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Abstract

Sparse coding has been popularly used as an effective data represen-
tation method in various applications, such as computer vision, medical
imaging and bioinformatics, etc. However, the conventional sparse coding
algorithms and its manifold regularized variants (graph sparse coding and
Laplacian sparse coding), learn the codebook and codes in a unsupervised
manner and neglect the class information available in the training set. To
address this problem, in this paper we propose a novel discriminative
sparse coding method based on multi-manifold, by learning discrimina-
tive class-conditional codebooks and sparse codes from both data feature
space and class labels. First, the entire training set is partitioned into
multiple manifolds according to the class labels. Then, we formulate the
sparse coding as a manifold-manifold matching problem and learn class-
conditional codebooks and codes to maximize the manifold margins of
different classes. Lastly, we present a data point-manifold matching error
based strategy to classify the unlabeled data point. Experimental re-
sults on somatic mutations identification and breast tumors classification
in ultrasonic images tasks demonstrate the efficacy of the proposed data
representation-classification approach.

1 Introduction

Sparse coding (Sc) [1] has been successfully applied in many pattern recognition
applications as a part-based data representation method, such as such as face
recognition [2], speech recognition [3], handwritten digits recognition [4] and im-
age clustering [4], etc. Given a set of data feature vectors organized as an input
data matrix, Sc aims at finding a basis vectors pool (also known as codebook),
and selecting as few basis vectors as possible from the codebook to linearly re-
construct the data feature vectors, meanwhile keeping the reconstruction error
as small as possible [1].
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Due to the ”overcomplete” or ”sufficient” characteristic of the codebook
learned by Sc, the locality of the data points to be encoded might be ignored.
As a result, similar data vectors may be represented as totally different sparse
codes based on such codebooks, bringing the the instability of the sparse coding
and hamming the robustness of the sparse coding based pattern recognition
applications [5, 6]. To overcome this disadvantage, Graph regularized Sparse
Coding (GraphSc) and Laplacian Sparse coding (LSc) have been proposed by
Zheng et al. [4] and Gao et al. [5, 6] separately. In both these two methods,
the local geometrical structure of the dataset is explicitly explored by building a
k-nearest neighbor graph, and the graph Laplacian is used as a smooth operator
to preserve the local manifold structure. Thus, the learned sparse coding vary
smoothly along the geodesics of the data manifold [4, 5, 6].

For most pattern recognition tasks, such as somatic mutations identification
[7], breast tumors classification [8], etc., the class labels are available for the
training set. Using these class labels, more discriminative sparse codes are
supposed to be learned in a supervised manner. However, the LSc or GraphSc
are both unsupervised algorithms, thus do not utilize the class labels and ignore
the discriminative information contained in the labels. Moreover, both GraphSc
or LSc assume that the data points from different classes define a single general
manifold in the feature space and seek common codebook and coding strategy
for all data points so that the nearby points are likely to have similar codes.
However, as argued by Lu et al. [9, 10], ”it is still unknown that whether a
single manifold could well model the data and guarantee the best recognition
accuracy”, thus such this assumption is arguably the most suitable.

To solve the problems mentioned above, we assume that the optimal code-
books and coding strategy for for each class should be different due to the
intrinsic differences of different classes, and propose a novel supervised sparse
coding method by learning discriminative codes from both the data features
and class labels. We model the data points from each class as a manifold such
that we can learn optimal codebook and cods for each specific class. First, we
partition the entire data set into several class-conditional subsets according to
the labels, and assume that each subset lay on a class-conditional manifold,
which should be spanned by a independent class-conditional codebook. Instead
of regularize the codes with a single manifold as in LSc and GraphSc, we apply
a multi-manifold framework for sparse coding regularization. A manifold is esti-
mated for each class. Then, we formulate the spars coding as a class-conditional
data features reconstruction and manifold-manifold matching problem and learn
multiple codebooks and codes to maximize the manifold margins of different
classes. Lastly, we present a data point-manifold matching error based strategy
to classify the unlabeled data point. Experimental results on breast tumors clas-
sification in ultrasonic images [8] and somatic mutations identification [7] tasks
demonstrate the efficacy of the proposed data representation-classification ap-
proach.
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2 Discriminative Sparse Coding on Multi-Manifold
(DisScMM)

In this section, we will introduce the newly proposed sparse coding method on
multi-manifold.

2.1 Object Function

Let us denote the training data set as X = {xi} ∈ RD, i = 1, · · · , N , where
N is the number of data points and D is the dimensionality of feature vectors
of the data point, and the class labels as Y = {yi} ∈ L, i = 1, · · · , N , where
L = {1, · · · , L} is the set of class labels. We first divide the data set X into
L class-conditional subsets as Xl = {xi|yi = l, xi ∈ X}, according to the class
labels. Let Xl be the data set of the l-th class, represented by a manifold Ml.
The object function of DisScMM is composed of two terms as follows.

2.1.1 Sparse Reconstruction Loss Term

Different from traditional Sc methods, we represent the data points in each class
with class-conditional codebook, so that they can be better separated when the
codebook and coding are selected to be different in the low-dimensional code
spaces. Given a class-conditional data set Xl, let Ul = [ul1, · · · , ulK ] ∈ R

D×K

be the its class-conditional codebook matrix, where each ulk ∈ R
D represents

a code word vector in the codebook, and vli ∈ R
K be the coefficient vector of

xi ∈ Xl, which is the sparse coding of this data point. Each data point xi ∈ Xl

can be reconstructed as a sparse linear combination of those code word vectors
in the codebook as xi = Ulvli. A good coding vli together with codebook
Ul should minimize the reconstruction loss function, and also should keep the
reconstruction coefficients as sparse as possible, which can be formalized as

min
Ul,Vl

R(Ul, Vl) = min
Ul,Vl

∑

i:xi∈Xl

(||xi − Ulvli||
2 + α||vli||1)

s.t. ||ulk||
2 ≤ c, k = 1, · · · ,K.

(1)

where Vl is the coefficient matrix, each column of Vl is a sparse representation
for a data point, and ||vli||1 is a l1 norm function to measure the sparseness of
vli.

2.1.2 Large Margin Term

Given a sample xi ∈ Xl belonging to l-th class, two kinds of neighbors in the
data set X are considered: intra-class neighbors N intra

i and inter-class neigh-
bors N inter

i . Intra-class neighbors of xi are the p nearest data points from the
same class as xi, while inter-class neighbors are the the p nearest data points
from different class from xi. Using Gaussian kernel, we first define the class-
conditional intra-class affinity matrix W intra

l and the inter-class matrix W inter
l
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to characterize the similarity between xi ∈ Xl and it neighbors in N intra
i as well

as that between xi ∈ Xl and N inter
i , respectively,

W intra
lij =

{

exp(− ||xi−xj||
2

2σ2 ), if xi ∈ Xl, and (xj ∈ N intra
i or xi ∈ N intra

j )
0, otherwise

W inter
lij =

{

exp(− ||xi−xj ||
2

2σ2 ), if xi ∈ Xl, and (xj ∈ N inter
i or xi ∈ N inter

j )
0, otherwise

(2)
From the viewpoint of classification, the intra-class variance should be min-

imized while the inter-class separability should be maximized in the spares cod-
ing spaces, so that the class margin can be maximized for sparse coding. To
this end, the large margin term of sparse coding is formulated as the following
optimization problem for l-th class:

min
Vl

M(Vl), M(Vl) =
1

2

∑

i:xi∈Xl

(
∑

j:xj∈N intra
i

||vli − vlj ||
2W intra

lij )

−
1

2

∑

i:xi∈Xl

(
∑

j:xj∈N inter
i

||vli − vlj ||
2W inter

lij )

(3)

On the one hand, the first term of objective function ofM(Vl) in (3) is to ensure
that if xi and xj are close and from the same class, then their class-conditional
sparse codes vli and vlj representations are close as well. On the other hand,
the second term of objective function ofM(Vl) in (3) it ensures that if xi and
xj are close and from different classes, then their class-conditional sparse codes
vli and vlj representations are separated as far as possible.

2.1.3 Object Function of DisScMM

To construct the object function, we first construct the class-conditional mani-
fold by including the intra and inter-class neighbors of data points xi ∈ Xl, as
Ml = ∪

i:xi∈Xl

({xi} ∪ N
intra
i ∪ N inter

i ). The data points in this manifold of l-th

class are organized as a data matrix Xl = [xn] ∈ R
D×Nl , n = 1, · · · , Nl, xn ∈

Ml, where Nl = |Ml| is the number of data points inMl. The corresponding
sparse coding coefficient matrix is denoted as Vl = [vn] ∈ R

K×Nl , where each
column vln is a sparse representation for a data point xn. Then, with the above
defined tow object function terms in section 2.1.1 and section 2.1.2, we will have
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the object function of DisScMM by combining them, as

O(Ul, Vl) = R(Ul, Vl) + βM(Vl)

= ||Xl − UlVl||
2 + α

Nl
∑

n=1

||vln||1

+ β
1

2

Nl
∑

n,m=1

||vln − vlm||
2W intra

lnm − β
1

2

Nl
∑

n,m=1

||vln − vlm||
2W inter

lnm

= ||Xl − UlVl||
2 + α

Nl
∑

n=1

||vln||1 + β[Tr(VlL
intra
l V ⊤

l )− Tr(VlL
inter
l V ⊤

l )]

= ||Xl − UlVl||
2 + α

Nl
∑

n=1

||vln||1 + βTr(VlLlV
⊤
l )

(4)
where Lintra

l = Dintra
l −W intra

l and Linter
l = Dinter

l −W inter
l are the Laplacian

matrices, Dintra
l and Dinter

l are diagonal matrix whose entries are Dintra
lnn =

∑Nl

m=1
W intra

lnm and Dinter
lnn =

∑Nl

m=1
W inter

lnm separately, Ll = Lintra
l − Linter

l ,
where β is the trade-off parameter.

With the defined object function, we formulate the proposed DisScMM as
the following optimization problem:

min
Ul,Vl

O(Ul, Vl)

s.t. ||ulk||
2 ≤ c, k = 1, · · · ,K.

(5)

Note that for each manifold, such a optimization will be performed to learn a
class-conditional codebook and the codes.

2.2 Optimization

The optimal Ul and Vl of (5) can be solved by following the iteratively optimiza-
tion method introduced in GraphSc [4] or LapSc [5, 6]. An iterative, two-step
strategy is adopted to alternately optimize Ul and Vl. At each iteration, one of
Ul and Vl is optimized while the other is fixed, and then the roles of Ul and Vl

are switched. Iterations are repeated until a maximum number of iterations is
reached.

2.2.1 On Optimizing Codebooks Ul

By fixing Vl the optimization problem (5) is reduced to

min
Ul

||Xl − UlVl||
2

s.t. ||ulk||
2 ≤ c, k = 1, · · · ,K.

(6)

The solution of this problem is introduced in [1] as

U∗
l = XlV

⊤
l (VlV

⊤
l + diag(λ∗))−1 (7)
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where λ = [λ1, · · · , λK ]⊤, λk is the Lagrange multiplier associated with the k-th
inequality constraint ||ulk||2 ≤ c, and λ∗ is the optimal solution of λ. For more
details, we refer the readers to [1, 4].

2.2.2 On Optimizing Sparse Codes Vl

By fixing Ul, the optimization problem (5) becomes

min
Vl

||Xl − UlVl||
2 + α

Nl
∑

n=1

||vln||1 + βTr(VlLlV
⊤
l ) (8)

Each coding vector vln is optimized one by one. To optimize vln, we fix all
the remaining sparse codes vlm(m 6= n). Note that the Laplacian regularizer of

multi-manifold can be rewritten as Tr(VlLlV
⊤
l ) =

∑Nl

n,m=1
Lnmv⊤lnvlm. Then

(8) is further reduced to

min
vln
||xn − Ulvln||

2 + α||vln||1 + β



Lnnv
⊤
lnvln + 2v⊤ln

∑

m 6=n

Lnmvlm



 (9)

This problem can be optimized by the graph regularized Sparse Codes learning
introduced in Algorithm 1 of [4]. or the feature-sign search algorithm introduced
in Algorithm 1 of [6]. Here we adopt the one introduced in [4]. In fact, these to
algorithms are basically the same except the initialization procedure. Moreover,
graph regularized Sparse Codes learning introduced in Algorithm 1 of [4] requires
the graph weight matrix to be symmetric while the other one do not.

The learning procedure of DisScMM algorithm is summarized in Algorithm
1.

2.3 Classifier of DisScMM

Differently from traditional Sc methods which can only be used to represent the
date, the DisScMM can also makes use of the discriminative nature of sparse
coding on multi-manifold to perform classification. When a new data point xt

comes in, we match it to all the manifolds and then assign it to the class with
minimum matching error. Assuming xt belongs to l-th class, we first calculate
its intra-class nearest neighbors N intra

lt and inter-class nearest neighbors N inter
lt

fromMl. We also suppose that the input of this new data point has no effect
on the discriminate graphs in the sparse codes of Ml, so the sparse codes vln
for xn ∈ Ml are fixed. Then the match error between xt andMl is defined as:

El(xt) = min
vlt
||xt − Ulvlt||

2 + α||vlt||1 +
β

2

∑

n:xn∈N intra
lt

||vlt − vln||
2W intra

ltn

−
β

2

∑

n:xn∈N inter
lt

||vlt − vln||
2W inter

ltn

(10)
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Algorithm 1 The learning procedure of DisScMM Algorithm.

INPUT: Training setsM1, · · · ,ML of L classes of multi-manifold;
for l = 1, · · · , L do

Construct discriminate graph weight matrices as in (2) and corresponding
Laplacian matrices Ll for l-th manifold.
Initialize the class-conditional codebook U0

l and sparse codes V 0

l for l-th
manifold, by performing Sc to Ml.
for t = 1, · · · , T do

for n = 1, · · · , Nl do

Update the sparse codes vtln while fixing vt−1

lm ,m 6= n and U t−1

l by
solving (9) for l-th manifold.

end for

Update the codebook U t
l while fixing V t

l by (7) for l-th manifold.
end for

end for

OUTPUT: The final class-conditional codebooksUT
l and sparse codes V T

l ,
l = 1, · · · , L.

where W intra
ltn and W inter

ltn are the intra and inter-similarities of xt to the n-th
data point of Ml, which is calculated by (2). This optimization problem can
also be solve by Algorithm proposed in [4]. We finally assign a label yt to xt as
follows:

yt ← l∗ = argmin
l∈L

El(xt) (11)

The classification procedure is summarized in Algorithm 2.

Algorithm 2 The classification procedure of DisScMM Algorithm.

INPUT: Training setsM1, · · · ,ML of L classes of multi-manifold;
INPUT: The class-conditional codebooks Ul and sparse codes Vl for L man-
ifolds, l = 1, · · · , L.
INPUT: The input unlabeled data point xt.
for l = 1, · · · , L do

Extend the discriminate graph weight matrices by adding xt as in (2) and
compute corresponding Laplacian matrices Ll for l-th manifold.
Compute the matching error El(xt) of xt toMl as in (10).

end for

Classify xt into the l∗-th class with minimum matching error as in (11).
OUTPUT: The class label yt of xt.
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3 Experiments

In this section, we will evaluate the proposed method on two challenging data
classification tasks.

3.1 Experiment I: Identifying Somatic Mutations

Profiling tumours for single nucleotide variant (SNV) somatic mutations using
next-generation sequencing technology (NGS) plays an important role in the
study of cancer genomes [7]. In this experiment, we will evaluation our DisScMM
on the task of inferring somatic mutations from paired tumour/normal NGS
data.

3.1.1 Database and Setup

Two independent datasets are used to train and test the performance of the
DisScMM method for somatic mutation identification.

Training Set The training dataset is selected from the exome capture data
containing 3369 variants which are predicted by using only allelic counts
and liberal thresholds [7]. Further re-sequencing experiments revalidated
1015 somatic mutations, 471 germline and 1883 wild-type positions. Our
selected training data set contains 800 somatic mutations, and 1800 non-
somatic mutations (germline and wildtype).

Test Set The test dataset is selected from the whole genome shotgun data
containing 113 somatic mutations, 57 germline mutations and 337 wild-
types [7]. These positions are deliberately held out of the training data so
that the test set and the training set are completely independent from each
other. We select 90 somatic mutations and 300 non-somatic mutations to
construct the test set.

Given the i-th candidate mutation site of the genome in the dataset, it is
represented by a feature vector xi with 106 feature components constructed from
both the tumor and normal data as in [7]. The somatic mutations identifying
problem is to predict the label yi of the feature represented site. yi is defined
as

yi =

{

1, if i− th site is a somatic mutation,

2, if i− th site is a non− somatic mutation.
(12)

To predicate the class labels in the test set, we first learn the codebooks for
the somatic mutations manifold and non-somatic mutations manifold using the
training set for DisScMM. For the learning procedure, we applied a 10-fold cross-

validation analysis to find the optimal hyper-parameters. Then the learned
DisScMM model will be applied to the independent test set to classify each
candidate mutation site into somatic mutations or non-somatic mutations. Some
competing algorithms, including Sc [1], GraphSc [4] and LapSc [6] are also tested
as mutation representation methods.
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To evaluate the performances of the classification results, we employ the
recall, precision [11], accuracy, F-score, matthews correlation coefficient (MCC)
as metrics. Recall, precision and accuracy are defined as

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
, Accuracy =

TP + TN

TP + FN + TP + FP
(13)

where TP, FP, TN, FN are the number of true positives, false positives, false
positives and false negative respectively. The F-score is the harmonic mean of
precision defined as

Recall = 2×
Recall× Precision

Recall+ Precision
(14)

Recall Precision, accuracy, the F-score are comprised between 0 and 1, and the
classifier with the larger value has the better the performance. The MCC is
given by

MCC =
TP × TN − FP × FN

√

(TP + FN)(TP + FP )(TN + FN)(TN + FP )
(15)

The MCC value is between -1 and 1. A perfect classifier has MCC = 1, a random
predictor has MCC = 0, while perfect inverted predictor has MCC = -1.

3.1.2 Results

The boxplots of recalls, precisions, accuracies, F-scores and MCCs of 10-fold
cross-validation on the training data set are shown in Fig. 1 (a) - (e), re-
spectively, where the various performance metric values of our DisScMM show
accuracy of the returned top results. We observe that for all performances
measures, DisScMM outperforms the baseline methods significantly in terms of
both median value and Q values. We also observed that the unsupervised single
general graph based sparse coding, i.e. GraphSc and Lap, has comparable per-
formance to the each other. From these figures, it is not very surprising to see
that original Sc provides the worst performance since the Sc function ignores
locality of the data points.

Fig. 2 summarizes the recalls, precisions, accuracies, F-scores and MMCs
for the proposed DisScMM and its competitors on the independent test dataset.
According to Fig. 2, we first observe a significant difference between recall and
precision scores for all the methods, which is consistent with the observations
reported in the previous 10-fold cross-validation on the training dataset. The
possible reason is the significant unbalanced number of the positive and nega-
tive samples. Second, we observe that for all the cases, DisScMM outperforms
GraphSc, LapSc and Sc significantly. Fig. 2 also shows that the sparse cod-
ing methods with manifold regularization outperform sparse coding without it.
Our DisScMM based somatic mutations identifying method outperforms both
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Figure 1: Boxplots of recalls, precisions, accuracies, F-scores and MMCs of
10-fold cross-validation on training set of somatic mutation identification.

GraphSc and LapSc based tagging methods, and achieve the best somatic muta-
tions identifying performance of all the methods, which proves the effectiveness
of DisScMM for this task. Moreover, GraphSc and LapSc achieves much better
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Figure 2: The recalls, precisions, accuracies, F-scores and MMCs on the test set
of somatic mutation identification.

performance than original Sc, which proves the usefulness of regularizing the
sparse code with the nearest graphs.
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3.2 Experiment II: Breast Tumor Classification in Ultra-
sonic Images

Medical examination based on ultrasound imaging is indispensable for the early
detection and treatment of breast cancers [8]. Thus, Developing automated
differential diagnosis system that classifies a given breast tumor as benign or
malignant plays an important role in modern medical examination. In this
experiment, we will evaluate the performance in the task of breast tumor clas-
sification in ultrasonic images.

3.2.1 Dataset and Setup

We collects 340 ultrasound images for the evaluation of proposed tumor classifi-
cation methods. Each of the ultrasound image included a biopsy-proven tumor
(a carcinoma, a fibroadenoma, or a cyst), where carcinoma is malignant tumor
while fibroadenoma and cyst are benign tumors. The tumor border is delin-
eated manually. The data set contains 220 carcinomas, 60 fibroadenomas, and
60 cysts.

Given and ultrasound image, we extract 208 features and present them in a
feature vector x. The 208 features consist the K- related and conventional fea-
tures, covering all of the diagnostic observations [8]. The classification problem
is to differentiate three types of lesions (carcinoma, fibroadenoma, and cyst).
For validation, we conducted a 5-fold cross-validation test. The data set is firstly
divided randomly into 5 subsets and then 4 subsets were used for training, and
the remaining 1 subset was used to test the proposed DisScMM, the GraphSc,
LapSc, and Sc methods. We repeat the cross-validation process 5 times, and
each of the 5 subsamples used exactly once as validation data.

3.2.2 Results

Fig. 3 shows the boxplots of classification accuracies obtained by different meth-
ods on the ultrasonic breast tumor images dataset. As shown in Fig. 3, our
DisScMM method can achieve much better results on the 5-fold cross-validation
protocol than the state-of-the-art sparse coding methods. Specifically, DisScMM
outperforms almost all of the compared sparse coding methods across different
tumor classes. There are two possible reasons to explain why our DisScMM
method is superior to these methods:

1. our supervised method explores the discriminative information explicitly
by multi-manifold regularization, while most state-of-the-art sparse cod-
ing methods are intrinsically unsupervised methods even they can extract
some discriminative information from the graph model;

2. our method codes the features in a supervised manner by using class-
conditional codebook and multi-manifold regularizer while others code
features in a unsupervised general way.
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Figure 3: Boxplots of accuracies of different tumors on the ultrasonic breast
tumor images set.

4 Conclusion and Future Work

In this paper we have proposed a novel discriminative sparse coding method to
address the data representation and classification problem. Multiple manifolds
are constructed for sub-sets of different classes. The class-conditional sparse
coding are conducted to maximize the manifold margins of different classes.
Experimental results on two challenging tasks are presented to demonstrate the
efficacy of the proposed approach.

In the future, we are interested in designing multi-multiple regularized non-
negative matrix factorization (NMF) [12] by exploring the class label to im-
prove the data representation. Moreover, how to utilizing the coding results
to further refine the manifolds model appears to be another interesting di-
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rection of future work. Moreover, DisScMM can also be used to bioinfor-
matics [13, 14, 15, 16, 17, 18], medical imaging [19, 20, 21, 22], biometrics
[23, 24, 25, 26, 27, 28, 29, 30, 31, 32] and computer vision [33, 34, 35, 36].
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