dom variables. For a directed acyclic graph G on discrete random variables, the graphical model consists of
all distributions satisfying the recursive factorization property

p(X = i) =
∏

v

P(Xv = iv|Xpa(v) = ipa(v)),

where the product runs over all vertices v of G and pa(v) is the set of parents of v. Our implementation
of this method does not compute the kernel of the corresponding ring map. Instead, the vanishing ideal is
computed recursively using the factorization

P(X = i) = P(X1 = i1, . . . , Xn−1 = in−1) · P(Xn = in|Xpa(n) = ipa(n)),

where 1, . . . , n is a topological ordering of the vertices of the directed acyclic graph G.
The following example computes the vanishing ideal of the graphical model 1 → 2 → 3 → 4 on four

binary random variables. The vanishing ideal is minimally generated by 20 quadratic binomials.

i20 : G = digraph {{1,{2}}, {2,{3}},{3,{4}},{4,{}}};

i21 : R = markovRing (2,2,2,2);

i22 : I = discreteVanishingIdeal (R,G);

o22 : Ideal of R

i23 : betti mingens I

0 1

o23 = total: 1 20

0: 1 .

1: . 20

According to [3], the vanishing ideal of a graphical model on discrete random variables is the distinguished
component of the conditional independence ideal described by the Markov statements of the model. For the
directed path in our previous example, the conditional independence ideal of the local Markov statements is
a radical ideal with 3 associated primes. However, since G is a directed tree, the conditional independence
ideal of the global Markov statements is a prime ideal and it equals the vanishing ideal of G.

i24 : J = conditionalIndependenceIdeal (R, localMarkov G);

o24 : Ideal of R

i25 : I == J

o25 = false

i26 : K = conditionalIndependenceIdeal (R, globalMarkov G);

o26 : Ideal of R

i27 : I == K

o27 = true

The method gaussianVanishingIdeal computes the vanishing ideal of a Gaussian graphical model on
a graph, digraph, or mixed graph. If G is a mixed graph, IG is the vanishing ideal of the parametrization

Σ = (I − Λ)−TΨ(I − Λ)−1,
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where Σ is the variance-covariance matrix, Λ is the strictly upper triangular matrix with Λij = λij if i→ j
is a directed edge in G and 0 otherwise, and Ψ is a symmetric positive definite matrix of parameters ψij

with zeros in each entry Ψij if there is no bidirected edge in G between i and j, and i 6= j.
The following example computes the vanishing ideal of the Gaussian graphical model on the mixed graph

with directed edges {1 → 2, 1 → 3, 2 → 3, 3 → 4} and bidirected edges {1 ↔ 2, 2 ↔ 4}. This ideal is a
principal ideal generated by one quartic polynomial with 8 terms. This ideal is not determinantal, i.e., it is
not generated by the determinantal equations defining the trek ideal, which in this case is the zero ideal.

i28 : G = mixedGraph(digraph {{1,{2,3}},{2,{3}},{3,{4}}},bigraph {{1,2},{2,4}});

i29 : R = gaussianRing G;

i30 : I = gaussianVanishingIdeal R;

o30 : Ideal of R

i31 : flatten degrees I

031 = {4}

i32 : J = trekIdeal (R,G)

o32 = 0

An important problem in these models consists in finding which parameters are identifiable or generically
identifiable, see [2]. The method identifyParameters can be used to solve the identifiability problem
for Gaussian graphical models on mixed graphs (also known as structural equation models). The following
example shows that the parameter ψ24 is generically identifiable by the formula ψ24 = (σ13σ24−σ14σ23)/σ13.

i33 : H = identifyParameters R;

i34 : H#(p_(2,4))_0

o34 = p s + s s - s s

2,4 1,3 1,4 2,3 1,3 2,4

In this model there are three non-generically identified parameters. identifyParameters produces a
hash table whose entries are indexed by the parameters and contain ideals that can be used to find explicit
rational functions for every parameter that is generically identifiable.

Acknowledgments

The following people generously contributed their time to the development of the package: Alexander Diaz,
Shaowei Lin, David Murrugarra, and Mike Stillman. Work on the package was carried out during the 2010
and 2011 Macaulay2 workshops, which were partially supported by the US National Science Foundation and
the Institute for Mathematics and Its Applications. The authors also thank the anonymous referees for their
helpful comments and suggestions that improved not only this article but also the GraphicalModels package.

LGP was partially supported by a 2012 SHSU Faculty Research Grant (29001). SP was partially sup-
ported by Grant #FA9550-12-1-0392 from the U.S. Air Force Office of Scientific Research (AFOSR) and
the Defense Advanced Research Projects Agency (DARPA). SS was partially supported by the US National
Science Foundation (DMS 0954865) and the David and Lucille Packard Foundation.

References

[1] M. Drton, B. Sturmfels and S. Sullivant, Lectures on Algebraic Statistics, Oberwolfach Seminars, 39.
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