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Abstract. Many communication networks contain nodes which may
misbehave, thus incurring a cost to the network operator. We consider
the problem of how to manage the nodes when the operator receives a
payoff for every moment a node stays within the network, but where
each malicious node incurs a hidden cost. The operator only has some
statistical information about each node’s type, and never observes the
cost. We consider the case when there are two possible actions: removing
a node from a network permanently, or keeping it for at least one more
time-step in order to obtain more information. Consequently, the prob-
lem can be seen as a special type of intrusion response problem, where
the only available response is blacklisting. We first examine a simple al-
gorithm (HiPER) which has provably good performance compared to an
oracle that knows the type (honest or malicious) of each node. We then
derive three other approximate algorithms by modelling the problem as a
Markov decision process. To the best of our knowledge, these algorithms
have not been employed before in network management and intrusion
response problems. Through experiments on various network conditions,
we conclude that HiPER performs almost as well as the best of these
approaches, while requiring significantly less computation.

1 Introduction

We consider a communication network which is being partially monitored by
a network management system. The nodes in this network can be of one of
two types: malicious (e.g. dropping packets), or honest. We assume that we
have some tangible gain for every moment that an honest node remains in the
network, while keeping malicious nodes in the network carries a cost, both of
which are hidden from the system. The system maintains some statistics about
the activity of each node, which enable it to approximately guess its type. These
could be alerts gathered from some intrusion detection system (IDS). Another
example would be data-sharing statistics from a peer-to-peer (P2P) network,
which would help identify selfish nodes. We require a response mechanism that
removes malicious nodes as soon as possible, without inadvertently removing
honest nodes, with high probability. In this setting, immediately removing nodes
that seem suspicious, is suboptimal: if a node is removed from the network then
no further information can be received from this node. Thus, it pays to delay
removal until we collect more information about suspicious nodes.

http://arxiv.org/abs/1208.5641v1
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Our first contribution is a decision-theoretic approach based on distribution-
free high probability bounds. The bounds require very little prior information
and can be used to trade off the cost of removing honest nodes with that of
keeping malicious nodes in the network for too long. We prove that this High
Probability Efficient Response algorithm (HiPER) has low worst-case expected
loss relative to an oracle which knows the type of every node.

Our second contribution is a set of Bayesian decision-theoretic approaches
that we derive by formalising the problem as a Markov decision process. These
require some further assumptions. In particular, it is necessary to fully specify a
structure and prior parameters for the underlying statistical model. In addition,
making optimal decisions according to such models is in our case computationally
intractable. Consequently, we consider some approximate algorithms. Of these,
an optimistic approximation has similar performance to that of HiPER. An-
other approximation, which performs finite lookahead, can obtain some further
performance gain, at the cost of additional computation.

The paper is organised as follows. In the remainder of this section we give
some background, present the related work and describe our contributions. Sec-
tion 2 introduces notation while Section 3 specifies the loss model. Section 4
presents the proposed HiPER algorithm as well as the bounds on the worst-
case expected loss. Section 5 describes the decision-theoretic approaches which
model the problem as an MDP and are used in the performance comparisons
with the HiPER algorithm while Section 6 describes the evaluation experiments.
Finally, Section 7 concludes the paper. The appendix contains proofs of some
technical lemmas and provides some useful auxiliary results for completeness.

1.1 Background

The problem we consider falls within the scope of (statistical) decision theory. In
particular, the particular scenario we investigate can be reduced to the optimal
stopping problem [8], which can be modelled as an (unknown) Markov Decision
Process [8] (MDP) or as a (potentially unknown) Partially Observable MDP
(POMDP) [18].

More precisely, in our setting, the nodes can be one of two types: honest or
malicious. However, we initially start out without knowing what type each node
is. Consequently, we must gather data (observations) to reduce our uncertainty
about their types. Unfortunately, we can only do so while a node remains within
the network. However, the longer we maintain a malicious node in the network,
the more loss we incur. Conversely, once we remove an honest node, we will
obtain no more profit from it. Thus, the problem can be reduced to deciding at
what time, or under which conditions, to remove a given node from the network,
if at all. Consequently, our scenario can be seen as a type of optimal stopping
problem.

Optimal stopping problems can be seen as MDPs [8]. An MDP models the
interaction between an environment and an agent. The environment has a state,
which changes over time and whose next value depends on the current state, as
well as the current action taken by the agent. In addition, at every time-step, the
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agent receives a reward, which also depends on both the state and the agent’s
action. His goal is to maximise his total expected reward. Intrusion response
can be modelled as an unknown MDP. where each node in the network has an
unknown type (malicious or honest), and where the state describes the set of
nodes which remain in the network. In our case, the responses that we make
correspond to the actions of the agent. However, the reward we receive is hidden
and depends on the unknown type of the nodes. Equivalently, we can view the
nodes’ type as a hidden state, in which case the intrusion response problem can
be seen as a partially observable MDP (POMDP).1

To cast our problem in this setting, we need the following elements: a) the
prior probability for each node being honest or malicious; b) a known distribu-
tion family for the observation distribution, conditioned on whether the node
under consideration is honest or malicious; c) a planning algorithm that will de-
termine our responses. In general, this can be quite demanding computationally,
as the solution to either the unknown MDP or the POMDP problem requires
performing planning in a large tree. Finally, since in our case the reward remains
hidden from the agent, the problem is an extreme case of a partial monitoring
problem [7].

1.2 Previous work

The stopping problem has been extensively studied in general [8], while partial
monitoring games in general have also received a lot of attention recently [7].
However, to the best of our knowledge, the general hidden reward stopping
problem has not been previously studied in the literature. On the other hand,
the specific application we consider can be seen as a type of optimal intrusion
response, for which there is a considerable body of work.

Most of the previous research on intrusion response has concentrated on the
POMDP formalism. Indicative publications are those by Zonouz et al. [22], Zan
et al., [20] and Zhang et al. [21], which have all proposed an intrusion response
through modelling the process as a POMDP [18]. More precisely, Zonouz et al.
[22] proposed a Response and Recovery Engine (RRE) based on a game-theoretic
response strategy against adversaries modelled as opponents in a non-zero-sum,
two-player Stackelberg stochastic game. In each step of the game RRE chooses
the response actions using an approximate POMDP solver. More precisely, using
the most likely state (MLS) [6] approximation, the POMDP is converted to
a competitive Markov Decision Process (MDP), which is then solved using a
look ahead search (i.e. approximate planning). Zhang et al. use the POMDP
to integrate low level IDS alerts with high level system states, while Zan et.
al. [20] propose to solve the intrusion response problem as a factored POMDP
model. Additionally, they decompose the POMDP into small sub-POMDPs and
compute the response policy using the MLS approximation technique. However,

1 This is not contradictory, since unknown MDP problems are in fact a special case
of POMDPs[11] where the unknown parameters are seen as an unchanging, hidden
state.
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in our case MLS as an approximation is too crude to be used, since it would
essentially result in a completely random policy, as there are only two possible
hidden states each node can be in. An entirely different approach, policy-gradient
methods, is employed by [9] in the context of combating denial-of-service attacks
in P2P networks. However, this approach requires observing the rewards, which
are in fact hidden in our case.

1.3 Our contributions

Our first proposed algorithm relies on bounds which do not require knowledge
of prior probabilities regarding the type of a node (honest or malicious) neither
known distributions for the observations corresponding to honest or malicious
nodes. We only need to know the mean of each of these distributions. Conse-
quently, it is substantially more lightweight than MDP solvers, since we take
decisions without performing explicit planning. Thus, it is more suitable for re-
source constrained environments such as wireless communication networks. We
analyse the expected loss of this algorithm, and show that it is not significantly
worse to that of an oracle which already knows each node’s type.

Our second contribution is to derive three approximate MDP solvers for this
problem. In contrast to previous work, in our scenario the reward is never ob-
served by the algorithm.2 This is necessary, since knowing that a node gave you
positive reward allows you to directly conclude that it is an honest node. Fur-
thermore, two of our MDP algorithms are fundamentally different from those
previously employed in the intrusion response literature, as we forego the most-
likely-state approximation commonly used in POMDP-based approaches. The
first approach we consider is a myopic approximation. This is equivalent to the
most likely state approximation and ot a sequential probability ratio test under
some conditions. The second approach is a lightweight optimistic heuristic that
performs no planning, which is derived from upper bounds [10] on Bayesian de-
cision making in unknown MDPs [11]. To our knowledge, this approach has not
been used in similar problems before. Finally, we consider online planning with
finite lookahead [15,8]. This approach takes decisions which consider the impact
of all our possible future actions up to some horizon. While this approach has
not been considered for intrusion response problems before, we note that it has
been employed in other applications such as dialogue modelling [5], autonomous
underwater vehicle mapping [16], preference elicitation [3] and sensor schedul-
ing [12] in wireless sensor networks.

2 Preliminaries

We consider a network composed of a set of nodes, which can be either honest or
malicious. In this work, we ignore the specific network topology, beyond assuming
that there is a reliable way to obtain some statistics from each node. We denote

2 Although of course the reward is used in the experiments to measure performance.
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by Q the set of all malicious nodes and by U the set of all honest nodes. We
consider that there is an entity E (for instance an Internet Service Provider (ISP)
or a network administrator) who gains some reward (gain) gU from each moment
that a honest node remains in the network and has a cost (loss) ℓQ for each
moment thata malicious node stays in the network. A node may be removed
by E at any time, for example through black-listing. However, re-inserting a
removed node is not normally possible.

We use N to denote the (possibly random) time at which E removes a node
from the network. In addition, any honest node may leave the network at some
(random) time H . Specifically, we assume that an honest node may decide to
leave the network with some small probability λ > 0, independently over time.
Then it holds that E[H ] = 1

λ
.

Assumption 1 We assume that each node has a fixed type (i.e. honest or ma-
licious) that is not changing over time. The type is hidden from E.

E not only does not know the type of each node, but it also never observes
the rewards obtained or the cost incurred. However, at each time-step t and for
each node i, E receives some information signal xi,t ∈ [0, 1], characterising the
behaviour of that node i within the time interval t ∈ N.

Assumption 2 We assume that xi,1, . . . , xi,t are independent,3 but not neces-
sarily identically distributed, random variables and it holds:

E[xi,t | Q] = q, E[xi,t | U ] = u. (1)

It is important to while the expected value is constant for all t, the observed
average of 1

t

∑t

k=1 xi,t for each node i will initially be far from the expected value
for small t. The average, together with the total number of observations for each
node form a summary of the information received by each node. The relationship
between these quantities will be looked at more closely in the analysis.

Finally, we place no specific meaning to q and u in this work, as they are
application-dependent. In an intrusion response scenario (e.g. [13]), they could
be considered as the detection rate (DR) and the false alarm rate (FA) cor-
respondingly of an employed intrusion detection system. Then xi,t would cor-
respond to alarm signals, with lower and high values for innocent-looking and
suspicious behaviour respectively. Correspodingly, in a peer-to-peer scenario (e.g.
[17]), they could be fairness or reputation scores of each node.

In the remainder, we always refer to some arbitrary node in the network and
thus make no distinction between nodes. This is because the algorithms that
we examine, consider each node independently of the others. Consequently, the
following section analyses the expected loss for a single node of unknown type.

3 This assumption could in perhaps be relaxed if it is possible to form a martingale
difference sequence from the sequence of observations.



6 Christos Dimitrakakis and Aikaterini Mitrokotsa

3 The loss model

As previously mentioned, E obtains a small gain for each time-step an honest
node is within the network, and a small loss for each time-step a malicious node
remains in the network. Formally, we can write that the total gain G we obtain
from some node i, which E removes at time N , and which would voluntarily
leave at time H is:

G(i,H,N) =

{

−NℓQ, i ∈ Q
min{H,N}gU , i ∈ U .

(2)

E wants to choose some node removal policy π that maximises his total expected
gain. That means that E needs to keep as many as possible honest nodes in the
network and eliminate the nodes that behave maliciously. In our analysis, we
compare the expected gain of our policy π with that of an oracle. The oracle
always knows the type of each node (i.e. honest or malicious), and thus, employs
the optimal policy π∗. For i ∈ Q, according to the optimal policy π∗ it holds
N = 0, while for i ∈ U according to the optimal policy π∗ it is N = ∞.
Correspondingly,

Eπ∗ [G(i)] =

{

0, i ∈ Q
E[H ]gU , i ∈ U .

(3)

Let the loss L be the difference between the gain of the optimal policy and our
policy. In particular, the expected loss of policy π for a node of type v is defined
as:

Eπ[L | v] = Eπ∗(v)[G | v]− Eπ [G | v], (4)

where the i subscript has been dropped for simplicity. The expected loss is
bounded by the worst-case expected loss:

Eπ[L] ≤ max
v∈{Q,U}

Eπ[L | v], (5)

which we wish to minimise. If E removes node i from the network at random
time N , then he does not receive any more observations xi,t for this node from
the IDS. Thus, in essence, we want to find a stopping rule, that will let E to
determine the random time N at which stopping occurs, i.e. E takes the decision
that i ∈ Q and removes it from the network. We note that, 0 ≤ N ≤ ∞, where
N = ∞ if stopping never occurs.

Since E does not know if node i is honest or malicious, it must collect a
sufficient number of samples so as to only remove nodes for which it is reasonably
certain that they are malicious. On the other hand, malicious nodes must be
removed as soon as possible, since the operator incurs a cost for every moment
they remain in the network. The first algorithm we consider uses simple statistics
to make nearly optimal decisions about which nodes to keep.
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4 The HiPER Algorithm

The algorithm, depicted in Alg. 1, uses the knowledge we have about malicious
and honest nodes (see equation 1). This is done by calculating the average of all
the observations generated by a node i until time t:

θt ,
1

t

t
∑

k=1

xi,k, (6)

and adding an appropriate confidence interval so that errors are made with
low probability. Informally, HiPER keeps nodes in the network as long as the
statistic θt is sufficiently far from the expected statistic q of malicious nodes. In
order to avoid throwing away honest nodes prematurely, it always keeps nodes
for a certain number of steps to obtain more reliable statistics. However, as time
passes, it needs more and more evidence to kick a node out. Consequently, the
probability that an honest node is thrown out is bounded.

The analysis of the algorithm proceeds in three steps. First, we calculate the
expected loss of the algorithm when faced with a node of malicious type. Then,
we calculate the loss for honest nodes. Subsequently, we combine the two losses
and tune the algorithm’s input parameters to obtain an overall loss bound.

Algorithm 1 HiPER Algorithm for Optimal Response

Parameters: δ,∆, q ∈ [0, 1]
Loop: For each node i in the network:

For each time-step t do:

if |θt − q| <
√

ln(2/δ)
2t

and t >
ln(2/δ)

2∆2 then

remove node i from the network
else keep node i in the network.
end if

end For

end For

The first bound only depends upon the input parameter δ, the error proba-
bility we wish to accept, and the loss ℓQ incurred by malicious nodes. We prove
that the expected loss is polynomially bounded in terms of both δ and ℓQ.

Lemma 1. For Algorithm 1, with input parameter δ, and ∆ = |u − q|, the
expected loss when the node is malicious is bounded as:

E[L | Q] ≤ ℓQ
(1 − δ)2

(7)

The proof of this lemma can be found in the appendix. Naturally, the expected
loss is linearly dependent on the loss of keeping a malicious node in the network,
while the dependence on the error probability is quadratic.
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The second bound depends on the input parameter ∆, which corresponds to
how far we expect the statistics of honest nodes to be from q, the gain obtained
by honest nodes gU and the leaving probability of honest nodes λ. Once more,
we obtain a polynomial loss bound in terms of those variables.

Lemma 2. If ∆ = |u − q|, then the expected loss when the node is honest is
bounded by:

E[L | U ] ≤ gU(∆2 + 2)

λ(∆2 + 2λ)
. (8)

The proof of this lemma can be found in the appendix. Similarly to the previ-
ous lemma, there is a linear dependence on the loss that is incurred when we
erroneously remove an honest node, and a quadratic dependence on the rate of
departure. In addition, there is a weak dependence on the gap ∆ between the
two means.

Finally, we can combine everything in one bound by selecting a value for δ
that depends on ∆ and which simultaneously makes the bounds tight:

Theorem 1. Set ∆ = |u− q| and select:

δ = 1−
√

ℓQλ(∆2 + 2λ)

gU(∆2 + 2)
(9)

then the expected loss EL is bounded by:

E(L) ≤ L1 ,
gU(∆2 + 2)

λ(∆2 + 2λ)
. (10)

Proof. If we substitute (9) in (4) we get:

E[L|Q] ≤ ℓQ
(1− δ)2

=
ℓQ

ℓQλ(∆2+2λ)
gU (∆2+2)

=
gU (∆2 + 2)

λ(∆2 + 2λ)
. (11)

Thus, using (5) and Lemmas 1 and 2 we get:

E(L) ≤ gU(∆2 + 2)

λ(∆2 + 2λ)

⊓⊔

This theorem shows that the performance of HiPER only very weakly depends
on the gap ∆ between honest and malicious nodes. In addition, it is optimal up
to a polynomial factor.
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5 Modelling as a partially observable Markov decision

Process

A Partially Observable Markov Decision Process (POMDP) [18] is a generalisa-
tion of a Markov Decision Process (MDP). More precisely, a POMDP models
the relationship between an agent and its environment when the agent cannot
directly observe the underlying state. A POMDP can be described as a tuple
< S,A,O, T,Ω,R > where S is a finite set of states, A is a set of possible actions,
O is a set of possible observations, T is a set of conditional transition probabilities
and Ω is a set of conditional observation probabilities and R : A,S → R.

5.1 Intrusion Response and POMDP

We can model our intrusion response problem as a POMDP if we consider that
a node of the network at each time-step t has a state st ∈ S with st = (vt, ct)
where vt ∈ {0, 1} and ct ∈ {0, 1} such that:

vt =

{

0, if the node is honest,

1, if the node is malicious.

ct =

{

0, if the node is in the network,

1, if the node is out of the network.

where it holds that P(vt+1 = vt) = 1 since vt is stationary (i.e. a malicious node
is always malicious and an honest node remains honest) based on Assumption
1.

Additionally, at each time-step t, E can perform an action at ∈ {0, 1} such
that:

at =

{

0, if E keeps the node in the network,

1, if E removes the node from the network.

Furthermore, the following independence condition holds :

P(vt+1 | vt, ct, at) = P(vt+1 | vt), (12)

since the type of a node (i.e. malicious or honest) does not depend on E ’s action
(i.e. remove from the network or not) neither on whether the node is in the
network or out. In addition, since the type of a node never changes, it holds:

P(vt+1 = j | vt = j) = 1. (13)

Consequently, we remove the time subscript from v in the sequel. On the other
hand the probability that a node will be in the network depends on if it is already
in or out and the action that E will take:

P(ct+1 | ct, v, at) = P(ct+1 | ct, at) (14)
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From equations (13) and (14), it is evident that the POMDP under consideration
is factored.

To fully specify the model we must assume some probability distribution for
the observations. Specifically, we model xt as drawn from a Bernoulli distribu-
tion4 with parameters u and q for honest and malicious nodes respectively.

P(xt = 1 | v = 0) = u and P(xt = 1 | v = 1) = q. (15)

Let xt , (x1, . . . , xt) be a t-length sequence of observations. From Bayes’ theo-
rem, we obtain an expression for our belief at time t:

P(v = j | xt) =
P(xt | v = j)P(v = j)

∑1
i=0 P(xt | v = i)P(v = i)

(16)

where j ∈ {0, 1}. Thus, the expected gain at time t if E decides to keep a node
in the network is:

E[Gt | ct = 0,xt] = P(v = 0 | xt) · gU − P(v = 1 | xt) · ℓQ,

while the expected gain if E decides to remove the node from the network is
always:

E[Gt | ct = 1] = 0.

The problem is to find a policy π : X∗ → A, mapping from the set of all possible
sequences of observations to actions, maximising the total expected gain:

Eπ(G) = Eπ

( ∞
∑

t=1

Gt

)

. (17)

Since future gains depend on any future observations we might obtain, the exact
calculation requires enumerating all possible future observations. Consequently,
the exact solution to the problem is intractable [8,11,10]. In the next section we
describe possible approximations to this problem.

5.2 POMDP algorithms

We consider three algorithms: a) A myopic algorithm, which only considers the
expected gain at the current time-step; b) An optimistic algorithm, which com-
putes an upper bound on the total expected gain; c) A finite lookahead algo-
rithm, which performs complete planning up to some fixed finite depth. While
these algorithms have appeared before in the general MDP literature, they have
not been applied before to intrusion response problems. We do not consider the
most likely state approximation (MLS), since in our case there are only two pos-
sible hidden states for a node, thus, rendering the approximation far too coarse
for it to be effective.
4 This distribution is particularly convenient for computational reasons, because
closed-form Bayesian inference can be performed via the Beta conjugate prior [8].
However, in principle it can be replaced with any other distribution family, without
affecting the overall formalism.



Near-Optimal Node Blacklisting in Adversarial Networks 11

Myopic. In this case, E only considers the expected gain for the next time-step
when taking a decision. Consequently, E keeps the node in the network if the
following condition holds:

E[Gt | at = 0] > E[Gt | at = 1]. (18)

This algorithm is the closest to the MLS approximation among the ones consid-
ered. In fact, it is easy to see that it would be identical to MLS, as well as to a
sequential probability ratio test, when ℓQ = gU .

Optimistic. This rule constructs an upper bound on the value of the decision to
keep a node in the network, which is based on Proposition 1 in [10]. Informally,
this is done by assuming that the true type of the node will be revealed at the
next time-step. Then E keeps the node in the network if and only if:

P(vt = 0 | xt) · gU/λ > P(vt = 1 | xt) · ℓQ. (19)

Intuitively, if the node is revealed to be malicious, then we can remove it at the
next step and consequently we only lose ℓQ. In the converse case, we can keep
it for an expected 1/λ steps.

Finite lookahead. The finite lookahead algorithm performs backwards induc-
tion [8] up to some finite depth T , at every time-step. More precisely, any
sequence of observations xt = (x1, . . . , xt) results in a posterior probability
P(vt | xt). Let:

Vt ,

∞
∑

k=t

Gk (20)

be the total gain starting from time-step t. Then, the expected gain under the
optimal policy is determined recursively as follows:

E(Vt | xt) = max{0,E(Gt | xt, at = 0) + E(Vt+1 | xt)} (21)

E(Vt+1 | xt) = pt E(Gt | xt, xt+1 = 1)+

(1− pt)E(Vt+1 | xt, xt+1 = 0) (22)

where pt , P(xt+1 = 1 | xt) =
∑1

i=0 P(xt+1 = 1 | v = i)P(v = i | xt) is the
marginal posterior probability that xt+1 = 1. For more details on this backwards
induction algorithm, the reader is urged to consult [8,11].

6 Experimental Evaluation

We perform three sets of experiments. The first set investigates the performance
of HiPER with various choices of the parameter δ, including the optimal choice
suggested by Theorem 1. The second set compares HiPER with the myopic and
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Fig. 1. Simulations with Alg. 1, for four different choices of δ. In particular δ1 = 0.9,
δ2 = 0.95, δ3 = 0.99 and δ∗ is chosen according to Theorem 1. It can be seen that,
while the algorithm is not extremely sensitive to the exact choice of δ, the optimal
value is generally more robust.

optimistic approximations. In the final set of experiments, we compare the opti-
mistic with the finite lookahead approximation. In all cases, we collected results
from 104 runs, with 100 nodes per run, and we plot a moving average of the
expected loss as various network parameters change. Specifically, the first results
we report (i.e. Fig. 1) are made through 104 experiments. For each experiment,
we selected a horizon H ∼ Uniform([10, 1000]), user and adversary parameters
u, q ∼ Uniform([0, 1]), and user gain gU ∼ Uniform([0, 1]) and we set ℓQ = 1.
Each experiment measured the loss for a network containing 100 nodes, each
of which had a probability p of being malicious, with p ∼ Beta(2, 2) for each
experiment. During each run, the i-th node generates a sequence of observations
xi,t drawn from a Bernoulli distribution with parameter u if the node is honest
and q if the node is malicious. The results are shown in Fig. 1 show a summary
of the results, averaged over these trials. It can be seen that, while HiPER’s per-
formance is relatively robust to the choice of δ, nevertheless the optimal choice
suggested by Theorem 1 generally leads to small losses.

For our second set of experiments, shown in Figure 2, we compare HiPER

with the optimistic and myopic algorithms. We increased the range of user gains
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Fig. 2. Comparison of HiPER with themyopic solver and the optimistic approximation
for various network conditions. It can be clearly seen that the myopic approximation
is significantly worse than both approaches. However, the optimistic approach outper-
forms the worst-case HiPER algorithm when the proportion of malicious nodes is low.
The optimistic approach is also better when the payment for honest nodes is high.

to gU ∼ Uniform([0, 2]) compared to the previous setup, but the other experi-
mental parameters remain the same. It is clear that the myopic approximation
has almost always a higher loss compared to both HiPER and the optimistic
algorithm. The latter, while performing at a similar level to HiPER, has an
advantage when either the proportion of malicious is small or when gU is large.
This makes sense intuitively, since in those cases the optimism is justified. In the
converse case, however, the optimistic approach performs worse than HiPER,
which is less sensitive to the proportion of malicious nodes, since it is a worst-case
approach.

Finally, we performed some experiments comparing the optimistic approxi-
mation with the finite-lookahead POMDP solvers for lookahead for T time-steps
where T ∈ {4, 8}. While these do not solve the problem to the end of the horizon
H , they plan ahead for T steps at every time-step of the simulation. Unfortu-
nately, the complexity of these solvers is exponential in T , which limited the
amount of simulations we could perform to 103 and we only considered horizons
H ∼ Uniform([1, 100]). These experiments are shown in Fig. 3. In compari-
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Fig. 3. Comparison of the optimistic approximation with approximate non-myopic
POMDP solvers for planning lookahead of T time-steps where T ∈ {4, 8}. It can
be seen that, for short horizons, these perform just as well and that they are more
robust to the proportion of malicious nodes in the network. However, these methods
are computationally more intensive, with complexity O(eT ).

son with Fig. 2, the finite lookahead algorithms performs much better than the
myopic approximation and indeed the 8-step lookahead manages to slightly out-
perform the optimistic approximation. In addition, it is much more robust to the
proportion of malicious nodes in the network. However, the relative advantage
of the 8-step to the 4-step lookahead is relatively small for the amount of extra
computation required.5

7 Conclusion

This paper defined a network management problem that arises frequently in
communication networks. Namely, whether to remove a suspicious node from
the network, with the amount of available evidence, or to collect some further
data before taking the final decision. This is in fact a type of stopping problem,
which we believe is of relevance to many networking applications where blacklist-
ing may be performed. This includes applications such as automated intrusion

5 The computational effort is exponential in T .
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response, as well as ensuring fairness in peer-to-peer networks, such as [19]. To
this end, we proposed and analysed, both theoretically and experimentally, a
simple algorithm, HiPER, that achieves low worst-case expected loss relative to
an oracle that knows a priori the type (honest or malicious) of every node in
the network. In addition, we derived and compared a number of algorithms by
modelling the problem as a POMDP: a myopic and an optimistic approximation,
as well as a finite lookahead solver. Of those, the optimistic approximation and
the partial finite lookahead solvers perform the best, with the finite lookahead
methods being the most robust, while simultaneously being computationally de-
manding.

The main advantage of HiPER are its simplicity and lack of stringent as-
sumptions on the distribution. This makes it suitable for deployment in most
situations. However, in certain cases a full probabilistic model and computational
resources are available, in which case one of the approximate solvers would be
useful. The myopic approximation, which is almost equivalent to the widely-used
MLS approximation, performs the worse. The overall best performance is offered
by the finite lookahead. To our knowledge, neither the optimistic approximation,
nor the finite lookahead methods have been applied before to this problem or
more generally to intrusion response problems. They should be more generally
applicable for other types of intrusion response and network management prob-
lems. It is our view that they are inherently more suitable than other approx-
imations such as the most likely state (MLS) approximation (or equivalently,
a sequential probability ratio test) which in our setting produces an essentially
random policy.

For future work, we would like to extend our theoretical analysis to the
performance of the optimistic and the finite lookahead algorithms. In addition,
it would be interesting to examine a more general game-theoretic scenarios,
including strategic attackers[2,1], as well as colluding nodes. Finally, we would
like to generalise our setting so that observations must be explicitly gathered
from each node, where it is not possible to continuously sample all nodes due
to budget constraints. In fact, the sampling problem in the context of intrusion
detection, has been recently studied by [14,4]. A natural extension of our work
would consequently be to optimally combine sampling and response policies.

A Proofs

This section collects the missing proofs from the main text.

Proof ((Lemma 1)). Since the node i under consideration is malicious, i.e. i ∈ Q,
it holds that: E[xi,t | Q] = q. Then, we have:

E[θt | Q] = E

[

1

t
·

t
∑

k=1

xi,k

∣

∣

∣

∣

Q
]

=
1

t

t
∑

k=1

E[xi,k | Q] =
1

t
· t · q = q.
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From Hoeffding’s inequality (Lemma 3, in the Appendix), we have:

P (|θt − q| > ǫt | Q) ≤ 2 exp(−2tǫ2t ), (23)

where ǫt > 0 and P (|θt − q| > ǫt | Q) denotes the probability that θt (which is
random) is very far away from q (which is fixed).
Now let set:

ǫt =

√

ln(2/δ)

2t

as in Algorithm 1. Then, since equation 23 holds for any ǫt > 0, we get that the
probability of keeping a malicious node i ∈ Q in the network is at most δ:

P

(

|θt − q| >
√

ln(2/δ)

2t
| Q
)

< δ (24)

Thus, we have:

E[L | Q] = E[N | Q] · ℓQ =

∞
∑

t=0

P(N = t | Q) · t · ℓQ

Thus:

E[L | Q] = ℓQ

∞
∑

t=0

P(N = t | Q) · t ≤ ℓQ

∞
∑

t=0

δt−1 · t

=
ℓQ

(1 − δ)2

⊓⊔
Proof ((Lemma 2)). We denote by N the time-step at which E removes node i
from the network. Then, the function g : N2 → R that gives us the gain for each
node i is defined as:

g(n, h) , min{n, h} · gU (25)

where h ∈ H and n ∈ N .
Since the node i under consideration is honest, i.e. i ∈ U , we have E[xi,t | U ] = u.
Without loss of generality we assume that: u = q+∆, where ∆ > 0. So we only
need P(θt − q < ǫt | U).
Since q = u−∆ from the Hoeffding inequality (Lemma 3, in the Appendix), we
have:

P(N = t | U) ≤ P(N ≤ t) ≤ P(θt − u < ǫt −∆ | U)
≤ exp(−2 · t(ǫt −∆)2)

where ∆− ǫt > 0. It holds that:

E[G | U , N = n] =
∞
∑

n=0

P(H = h | U , N = n)E[G | U , N = n,H = h] (26)



Near-Optimal Node Blacklisting in Adversarial Networks 17

But it holds that:
E[G | U , N = n,H ] = g(n, h)

and since h ∈ H and n ∈ N are independent we have:

P(H = h | U , N = n) = P(H = h | U).

Thus,

E[G | U , N = n] =
∞
∑

h=0

P(H = h | U) · g(n, h) =
∑

h=0

P(H = h | U)min{n, h} · gU =

gU ·
{

n−1
∑

h=0

P(H = h | U) · h+

∞
∑

h=n

P(H = h | U) · n
}

(27)

The expected loss is given by subtracting from the expected gain of the oracle
policy, when E never removes the node from the network (i.e. N = ∞), the
expected gain when E removes the node at the time-step N = n. Thus, it holds:

E[L | U , N = n] =

E[G | U , N = ∞]− E[G | U , N = n] =

lim
n→∞

(E[G | U , N = n])− E[G | U , N = n] =

gU

∞
∑

h=0

P(H = h) · h− gU
{

n−1
∑

h=0

P(H = h) · h+

∞
∑

h=n

P(H = h) · n
}

= gU
{

∞
∑

h=n

P(H = h) · h−
∞
∑

h=n

P(H = h) · n
}

(28)

Since, by definition P(H = h+1 | H > h) = λ, we have P(H = h) = (1−λ)h−1λ.
Consequently,

E[L | U , N = n] =gU · λ
( ∞
∑

h=n

(1 − λ)h−1 · h−
∞
∑

h=n

(1 − λ)h−1 · n
)

=gU · (1− λ)n

λ
(29)

Thus, we have:

E[L | U ] =
∞
∑

t=0

P(N = t | U)E[L|N = t]

≤
∞
∑

t=0

exp(−2 · t · (ǫt −∆)2) · gU
(1 − λ)t

λ
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Since the algorithm uses ǫt =
∆√
t
, we have:

E[L | U ] ≤gU
λ

∞
∑

t=0

exp

(

−2 · t
[

∆√
t
−∆

]2
)

(1− λ)t

=
gU
λ

∞
∑

t=0

exp
(

−2∆2(
√
t− 1)2

)

(1 − λ)t

≤ gU
λ

∞
∑

t=0

exp



−2∆2

[

√
t−
√

t

2

]2


 (1− λ)t

=
gU
λ

∞
∑

t=0

[

exp

(

−∆2

2

)

(1− λ)

]t

=
gU

[

1− exp
(

−∆2

2

)

(1− λ)
]

λ

≤ gU (∆2 + 2)

λ(∆2 + 2λ)
(30)

where t ≥ 2. ⊓⊔

B Additional results

Definition 1 (Bernoulli distribution). If X1, . . . , Xn are independent Bernoulli
random variables with Xk ∈ {0, 1} and P(Xk = 1) = µ for all k, then

P

(

n
∑

k=1

Xk ≥ u

)

=
u
∑

k=0

(

n

k

)

µk(1− µ)n−k. (31)

Lemma 3 (Hoeffding). For independent random variables X1, . . . , Xn such
that Xi ∈ [ai, bi], with µi , EXi and t > 0:

P

(

n
∑

i=1

Xi ≥
n
∑

i=1

µi + nt

)

≤ exp

(

− 2n2t2
∑n

i=1(bi − ai)2

)

.

The same in equality holds for
∑n

i=1 Xi ≤
∑n

i=1 µi − nt.
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