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THE MAXIMUM LIKELIHOOD DRIFT ESTIMATOR FOR MIXED

FRACTIONAL BROWNIAN MOTION

C. CAI, P. CHIGANSKY, AND M. KLEPTSYNA

Abstract. The paper is concerned with the maximum likelihood estimator (MLE)
of the unknown drift parameter θ ∈ R in the continuous-time regression model

Xt = θt+Bt +BH

t , t ∈ [0, T ]

where Bt is a Brownian motion and BH

t
is an independent fractional Brownian

motion with Hurst parameter H ∈ (1
2
, 1). We derive the exact formula for the

MLE in terms of the solution of an integral equation and find the asymptotic
distribution of the estimation error. In particular, it turns out that the Brownian
part does not contribute to the asymptotic variance of the MLE.

Another contribution of this paper is a formula for the Radon–Nikodym de-
rivative of the probability, induced by the mixed fractional Brownian motion
ξt = Bt +BH

t , H > 3/4 with respect to the Wiener measure.

1. Introduction and the main result

Consider the continuous-time regression model

Xt = θt + σBt +BH
t , t ∈ [0, T ], (1.1)

where Bt is a Brownian motion and BH
t is an independent fractional Brownian

motion (fBm) with Hurst parameter H ∈ (1
2
, 1), i.e., zero mean Gaussian process

with the covariance function

EBH
t BH

s =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ [0, T ].

As is well known, for H ∈ (1
2
, 1) the process BH

t exhibits the long-range dependence
property

∞∑

j=1

EBH
1

(
BH

j+1 − BH
j

)
= ∞,

and hence ξt := σBt+BH
t , called in [4] the mixed fractional Brownian motion (fBm),

can be thought of as observation noise with both “white” and heavily correlated
components. The mixed fBm has a number of peculiar probabilistic properties,
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studied in e.g. [4], [2], [17], which have some relevance to mathematical finance (see
e.g. [3]).
The constant σ > 0, controlling the intensity of the Brownian part, and the Hurst

parameter H can be reconstructed precisely from the trajectory XT := {Xt, t ∈
[0, T ]} (see, e.g., [1]) and hence are assumed to be known.
Given the sample path XT , it is required to estimate the unknown drift parameter

θ ∈ R. The parameter estimation problems in models with mixed fBm have been
considered in the recent monographs [8] and [12], where the construction of the
maximum likelihood estimator (MLE) of θ appears as an open problem (see Remark
(iii) page 181 in [12] and the discussion on page 354 in [8]). Our main result aims
at filling this gap:

Theorem 1.1. The MLE of θ is given by

θ̂T =

∫ T

0
g(t, T )dXt∫ T

0
g(t, T )dt

, (1.2)

where1 the function g(t, T ), t ∈ [0, T ] is the unique L2[0, T ] solution of the integral

equation

σ2g(t, T ) +H(2H − 1)

∫ T

0

g(s, T )|s− t|2H−2ds = σ, for a.a. t ∈ [0, T ]. (1.3)

This estimator is strongly consistent and the corresponding estimation error is nor-

mal

θ̂T − θ ∼ N

(
0,

σ
∫ T

0
g(t, T )dt

)
, (1.4)

with the asymptotic behavior of the variance

lim
T→∞

T 2−2H
Eθ(θ̂T − θ)2 = λH :=

2HΓ(H + 1
2
)Γ(3− 2H)

Γ(3
2
−H)

, (1.5)

where Γ(x) is the standard Gamma function.

Remark 1.2.

(1) The asymptotic variance in (1.5) is independent of σ and coincides with the
asymptotic variance of the MLE in the problem with σ = 0, i.e., estimating
the drift of fBm without additional Brownian component (see Section 5.1 in
[6]). This means that the Brownian part is asymptotically negligible.

(2) Actually, it will appear (see Remark 2.3 below) that for some constant κH

the following limits hold:

lim
σ→0

g(t, T )

σ
= kH(T, t) := κ−1

H t
1

2
−H(T − t)

1

2
−H , (1.6)

1the stochastic integral in the numerator is defined through the usual limit procedure, recalled
in Subsection 2.2
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Figure 1. The MLE weight function for mixed fBM versus fBm
(σ = 1, T = 1, H = 3/4)

lim
σ→0

∫ T

0

g(t, T )

σ
dt =

∫ T

0

kH(T, t) dt = λ−1
H T 2−2H . (1.7)

Hence, the limiting form of (1.2) for σ tending to 0 is

θ̂T =
λH

T 2−2H

∫ T

0

kH(T, t)dXt, (1.8)

which is nothing else but the expression obtained in [6] for the MLE in the
model with σ = 0. It is easy to check that this estimator is applicable to
the data X , generated by the model with any σ > 0 and its asymptotic
variance coincides with (1.5). In other words, the estimator (1.8) has the
same asymptotic accuracy as the genuine MLE.

Remark 1.3.
(1) The proof of Theorem 1.1 suggests an approximation procedure for the func-

tion g(t, T ) (see (2.5) and (2.6)). Its typical form, depicted in Figure 1 versus
the weight function from the estimator (1.8), indicates significant difference
in the non-asymptotic regime.

(2) The integral equation (1.3) is known as the second type Fredholm equation
with weakly singular kernel (see [11]) or as the Wiener-Hopf equation on
the finite interval. Its solution can be reduced to a particular instance of



4 C. CAI, P. CHIGANSKY, AND M. KLEPTSYNA

the Riemann boundary value problem, which unfortunately doesn’t seem to
be helpful in our case. It is well known, however, that (1.3) has a unique
continuous solution, which enjoys some regularity properties (see, e.g., [16]).

Another interesting outcome of our approach is a formula for the Radon–Nikodym
derivative of the probability, induced by the mixed fractional Brownian motion with
respect to the Wiener measure. It is shown in [4] (see also [2]) that for H > 3/4
these measures are mutually absolutely continuous, however no expression for the
corresponding derivative is given. The derivative is calculated in terms of reproduc-
ing kernels in [17], but the author points out that it might be hard to obtain more
explicit expression (see remark (iii) on page 63). The following proposition gives a
representation formula in terms of the solution of (1.3):

Proposition 1.4. For H > 3/4, the probability µξ, induced by ξt := Bt + BH
t ,

t ∈ [0, T ] is absolutely continuous with respect to the Wiener measure µW and

dµξ

dµW
(ξ) = exp

{
−
∫ T

0

ϕs(ξ)dξs −
1

2

∫ T

0

ϕ2
s(ξ)ds

}

with ϕs(ξ) =
∫ s

0
ġ(r,s)
g(s,s)

dξr and ġ(r, t) = ∂
∂t
g(r, t) where g =

(
g(s, t), 0 ≤ s ≤ t ≤ T

)

satisfies the equation

g(s, t) +H(2H − 1)

∫ t

0

g(r, t)|r − s|2H−2dr = 1, s ∈ [0, t]. (1.9)

2. Proof of Theorem 1.1

2.1. The likelihood function and the MLE. Let B̃ = (B̃t)t∈[0,T ] and B =
(BH

t )t∈[0,T ] be processes defined on a measurable space (Ω,F) and Pθ be a probabil-

ity, under which B̃ and BH are independent, BH is a fractional Brownian motion

with Hurst parameter H ∈ (1
2
, 1) and B̃ is a Brownian motion with drift θ

σ
, i.e.,

σB̃t = θt+ σBt, t ∈ [0, T ].

Under Pθ, the process X = σB̃ + BH is the mixed fBm with drift θ as defined in

(1.1). By Girsanov’s theorem and independence of B̃ and BH

dPθ

dP0
= exp

(
θ

σ
B̃T − 1

2

θ2

σ2
T

)
.

In order to eliminate some confusion, existing in the literature (see, e.g., [14]), let us
stress that this derivative is not the likelihood for the problem at hand, since ,e.g.,
it is not measurable with respect to the observed σ-algebra F

X
T = σ{Xt, t ∈ [0, T ]}.

The proper likelihood function is obtained by conditioning on F
X
T .

More precisely, let µθ be the probability induced by X on the space of continuous
functions with the usual supremum topology under probability Pθ. Then for a
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measurable set A,

µθ(A) =Pθ(X ∈ A) = E0
dPθ

dP0
1{X∈A} = E0E0

(dPθ

dP0

∣∣FX
T

)
1{X∈A} =

∫

A

Φ(x)µ0(dx),

where Φ(x) is a measurable functional, such that

Φ(X) = E0

(dPθ

dP0

∣∣FX
T

)
, P0 − a.s.

The latter means that µθ ≪ µ0 for any θ ∈ R and, since B̃ = B under P0, the
corresponding likelihood function is given by

LT (X ; θ) =E0

(dPθ

dP0

∣∣FX
T

)
= E0

(
exp

(
θ

σ
BT − 1

2

θ2

σ2
T

) ∣∣∣FX
T

)
=

exp

(
θ

σ
MT +

1

2

θ2

σ2

(
VT − T

))
.

The latter equality holds with MT := E0(BT |FX
T ) and VT = E0

(
BT − MT

)2
, since

the process (B,X) is Gaussian and hence the conditional distribution of BT given
F

X
T is Gaussian as well.
Let (Ft) and (FX

t ) be the natural filtrations of (B,BH) and X respectively and
set

Mt = E0

(
Bt|FX

t

)
, t ∈ [0, T ]. (2.1)

Since B is an (Ft)-martingale and F
X
t ⊂ Ft, the process M is an (FX

t )-martingale
with respect to P0. Moreover, since Vt = E0(B

2
t |FX

t ) −M2
t and B2

t − t is an (Ft)-
martingale, for s ≤ t,

E0

(
M2

t − (t− Vt)|FX
s

)
= E0

(
E0(B

2
t |FX

t )− t|FX
s

)
= E0(B

2
t − t|FX

s ) =

E0(B
2
s |FX

s )− s = M2
s − (s− Vs),

i.e., the quadratic variation process of the martingale M is 〈M〉t = t− Vt, and the
likelihood function reads

LT (X ; θ) = exp

(
θ

σ
MT − 1

2

θ2

σ2
〈M〉T

)
.

The MLE of θ, being the maximizer of the above expression, is given by

θ̂T := σ
MT

〈M〉T
.
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This estimator is unbiased:

Eθσ
MT

〈M〉T
= σE0LT (X ; θ)

MT

〈M〉T
=

σ2 1

〈M〉T
exp

(
−1

2

θ2

σ2
〈M〉T

)
d

dθ
E0 exp

(
θ

σ
MT

)
=

σ2 1

〈M〉T
exp

(
−1

2

θ2

σ2
〈M〉T

)
d

dθ
exp

(
1

2

θ2

σ2
〈M〉T

)
= θ,

with the variance

Eθ

(
θ̂T − θ

)2
= Eθθ̂

2
T − θ2 = σ2

Eθ
M2

T

〈M〉2T
− θ2 =

σ2 exp

(
−1

2

θ2

σ2
〈M〉T

)
E0 exp

(
θ

σ
MT

)
M2

T

〈M〉2T
− θ2 =

σ4

〈M〉2T
exp

(
−1

2

θ2

σ2
〈M〉T

)
d2

dθ2
E0 exp

(
θ

σ
MT

)
− θ2 =

σ4

〈M〉2T

(
θ2

σ4
〈M〉2T +

〈M〉T
σ2

)
− θ2 =

σ2

〈M〉T
.

(2.2)

To recap, the MLE error is a zero mean Gaussian random variable with variance
σ2/〈M〉T . Next we shall derive an explicit characterization of the martingale M
in terms of the solution of the integral equation (1.3) and will find the appropriate
asymptotic as T → ∞.

2.2. The martingale representation. Let us recall briefly some relevant prop-
erties of the integrals with respect to fractional Brownian motion. Following the
notations of [10], define the spaces

L2[0, T ] :=
{
f : [0, T ] 7→ R such that

∫ T

0

f 2(u)du < ∞
}
,

|Λ|H− 1

2

T :=
{
f : [0, T ] 7→ R such that

∫ T

0

∫ T

0

|f(u)||f(v)||u− v|2H−Hdudv < ∞
}
,

Λ
H− 1

2

T :=
{
f : [0, T ] 7→ R such that

∫ T

0

(
s

1

2
−H
(
I
H− 1

2

T− uH− 1

2 f(u)
)
(s)
)2
ds < ∞

}
,

where I
H− 1

2

T− is the Riemann-Liouville fractional integral operator (see [15]). For

H ∈ (1
2
, 1) the inclusions L2[0, T ] ⊂ |Λ|H− 1

2

T ⊂ Λ
H− 1

2

T hold (see Remark 4.2 in [10]).
For the simple function of the form,

f(u) =
n∑

k=1

fk1{[uk,uk+1)}(u), fk ∈ R, 0 = u1 < u2 < ... < uk = T,
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the stochastic integral with respect to BH is defined by
∫ T

0

f(t)dBH
t :=

n∑

k=1

fk
(
BH

uk+1
− BH

uk

)
.

Since the simple functions are dense in Λ
H− 1

2

T (see Theorem 4.1 in [10]) , the definition

of
∫ T

0
f(t)dBH

t is extended to f ∈ Λ
H− 1

2

T through the limit
∫ T

0

f(t)dBH
t := lim

n

∫ T

0

fn(t)dB
H
t ,

where fn is any sequence of simple functions, such that limn ‖f − fn‖
Λ
H−

1
2

T

= 0.

It turns out however (see Section 5 of [10]), that the image of Λ
H− 1

2

T under the

map f 7→
∫ T

0
f(t)dBH

t is a strict subset of sp[0,T ](B
H), the closure in L2(Ω,F,P0)

of all possible linear combinations of the increments of BH . In other words, some
linear functionals of BH cannot be realized as stochastic integrals of the above type.
Nevertheless we have the following:

Lemma 2.1. Assume H ∈ (1
2
, 1) and let η be a Gaussian random variable, such

that (η,Xt), t ∈ [0, T ] is a Gaussian random process. Then there exists a function

g(·, T ) ∈ L2[0, T ], such that

E0(η|FX
T ) = E0η +

∫ T

0

g(s, T )dXs, P0 − a.s. (2.3)

Proof. Following the arguments of the proof of Lemma 10.1 in [7], let (ti), i = 0, ..., 2n

be the dyadic partition of [0, T ], i.e., ti = i2−n, i = 0, ..., 2n and F
X
T,n = σ{Xti −

Xti−1
, i = 1, ..., 2n}. Then F

X
T,n ր F

X
T and by the martingale convergence

lim
n

E0(η|FX
T,n) = E0(η|FX

T ), P0 − a.s. (2.4)

as well as in L2(Ω,F,P0), since E0(η|FX
T,n) are uniformly integrable. By the Normal

Correlation theorem,

E0(η|FX
T,n) = E0η +

2n∑

i=1

gni−1

(
Xti −Xti−1

)
, (2.5)

with constants gni−1, i = 1, ..., 2n. Define

gn(t, T ) :=

2n∑

i=1

gni−11{[ti−1,ti)}(t), (2.6)

then

E0

(
η|FX

T,n

)
= E0η + σ

∫ T

0

gn(t, T )dBt +

∫ T

0

gn(t, T )dB
H
t ,
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and

E0

(
E0

(
η|FX

T,n

)
− E0

(
η|FX

T,m

))2
= σ2

∫ T

0

(
gn(t, T )− gm(t, T )

)2
dt+

cH

∫ T

0

∫ T

0

(
gn(t, T )− gm(t, T )

)(
gn(s, T )− gm(s, T )

)
|s− t|2H−2dsdt,

where cH := H(2H − 1). Since the kernel in the last integral is positive definite

lim
n

sup
m≥n

σ2

∫ T

0

(
gn(t, T )−gm(t, T )

)2
dt ≤ lim

n
sup
m≥n

E0

(
E0

(
η|FX

T,n

)
−E0

(
η|FX

T,m

))2
= 0,

where the latter equality holds by (2.4), since L2(Ω,F,P0) is complete. Since L2[0, T ]
is a complete space, there exists a function g(t, T ) ∈ L2[0, T ], such that limn ‖g −
gn‖2 = 0. Then

E0

(
E0(η|FX

T )− E0η − σ

∫ T

0

g(t, T )dBt −
∫ T

0

g(t, T )dBH
t

)2

≤

3E0

(
E0(η|FX

T )− E0(η|FX
T,n)
)2

+ 3σ2

∫ T

0

(
gn(t, T )− g(t, T )

)2
dt+

3cH

∫ T

0

∫ T

0

(
gn(t, T )− g(t, T )

)(
gn(s, T )− g(s, T )

)
|s− t|2H−2dsdt

n→∞−−−→ 0,

where the latter convergence holds, since L2[0, T ] ⊂ |Λ|H− 1

2

T . �

Applying the above lemma, we obtain the claimed formulas (1.2) and (1.4):

Lemma 2.2. Let (Mt) be the (FX
t )−martingale defined by (2.1). The following

representations hold:

MT =

∫ T

0

g(t, T )dXt, (2.7)

and

〈M〉T = σ

∫ T

0

g(t, T )dt, (2.8)

where g(t, T ) is the unique solution of (1.3).

Proof. By Lemma 2.1, there exists g(·, T ) ∈ L2[0, T ], such that

MT = E0(BT |FX
T ) =

∫ T

0

g(t, T )dXt, P0 − a.s.
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holds. For an arbitrary function h ∈ L2[0, T ],

E0

(
BT −

∫ T

0

g(r, T )dXr

)∫ T

0

h(s)dXs =

E0

(∫ T

0

dBt − σ

∫ T

0

g(t, T )dBt −
∫ T

0

g(t, T )dBH
t

)(
σ

∫ T

0

h(t)dBt +

∫ T

0

h(t)dBH
t

)
=

∫ T

0

h(s)

(
σ − σ2g(s, T )− cH

∫ T

0

g(r, T )|s− r|2H−2dr

)
ds.

By the orthogonality property of the conditional expectation and by arbitrariness
of h, it follows that g(t, T ) satisfies (1.3) for almost all t ∈ [0, T ]. This solution is
unique (see, e.g., [16]). Further, since M is a Gaussian martingale,

〈M〉T = E0M
2
T = E0

(∫ T

0

g(s, T )dXs

)2

=

∫ T

0

g(t, T )

(
σ2g(t, T ) + cH

∫ T

0

g(s, T )|s− t|2H−2ds

)
dt = σ

∫ T

0

g(t, T )dt.

�

2.3. The large sample asymptotic. Finally we shall derive the asymptotic an-
nounced in (1.5). Let µ := T 2H−1 and define gµ(u) := T 2H−1g(uT, T ), u ∈ [0, 1].
Then (1.3) reads

1

µ
σ2gµ(u) + cH

∫ 1

0

gµ(v)|u− v|2H−2dv = σ, u ∈ [0, 1], (2.9)

and, moreover,

〈M〉T = σ

∫ T

0

g(s, T )ds = σT 2−2H

∫ 1

0

gµ(u)du. (2.10)

Define the operator K

Kf(u) = cH

∫ 1

0

f(v)|u− v|2H−2dv, f ∈ |Λ|H− 1

2

T (2.11)

and the scalar products

〈f, h〉 :=
∫ 1

0

f(s)h(s)ds, f, h ∈ L2[0, 1]

and

〈f, h〉K := cH

∫ 1

0

∫ 1

0

f(v)h(u)|u− v|2H−2dvdu, h, f ∈ |Λ|H− 1

2

T .

In terms of these notations, the equation (2.9) becomes

σ2

µ
gµ +Kgµ = σ.
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We shall also consider the first type auxiliary integral equation

Kg = σ, (2.12)

which admits the unique solution (see Lemma 3 in [6] and the references therein):

g(u) =
σ

cH

β(2− 2H,H − 1
2
)

Γ2(H − 1
2
)Γ(2− 2H)

u
1

2
−H(1− u)

1

2
−H , u ∈ (0, 1),

where β(α, γ) = Γ(α)Γ(γ)
Γ(α+γ)

.

The function δµ := gµ − g satisfies

σ2

µ
δµ +Kδµ = −σ2

µ
g.

Since g ∈ L2[0, 1] ⊂ |Λ|H− 1

2

1 , multiplying by δµ and integrating we obtain

σ2

µ
‖δµ‖22 + ‖δµ‖2K =

σ2

µ

∣∣〈g, δµ〉
∣∣,

and, in particular, ‖δµ‖22 ≤
∣∣〈g, δµ〉

∣∣. On the other hand, by the Cauchy-Schwarz

inequality
∣∣〈g, δµ〉

∣∣ ≤ ‖g‖2‖δµ‖2 and hence ‖δµ‖2 ≤ ‖g‖2. Note that δµ also satisfies

σ2

µ
gµ +Kδµ = 0.

Multiplying both sides of this equation by g and integrating, we get

σ2

µ
〈gµ, g〉+ 〈Kδµ, g〉 = 0.

But ∣∣〈gµ, g〉
∣∣ ≤

∣∣〈δµ, g〉
∣∣+ ‖g‖22 ≤ ‖δµ‖2‖g‖2 + ‖g‖22 ≤ 2‖g‖22 < ∞

and hence

σ|〈δµ, 1〉| = |〈δµ, Kg〉| = |〈Kδµ, g〉| =
σ2

µ

∣∣〈gµ, g〉
∣∣ ≤ σ2

µ
2‖g‖22

µ→∞−−−→ 0,

and

lim
µ→∞

∫ 1

0

gµ(u)du =

∫ 1

0

g(u)du.

Finally, by the formulas (2.2) and (2.10)

T 2−2H
Eθ

(
θ̂T − θ

)2
= T 2−2H σ2

〈M〉T
=

σ2

σ
∫ 1

0
gµ(u)du

T→∞−−−→ σ
∫ 1

0
g(u)du

.
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The asymptotic (1.5) now follows, since
∫ 1

0

g(r)dr =
1

C2(H)

1

Γ(2− 2H)

∫ 1

0

r
1

2
−H(1− r)

1

2
−Hdr =

1

H(2H − 1)

β(2− 2H,H − 1
2
)

Γ2(H − 1
2
)

1

Γ(2− 2H)
β
(3
2
−H,

3

2
−H

)
=

1

H(2H − 1)

Γ(2− 2H)Γ(H − 1
2
)

Γ(3
2
−H)Γ2(H − 1

2
)

1

Γ(2− 2H)

Γ2(3
2
−H)

Γ(3− 2H)
=

Γ(3
2
−H)

H(2H − 1)Γ(H − 1
2
)Γ(3− 2H)

=
Γ(3

2
−H)

2HΓ(H + 1
2
)Γ(3− 2H)

,

where we used the property Γ(x+ 1) = xΓ(x), x > 0.

Of course, the martingale property of the process MH
T :=

∫ T

0
g(t, T )dξt, T ≥ 0

with ξt := σBt +BH
t and the representation of the error:

θ̂T − θ =
MH

T

〈MH〉T
,

where 〈MH〉T → ∞ when T → ∞ implies the strong consistency of θ̂T due to the
strong law of large numbers for martingales.

Remark 2.3. By means of a study similar to the previous, one can check that the
limits (1.6) and (1.7) hold.

Remark 2.4. It is worth mentioning that, following the terminology of [9],[6] and [5],
the martingale MH merits to be called the fundamental martingale associated to the
mixed fractional Brownian motion ξ. It will play also a key role in the statistical
analysis of models more general than (1.1) such as the mixed fractional Ornstein-
Uhlenbeck process. The progress in this direction will be reported elsewhere.

3. Proof of Proposition 1.4

In the following lemmas, we shall first prove a number of useful properties of the
solution of (1.9), assuming hereafter that H > 3/4.

Lemma 3.1. The solution g(s, t) of (1.9) is continuously differentiable at t > 0 for

any s ∈ (0, t). The derivative ġ(s, t) := ∂
∂t
g(s, t) satisfies the equation

ġ(s, t)+ cH

∫ t

0

ġ(r, t)|r−s|2H−2dr = −cHg(t, t)|t−s|2H−2, s ∈ (0, t), t > 0, (3.1)

and
∫ t

0
ġ2(s, t)ds < ∞.

Proof. The function gt(u) := g(ut, t), u ∈ [0, 1], t > 0 satisfies the integral equation

gt(u) + cHt
2H−1

∫ 1

0

gt(v)|v − u|2H−2dv = 1, u ∈ [0, 1].
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This equation has a unique continuous solution for any t > 0 (see [16]) and, in
terminology of [13], any point λ := t2H−1 is regular. Since for H > 3/4 the kernel
(2.11) belongs to L2[0, 1], it follows from ,e.g., Theorem on page 154 in [13], that
the solution gt(u) is analytic at t > 0. By [16] the solution gt(u) is continuously
differentiable at u ∈ (0, 1) and hence the function g(s, t) = gt(s/t) is continuously
differentiable at t > 0 for any s ∈ (0, t). The equation (3.1), obtained by taking the
derivative of both sides of (1.9), has a unique solution in L2[0, t] for H > 3/4. �

Lemma 3.2. The solution g(s, t) of (1.9) is such that g(t, t) 6= 0 for all t > 0.

Proof. Letting g′(s, t) := ∂
∂s
g(s, t) and taking the derivative of (1.9), we obtain

g′(s, t) = −cH
∂

∂s

∫ t

0

g(r, t)|r − s|2H−2dr = −cH
∂

∂s

(∫ t−s

−s

g(u+ s, t)|u|2H−2du

)
=

− cH

∫ t−s

−s

g′(u+ s, t)|u|2H−2du+ cHg(t, t)|t− s|2H−2 − cHg(0, t)|s|2H−2 =

− cH

∫ t

0

g′(r, t)|r − s|2H−2dr + cHg(t, t)
(
|t− s|2H−2 − |s|2H−2

)
,

where we used the obvious symmetry g(t − s, t) = g(s, t) and g(t, t) = g(0, t) in
particular. Now suppose g(t, t) = 0 for some t > 0. Then

g′(s, t) + cH

∫ t

0

g′(r, t)|r − s|2H−2dr = 0, s ∈ [0, t].

This equation has the unique solution g′(s, t) ≡ 0, i.e., g(s, t) is a constant function.
But since g(t, t) = 0, it follows that g(s, t) = 0 for all s ∈ [0, t], which contradicts
(1.9). �

Lemma 3.3. The solution g(s, t) of (1.9) is such that for all t > 0,
∫ t

0

g(s, t)ds =

∫ t

0

g2(s, s)ds. (3.2)

Proof. We shall use Krein’s method for solving integral equations with difference
kernels on a finite interval (see §13.13-1 in [11]). Let y(s, t) satisfy the equation

y(s, t) +

∫ t

0

y(r, t)k(r − s)dr = f(s), s ∈ [0, t],

where k(u) = cH |u|2H−2 and f is a continuous function and consider the auxiliary
equation with parameter τ ∈ [0, t]:

g(s, τ) +

∫ τ

0

g(r, τ)k(r − s)dr = 1, s ∈ [0, τ ].

Then

y(s, t) = F (t)g(s, t)−
∫ t

s

g(s, τ)F ′(τ)dτ, (3.3)
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where

F (τ) =
1

g2(τ, τ)

d

dτ

∫ τ

0

g(s, τ)f(s)ds. (3.4)

In particular, by uniqueness of the solutions, for f ≡ 1 we get y(s, t) = g(s, t),
s ∈ [0, t] and setting s := t in (3.3), we see that F (t) = 1. Now by (3.4)

g2(t, t) =
d

dt

∫ t

0

g(s, t)ds,

and (3.2) follows by integration. �

Now we are ready to prove Proposition 1.4. By Lemma 2.2 and Lemma 3.3,

〈M〉t =
∫ t

0

g(s, t)ds =

∫ t

0

g2(s, s)ds, t ∈ [0, T ].

Hence by the Levy theorem and Corollary 3.2

Wt =

∫ t

0

1

g(s, s)
dMs, t ∈ [0, T ],

is a Brownian motion. On the other hand,

Mt =

∫ t

0

g(s, t)dξs =

∫ t

0

g(s, s)dξs +

∫ t

0

(
g(r, t)− g(r, r)

)
dξr =

∫ t

0

g(s, s)dξs +

∫ t

0

∫ t

r

ġ(r, s)dsdξr =

∫ t

0

g(s, s)dξs +

∫ t

0

∫ s

0

ġ(r, s)dξrds,

and hence

Wt =

∫ t

0

1

g(s, s)
dMs = ξt +

∫ t

0

∫ s

0

ġ(r, s)

g(s, s)
dξrds =: ξt +

∫ t

0

ϕs(ξ)ds.

The desired claim follows from Theorem 7.7 in [7], once we check

∫ T

0

Eϕ2
t (B)dt < ∞ and

∫ T

0

Eϕ2
t (ξ)dt < ∞. (3.5)

Since ϕt(·) is additive and ξt = Bt + BH
t , where B and BH are independent, it is

enough to check only the latter condition. By (3.1) the function R(s, t) := ġ(s,t)
g(t,t)

satisfies

R(s, t) + cH

∫ t

0

R(r, t)|r − s|2H−2dr = −cH |t− s|2H−2, s ∈ (0, t), t > 0. (3.6)
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Hence for H > 3/4, using the latter equation we get

Eϕ2
t (ξ) = E

(∫ t

0

R(r, t)dξr

)2

=

∫ t

0

R2(s, t)ds+ cH

∫ t

0

∫ t

0

R(s, t)R(r, t)|r − s|2H−2drds =

∫ t

0

R(s, t)

(
R(s, t) + cH

∫ t

0

R(r, t)|r − s|2H−2dr

)
ds = −cH

∫ t

0

R(s, t)|t− s|2H−2ds ≤

cH

(∫ t

0

R2(s, t)ds

)1/2(∫ t

0

|t− s|4H−4ds

)1/2

=
cH√

4H − 3

(∫ t

0

R2(s, t)ds

)1/2

t2H−3/2.

Since the kernel is positive definite, multiplying (3.6) by R(s, t) and integrating gives

∫ t

0

R2(s, t)ds ≤ −cH

∫ t

0

R(s, t)|t− s|2H−2ds ≤ cH√
4H − 3

(∫ t

0

R2(s, t)ds

)1/2

t2H−3/2,

and consequently
(∫ t

0

R2(s, t)ds

)1/2

≤ cH√
4H − 3

t2H−3/2.

Plugging this bound back gives Eϕ2
t (ξ) ≤

c2
H

4H−3
t4H−3 and in turn

∫ T

0

Eϕ2
t (ξ)dt ≤

c2H
4H − 3

∫ T

0

t4H−3dt =
c2H

(4H − 3)(4H − 2)
T 4H−2,

which verifies (3.5) and completes the proof. �
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