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Change-point detection for high-dimensional
time series with missing data

Yao Xie,

Abstract—This paper describes a novel approach to change-

point detection when the observed high-dimensional data mahave

missing elements. The performance of classical methods fahange-
point detection typically scales poorly with the dimensioality of the

data, so that a large number of observations are collected &t the

true change-point before it can be reliably detected. Furtliermore,

missing components in the observed data handicap convential

approaches. The proposed method addresses these challemdgey

modeling the dynamic distribution underlying the data as lying close
to a time-varying low-dimensional submanifold embedded vthin the

ambient observation space. Specifically, streaming data igsed to
track a submanifold approximation, measure deviations fran this

approximation, and calculate a series of statistics of the @Viations

for detecting when the underlying manifold has changed in a
sharp or unexpected manner. The approach described in this gper

leverages several recent results in the field of high-dimermmal data

analysis, including subspace tracking with missing data, mitiscale

analysis techniques for point clouds, online optimizationand change-
point detection performance analysis. Simulations and ex@iments

highlight the robustness and efficacy of the proposed apprad in

detecting an abrupt change in an otherwise slowly varying lao-

dimensional manifold.

|. INTRODUCTION

Jiaji Huang,

Rebecca Willett

extracting meaningful low-dimensional statistics frone thigh-
dimensional data stream without making restrictive maudgli
assumptions.

Our method addresses these challenges by using multiscale
online manifold learning to extract univariate changenpale-
tection test statistics from high-dimensional data. We ehdde
dynamic distribution underlying the data as lying close to a
time-varying, low-dimensional submanifold embedded initine
ambient observation space. This submanifold model, whole-n
parametric, allows us to generate meaningful test steidtr
robust and reliable change-point detection, and the ncalés
structure allows for fast, memory-efficient computatiofstther-
more, these statistics can be calculated even when eleraents
missing from the observation vectors.

While manifold learning has received significant attention
the machine learning literatur&]f[16], online learning of a
dynamic manifold remains a significant challenge, both stlgo
mically and statistically. Most existing methods are “ltdtdn
that they are designed to process a collection of indepénden
observations all lying near the same static submanifold, a@h
data is available for processing simultaneously.

In contrast, our interest lies with “online” algorithms, ieh

Change-point detection is a form of anomaly detection wheR§CePt streaming data and sequentially update an estiniate o

the anomalies of interest are abrupt temporal changes ochas-

tic process]], [2]. A “quickest” change-point detection algorithm
will accept a streaming sequence of random variables wh

distribution may change abruptly at one time, detect sudieage

as soon as possible, and also have long period between 196

detections. In many modern applications, the stochastcqss

is non-stationary away from the change-points and very hi

dimensional, resulting in significant statistical and coragional
challenges. For instance, we may wish to quickly identifgrudpes
in network traffic patterns3, social network interactions4],

surveillance videoY], graph structurefd], or solar flare imagery

(71 [8]-

Traditional quickest change-point detection methodscipi

deal with a sequence of low-dimensional, often scalar, samd

variables. Naively applying these approaches to highedsional
data is impractical because the underlying high-dimeradidis-
tribution cannot be accurately estimated and used for dpugj
test statistics. This results in detection delays and faksen rates

that scale poorly with the dimensionality of the problemu$h
the primary challenge here is to develop a rigorous method
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the underlying dynamic submanifold structure, and chamgjat
detection methods which identify significant changes in the

gybmanifold structure rapidly and reliably. Recent pregréor

a very special case of submanifolds appears in the context
subspace tracking. For example, the Grassmannian Rank-
One Update Subspace Estimation (GROUSE]] [and Parallel
timation and Tracking by REcursive Least Squares (PETREL
18] [19) effectively track a single subspace using incomplete data
vectors. The subspace model used in these methods, however,
provides a poor fit to data sampled from a manifold with non-
negligible curvature or a union &ubsets

A. Related work

At its core, our method basically tracks a time-varying prob
ability distribution underlying the observed data, andsusi@s
distribution to generate statistics for effective chapg@it detec-
tion. For sequential density estimation problems such &s ith
is natural to consider an online kernel density estimatibDE)

frgethodsee, e.g.40. A naive variant of online KDEs would be

guite challenging in our setting, however, because if we @hod
the density using a kernel at each observed data point, tieen t
amount of memory and computation required increases Ilyear

wi | | ett @uke. edu) are with the Department of Electrical and Computetwith time and is poorly suited to large-scale streaming data
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problems. Ad-hoc “compression” or “kernel herding” metkod
for online kernel density estimation address this chakef],
[27] but face computational hurdles. Furthermore, choosirgg th
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kernel bandwidth, and particularly allowing it to vary Spfly in the surface to interior changes34]. Solar flares have a close
and temporally, is a significant challenge. Recent workssictan  connection with geomagnetic storms, which can potentdlyse
variable bandwidth selection using expert strategies lwhic large-scale power-grid failures. In recent years the sgreinéered
crease memory requirementd3], [24]. Some of these issuesa phase of intense activity, which makes monitoring of stiéae
are addressed by the RODEO methdth][ but the sparse bursts an even more important tas.[With these issues in
additive model assumed in that work limits the applicapilitmind, it is clear that somehowrioritizing the available data for
of the approach; our proposed method is applicable to mudétailed expert or expert-system analysis is an essetg@irsthe
broader classes of high-dimensional densities. Finatiyhigh- timely analysis of such data. If we can reliably detect stitally
dimensional settings asymmetric kernels which are notssa#dy significant changes in the video, we can focus analystshtdte
coordinate-aligned appear essential for approximatimgities on on salient aspects of the dynamic scene. For example, we may
low-dimensional manifolds, but learning time-varyingasplly- wish to detect a solar flare in a sequence of solar images in rea
varying, and anisotropic kernels remains an open problena | time without an explicit model for flares, or detect anomalous
sense, our approach can be considered a memory-effsgparde behaviors in surveillance vide®@9]. Saliency detection has been
online kernel density estimation method, where we onlykirac tackled previously 3€], [37], but most methods do not track
small number of kernels, and we allow the number of kernelgradual changes in the scene composition and do not detect
the center of each kernel, and the shape of each kernel ta adamporalchange-points.
to new data over time. A second motivating example is credit history monitoring,
Our approach also has close connections with Gaussian Mixiere we are interested in monitoring the spending pattérn o
ture Models (GMMs) 26-[29. The basic idea here is toa user and raising an alarm if a user’s spending pattern édylik
approximate a probability density with a mixture of Gaussidao result a default38]. Here normal spending patterns may evolve
distributions, each with its own mean and covariance matriaver time, but we would expect a sharp change in the case of a
The number of mixture components is typically fixed, limiin stolen identity.
the memory demands of the estimate, and online expectationAn additional potential application arises in computemmek
maximization algorithms can be used to track a time-varyirapomaly detection39). Malicious attacks or network failure
density BQ]. In the fixed sample-size setting, there has beeaan significantly affect the characteristics of a netwof, [
work reducing the number of components in GMMs whil§40. Recent work has shown that network traffic data is well-
preserving the component structure of the original mo@é).[ characterized using submanifold structu#d][ and using such
However, this approach faces several challenges in olingett models may lead to more rapid detection of change-points wit
In particular, choosing the number of mixture components fewer false alarms.
challenging even in batch settings, and the issue is ag@gva
in online settings where the ideal number of mixture compt®e ¢ Contributions and paper organization
may vary over timeln the online setting, splitting and merging
Gaussian components of an already learned precise GMM IE
been considered in3[]. However, learning a precise GMM
online is impractical when data are high-dimensional bseau
without additional modeling assumptions, tracking theac@ance
matrices for each of the mixture components is very ill-gbise
high-dimensional settings.
Our approach is also closely related to Geometric Mult
Resolution Analysis (GMRA) 15], which was developed for

analyzing intrinsically low-dimensional point clouds ingh- : . . _
dimensional spaces. The basic idea of GMRA is to first iteeati mally define our setting and problem. S_ectltbh de_scnbes our
multiscale submanifold model and tracking algorithm, whis

partition a dataset to form a multiscale collection of stbss o . L
) - used to generate the statistics used in the change-ponttobet
the data, then find a low-rank approximation for the data In . : : :
. . . component described in Sectitvi. Several theoretical aspects of
each subset, and finally efficiently encode the differende/dsen

the low-rank approximations at different scales. This apph the performance of our method are described in Sedfipand

) X . . ) the performance is illustrated in several numerical exas|
is a batch method without a straightforward extension tanenl| P o
settings SectionVI.

The primary contributions of this work are two-fold: we peas
g)sa fast method for online tracking of a dynamic submadifol
underlying very high-dimensional noisy data with missirlg-e
ments and (b) a principled change-point detection metsidg
easily computed residuals of our online submanifold apipnax
tion based on a sequential generalized likelihood ratio prasedu
[_42]. These methods are supported by both theoretical analyses
and numerical experiments on simulated and real data.
The paper is organized as follows. In Sectiinwe for-

Il. PROBLEM FORMULATION

B. Motivating applications Suppose we are given a sequence of data,, ..., for ¢t =

The proposed method is applicable in a wide variety of sgtin 1,2, ..., z: € R”, whereD denotes th@mbient dimensiariThe
Consider a video surveillance problem. Many modern sensél@ia are noisy measurements of points lying on a submanifold
collect massive video streams which cannot be analyzed H::
human due to the sheer volume of data; for example, the ARGUS
system developed by BAE Systems is reported to collect video
rate gigapixel imagery3Z], [33], and the Solar Dynamics Ob- Theintrinsic dimensiorof the submanifoldM, is d. We assume
servatory (SDO) collects huge quantities of solar motioagary d < D. The noisew; is a zero mean white Gaussian random
“in multiple wavelengths to [help solar physicists] linkariges vector with covariance matrix2I. The underlying submanifold

Ty = V¢ + Wy, where v € Mq. (1)



M, may vary slowly with time. At each timg we only observe exists an unknown time < ¢ such thatey, . .., e, are i.i.d. with

a partial vector; at location€2,C{1,..., D}. Let Pq, represent distributiony, ande,1,... are i.i.d. with distributionv;. Our
the || x D matrix that selects the axes B indexed byQ;; goals are to (a) dete@s soon as possiblghen such as exists
we observePq, z;, where(, is known. beforet and (b) when no suck exists, have our method accept

Our goal is to design an online algorithm that generatessaeaming data for as long as possible before falsely deglar
sequence of approximationf; which track M; when it varies change-point. (Note that in this setting, even if no chapgiet
slowly, and allows us to compute residual§ from M, for exists and all data are i.i.d., any method will eventualtyoimectly
detecting change-points as soon as possible after the sifofda declare a change-point; that is, for an infinite stream ofdat
changes abruptly. The premise is that the statistical ptiege we will have a false alarm at some time with probability one.
of the tracking residuals will be different when the subnfialdi However, good change-point detection methods ensureiitht,

varies slowly versus when it changes abruptly. high probability, these false detections only occur aftereay
Define the operator long waiting time, and thus exert some measure of controt ove
) 5 the false alarm rate over time.)
Pma; = arg ml/\r}tHx—:th (2)
S

as the projection of observatiory on to M, where||z| is the
Euclidean norm of a vectat. If we had access to all the data
simultaneously without any memory constraints, we migleso
the following batch optimization problem using all data up t
time ¢ for an approximation:

t
M & argn}\i{n{ Z; o' Pa, (2 — Pamai)||* + HPGH(M)}a
3

wherepen (M) denotes a regularization term which penalizes the
complexity of M, « € (0, 1] is a discounting factor on the track-
ing residual at each timg andy is a user-determined constant
that specifies the relative weights of the data fit and regaton
terms.The cost function in3) is chosen with the following goals
in mind: (a) to balance the tradeoff between tracking resigland
the complexity of our estimator, thereby preventing ovitinfj to
data; (b) to track the underlying manifold when it is timeyiag
via discounting old samples in the cost function; (c) to émab
an easy decomposition of cost functions that facilitatebnen
estimation, as we demonstrate in Sectitin

Note that 8) cannot be solved without retaining all previou%ig' 1: Approximation of MOUSSE at = 250 (upper) and
data in memory, which is impractical for the applications of _ 1150 (lower) of a 100-dimensional submanifold. In this
interest. To ad_dre:_;s this, we instead consider an appréigimi@ figure we project everything into three-dimensional spaktee
the cost function in3) of the form F(M) + ppen(M), where e curve corresponds to true submanifold, the plus siges a
F(M) measures how well the data fifst. In Sectionlll, we hqisy samples from the submanifold (the lighter plus sigres a
will show several forms of"(M) that lead to recursive updateSyore dated than the darker plus signs), and the red line segme
and efficient tracking algorithmand present our new algorithm:;;a the approximation subsets computed with MOUSSE. As the

Multi-scale Online Union of SubSets Estimate (MOUSSENr  ¢ryature of the submanifold increases, MOUSSE also adapts
method finds a sequence of approximatiovs, ..., M, sUCh e number of subsets.

that /\//\ltﬂ is computed by updating the previous approximation
M, using F(M) and the current datum;,; (but not older
plata_). One example_of a MOUSSE approximation is illustrateqy; M ULTISCALE ONLINE UNION OF SUBSETSESTIMATION
in Figure 1. In this figure, the dashed line corresponds to the (MOUSSE)
true submanifold, the red lines correspond to the estimaiéoh . . . . . .
of subsetsby MOUSSE, and thet signs correspond to the In this se(;t|on_, we describe the Mulu;cale .Onlme Umon of
past 500 samples, with darker colors corresponding to méngets Estimation (MOL_JSSE) method, including the undegly
recent observations. The context is described in more Idetai multiscale model and online update approaches.
SectionVI-C.

Given the sequence of submanifold e/s\tima@@ ...,M,, we A. Multiscale union obubsetsmodel -
can compute the distance of eachto M,, which werefer to MOUSSE uses a union of low-dimensional subsets$;, to
asresidualsand denote usinge;}. We then apply change-pointapproximateM,, and organizes these subsets using a tree struc-
detection methods to the sequence of tracking residuals In  ture. The idea for a multiscale tree structure is drawn from t
particular, we assume that when there is no change-pomt;th multiscale harmonic analysis literaturé3. The leaves of the
are i.i.d. with distributiony. When there is a change-point, theréree are subsets that are used for the submanifold appro@ma




Each node in the tree represents a local approximation to the Soos

submanifold at one scale. The parent nodes subsetsthat | | Ancestor nodes give
contain coarser approximations to the submanifold tharr the / coarser approxima-
children. The subset associated with a parent node roughlbrs S100

S]le merging leaf nodes

the subsets associated with its two children. |\| —|
More specifically, our approximation at each timeonsists of
a union ofsubsetsS; ., that is organized using a tree structure.
Herej € {1,...,J;} denotes the scale or level of the subset in Ssas Sras Lot nodes form cur.
the tree, wherd, is the tree depth at timg andk € {1,...,27} [ [ =omaimn
denotes the index of the subset for that level. The apprcioma
M at timet is given by: Virtual nodes keep
—~ used for tree splitting
M= U Sjkit: ) Fig. 2: lllustration of tree structure f@ubsetsThe subsetsused

(G k) €A in our approximation ar¢S; 0, U S22, US23,}.

where 4, contains the indices of alkaf nodes used for approx-
imation at timet. Also define7; to be the set of indices dill
nodes in the tree at timg with A, C 7;. Each of these subsets
lies on a low-dimensional hyperplane with dimensiérand is
parameterized as

to a setS of data with meanc = E{z} and covariances =
E{(z — ¢)(z — ¢)T}. Specifically, the Mahalanobis distance is
defined as

(5) o(x,8) = (z— )57z —¢). ()

However, this distance is only finite and well-defined fornisi
where the notationl denotes transpose of a matrix or vector. Thging in one of the low dimensional subspaces in our appraxim
matrix Uj, ., € RP*¢ is the subspace basis, angh.; € RP IS tion. Since our construction is a piecewise linear appratiom
the offset of the hyperplane from the origin. The diagonalrina to a submanifold which may have some curvature, we antieipat

D
Sjkt ={v ERY 10 =Uj 12 + ¢jt,
zTA;,i’tz <1, zeR%},

A, 2 diag{)\(l) A } e Rdxd many observations which are near but not in our collection of
et SRttt Tkt ' subsetsand we need a well-defined, finite distance measure for
with Aﬁit > > /\g.d,zt > 0, contains eigenvalues of theSuch points.

covariance matrix of the projected data onto each hypegplan To address these challenges, we introduce dhproximate

This parameter specifies the shape of the ellipsoid by cagturMahalanobis distancef a pointz to a subsetS, which is a

the spread of the data within the hyperplane. In summary, thgbrid of Euclidean distance and Mahalanobis distanceurss

parameters fosS; ;. ; are x with supportQ and the parameters for a s§tis given by
{U, ¢, A}. Define

Uikt Ciksts Nt} G yes s . olvd . o
Ug £ PoU € RIPXY, - cq £ Poc e RI,

and these parameters will be updated onlias, described in
Algorithm 2. and

In our tree structure, the leaf nodes of the tree also have two zq = Poz € RI¥.
virtual children nodes that maintain estimates for correspondi
subsets at a finer scale than encapsulated by the leaf nodes o
tree (andM;); these subsets are nosedfor our instantaneous
submanifold approximation, but rather when further suisitv v#ELE Tty (8)

with the tree is neededVe will explain more details about tree L .
P LetU denote(Uy)T, and similarlyU# = (Uq)#. WhenU is an

subdivision and growth in Sectidfi-E and Algorithms3 and4. i 4 _ T _ 2 T
The complexityof the approximation, denotel;, is defined to eE:P()gonal matrix, we have™ = U ", butin general; # Ug, .

be the total number of subsets used for approximation at tim
Ky 2 |Al; (6)
and

this is used as the complexity regularization term i): ( xy = — UQUg‘f)(xQ —cq). (10)
pen(M,;) £ K,. The tree structure is illustrated in Figu?e

fine the pseudoinverse operator that computes the ceeffici
of a vector in the subspace spannedibyas

B =Uf (xa — ca), 9)

In this definition, 5 is the projectiorncoefficientof a re-centered
_ o x on Ug, and z; captures the projection residual. Assuming
B. Approximate Mahalanobis distance the covariance matrix has a low-rank structure withlarge

To update the submanifold approximation, we first determirfdgenvalues and) — d small eigenvalues, we can write the
the affinity ofz,,, to each subset. We might simply projegt., €igendecomposition of the covariance mattas
onto each subset (i.e. ellipsoid), but computing this pmtijpe A T T T
: . X . =2 \|\U UL|AU U =UMNU U, AU
generally requires using numerical solver. Alternatiyelg could [ L] [ L] W+ Ul
consider the Mahalanobis distance, which is commonly used fwhere A = diag{\1,...,Ap}, M1 > ... > Ap, Ay =
data classification and it measures the quadratic distahce odiag{\1,...,\q}, A = diag{Ag+1,.-.,Ap}. If we further



assume that thé® — d small eigenvalues are all approximately?lgorithm 1 MOUSSE
equal to somé > 0, i.e., Ay ~ 61, then the Mahalanobis distance 1: Input:
(7) may be approximated as error tolerance, step sizev, relative weighty
e L o e
Given new datar;,; and its supporf), 1
find the minimum distance s&i;- ;- ; according to {4)
let * andz” denote 9) and (0) of x; ;1 for Sj j~ ¢
calculate:e;; using (L5)
update all ancestor nodes and closest virtual child node of
(j*,k*) using Algorithm2

B :(UTU)flUT(ZC _ C) _ UT(x _ C), 9: calculate:etH = € + €t2+1

T 10: denote parent node @f*, k*) as (j* — 1, k,) and closest

zr=(I-UU )@ =), virtual child node as(;'ﬁ* + 1,)1%) ( 2
then we can write the right-hand-side oflf as STA™'8 + 110 if ;1 >candds,. ., (Ter1, Sjrvt k) (K +1) <
572 ||?. With missing dataps(x,S) is an approximation to s o o (Tt11, Sje ke ¢) + pK; then
o(z,S). 12: split (5%, k*) using Algorithm3

In definition of the approximation Mahalanobis distan&®)( 13: end if
¢ is a small number and has to be estimated from noisy data. T if e;41 <eandds. ,, (Ti41,Sjr—1,k,.0) (K —1) <

Motivated by this,we define theapproximate Mahalanobis dis-
tance
ps(z,8) £ BTAT B+ 57 oy |2 (12)

When the data is completes(x,S) is equal to the right-hand-
side of (L), since

o N ahR

avoid the numerical instability caused when dividing by sam ds;e o (Teg1, Sje ki) + pI then
number, we use the following scaled approximate Mahalanohis: merge(j*, k*) and its sibling using Algorithnd
distance as a measure of the distance betweand a subset: 16: end if
_ 17:  updateA; andT;

ds(z,S) = 6ps(x,8) = 68T A8 + ||L |2 (13) 1o end for ‘
With this definition, we can find the subset within our approxi
mation with minimum distance to the new datum Algorithm 2 Update node

(5%, k%) = argl(fmr)ld(;] w8, Sjikt)- (14)  1: Input: node indexj, k), «, 6 and subspace parameters

2: Calculate:s andx using @) and (0)
We can further define thieacking residualof the submanifold at  3: Update:[c; k.i+1]m = @[cj ik,t]m+(1—a)[Ti41]m, m € Qi
time ¢.

- Update:AU™) = axl™ 4 (1—a)[B2,m=1,....d
2 oo e ,Sjv o 1/2 4 3.k 1 Gkt
€t ( 0% ke (xt 7%k t)) e (15) 5 Update 53 ftrl = 0457,}ct + (1 _ a HxJ_HQ/(D d
= ( i ke 1B TAS k* B+ HIIHQ) 6: Update basid¢/; , ; using (modified) subspace tracking algo-
J* ’ .
rithm

wheres* andz? are calculated fog,; relative t0S;- i+ ¢ using
(9) and (L0). We take the square root of the scaled apprOX|maAtT
Mahalanobis distance to ensure that the can be well modeled
as draws from a Gaussian distribution (as demonstrateddtioe ~1: Turn two virtual children node§j +1, 2k) and(j+1,2k+1)

gorithm 3 Split node(j, k)

IV-C). of node(j, k) into leaf nodes

2: Initialize virtual nodes(j + 1,2k) and (j + 1,2k + 1):
C. MOUSSE Algorithm k1 =2k

When a new sampletﬂ becomes available, MOUSSE up- ko =2k +1
dates M, to obtain /\/ltﬂ The update steps are presented in B ROPEC)
Algorithm 1; there are three main steps, detailed in the below Gkl = Cidet FAJ A 5 /2
subsections: (a) find the subset/‘u'nt which is closest ta:; 1, (b) ‘. . ) /2
update a tracking estimate of that closest subset, its soregand FtLka,itl = %kt 3 k £kt
its nearest virtual child, and (c) grow or prune the treecitne Ujri kit = Ujre, 1=1,2
to preserve a balance between fit to data and complekitg. AW )\(1) /2, i=1,2
1,k 1 T k,t )

parametersU; i+, Aj k¢, ¢k t, 05k, } @re calculated and updated (m) (m) )
in Algorithm 2. We use|z],, to denote them-th element of a ALkl = s M=2,00d, 1=1,2
vector z.
D. Update subset parameters the “update-all” approach. Alternatively, we can just ujgdthe

When updatingsubsets we can update alsubsetsin our subset closest ta;4, its virtual children, and all its ancestor
multiscale representation and make the update step-sidm tonodes, which we refer to as the “update-nearest” approdaoh. T
inversely proportional to the approximate Mahalanobidagise update-all approach is computationally more expensiyeedally
between the new sample and each subset, which we refer tdaashigh dimensional problems, so we focus our attentionten t



Algorithm 4 Merge (j, k) and its sibling since U'r = 0. We obtain that the update df, using the

1: Make the parent node dfj, k) into a leaf node Grassmannian gradient is given by
2: Make (4, k) and its sibling into virtual children nodes of the cos(én) — 1 . r BT
newly created leaf U1 = U + %UMBT + Sm(&’)WW’

3: Delete all four virtual children nodes ¢f, k) and its sibling _ _ )
wheren > 0 is the step-size, anél = ||r||||U.5||. The step-size

n is chosen to be = 7y /||z:+1]|, for a constanty, > 0.

greedy update-nearest approach. The below approachesdexte2) PETRELS:Let (j*,k*) denote the indices of the closest
readily to the update-all setting, however. subset toz; 1, and letZ, C {1,...,t,t + 1} denote the set of

In the update-nearest approaete update the parameters ofimes corresponding to data which were closest to this $uiree
the minimum distance subset defined i) all its ancestors Used to estimate its parameters in previous rounds. Therawe c
in the tree, and its two virtual children. The update algorit Write

is summarized in Algorithm2 which denotes the parameters F(M) = Z o P, (2 — P i) ||?
associated witts;- ;- . as(c, U, A,d), and drops thg*, k*, and T, ' Mi
t indices for simplicity of presentatiorfhe update of the center (20)

t—i o 2
¢, A andé are provided in the following, Sections andB. + Z o Pa (i = Pamaa)|”

To decide whether to change the tree structure, we introduce lE_I' o
the average residuafor a “forgetting factor’a € (0,1): where, as before, the first sum is independent.éfand can be
. ignored during minimizationwhen focusing on updatiny for
A i 2 fixed A, the minimization ofF'(M) with respect to the subspace
‘= ;a € (16) U used for node(j*, k) in (20) can be accomplished using

the PETRELS algorithm4[4], yielding a solution which can be
expressed recursively as follows. Denoting[by,,, the m-th row
We will consider changing the tree structure wheris greater of U, we have the update @f given by

than our prescribed residual tolerance 0. Ussalm = Uil

2
= €p_1 + €.

Next we will focus on three approaches to updatitigby T 4 (22)
modifying existing subspace tracking methods. In the foilfy, + Ineo, ([Urare1]m = ag 1 [Usdm) (B t41) 7 @41,
for tractability reasons, we hold fixed and update with respectfor m = 1,..., D, wherel, is the indicator function for event
to U alone at first. We then update the shape paraméteand A, and
§ for fixed U. ar+1 = (U Po, ,U)*U, w11

1) GROUSE: To use GROUSE subspace tracking in thi%he second-order information iR

. ! : can be computed recur-
context, we approximate the first term i8) @s et P

sively as
t
. _ -1
P(M) =Y a1 Pa, (i = P )| i
i=1 (17) i CX—2Pm,t+1 (R )#a aT(R )# (22)
HPa (@er1 = Prmzers)|*. L+ atal (Rme) a0 T

Note the first term is a constant with respecttt¢, so we need
only to consider the second term in computing an updatéocus

on updating subspace without the shape parameters, we:eepour submanifold approximation. To obtain orthonorrtval 1, we

b
1P (@1 = Paaea)[I i (17) by may apply Gram-Schmidt orthonormalization after each tgda
f(U) £ min [|Po,,, (z141 — Ua —¢)|? (18) We refer to this modification of PETRELS &ETRELS-GSThis
¢ orthogonalization requires an extra computational costhenor-
(assumingU is orthonormal and including the offset vectoger of O(Dd?) and may compromise the continuity &F, i.e., the
¢). The basic idea is now to take a step in the direction @fopenius norm|U,,,—U,|| after the orthogonalization may not
the instantaneous gradient of this cost functid®)( This task pe small even when the correspondsupsetsre very close4s).
corresponds to the basis update of GROUSH [vith the cost Thijs |ack of continuity makes it impossible to effectivelatk
function (18). the scale paramete¥. A faster orthonormalization (FO) strategy
Following the same derivation as ia 7], we have that with less computation which also preserves the continuity/,o

Note that PETRELS does not guarantee the orthogonality of
%tﬂ, which is important for quickly computing projections onto

df _— . is given in 5. We refer to this FO strategy combined with
7= 2Paa(e —e—UBB = -2rf7, (19) PETRELS aPPETRELS-FO
where 3 is defined in ), and 3) Computational complexityFor each update with complete
r="Pa,,, (@11 —c— UB). data (which is more complelx than an updatg with missing data)
_ o the computational complexity of GROUSE is on the order of
The gradient on the Grassmannian is given by O(Dd), PETRELS-GS i€)(Dd?), and PETRELS-FO i©(Dd).
df More details about the relative performance of these thuke s

Vf=U- UUT)@ =2 -UU")rg" = —2rp", space update methods can be found in Seddhn



E. Tree structure update tolerancewhich varies from problem to problem according to the

When the curvature of the submanifold changes and cannot3@oothness of the submanifold underlying the data and ttee no
sufficiently characterized by the current subset approtions, Variance. Since the tree’s complexity is controlled ard (M)
we must perform adaptive model selection. This can be accot{(3) is roughly on the order of)(1), we usually sef. close to
plished within our framework by updating the tree structure ¢
growing the tree or pruning the tree, which we refer to asit'spl
ting” and “merging” branches, respectively. Previous wbis IV. CHANGE-POINT DETECTION
derived finite sample bounds and convergence rates of adapti

T L ) - We are interested in detecting changes to the submanifold
model selection in nonparametric time series predictif). [

Splitting tree b hes i th luti f th that arise abruptly and change the statistics of the dataerWh
. tr'“ lngt ;Ee rarlc ?shl_n%reasest_ etreso u |o|n (')t Ie\e)loazpp the submanifold varies slowly in time, MOUSSE (described in
imation at the cost of higher estimator complexity. ergln%ectionlll) can track the submanifold and produce a sequence of

reduces resolution but lowers complexity. When making -de Itationary tracking residualBecause MOUSSE uses a bounded

sions on splitting or merging, we take into consideratior thsmall step-size, and only allows merging or spliting by one
approximation residuals as well as the model complexitg (t(?c '

; S o evel in the tree structure updatethen an abrupt change oc-
number ofsubsetsk; used in the approximation). This is relate P b 9

to complexity-regularized tree estimation methods]| [47] urs, MOUSSEwill lose track of the manifold, resulting in
[48 and the notion of minimum description length (MDL) inan abrupt increase in the magnitude of the tracking ressdual

compression theoryfl], [50. In particular, we use the sum OfTh|s abrupt change in tracking residuals enables chang-po

. : etection. In this section, we formulate the change-paioblem
the average residuals and a penalty proportional to the aum

. ; . sing MOUSSE residuals;, show that the distribution oé;
of subsetsused for approximation as the cost function wheg close to Gaussian, and adapt the generalized-likeliatid
deciding to split or merge. The splitting and merging operet :

are detailed in Algorithn3 and Algorithm4. The splitting process (GLR) procedure4?2] for change-point detection.
mimics thek-means algorithm. In these algorithms, note that for
node(j, k) the parent is nodéj — 1, | k/2]) and the sibling node A. Generalized likelihood ratio (GLR)rocedure

is (j,k + 1) for k even or(j, k — 1) for k odd. We adopt the quickest change-point detection formulatin t
o detect an abrupt change in the distribution of the residuals
F. Initialization particular, we assume thag is a normal distribution with mean

To initialize MOUSSE, we assume a small initial training seto and variances3, andv; is a normal distribution with mean
of samples, and perform a nested bi-partition of the trgimlata 1 and the same varianeg. Then we can formulate the change-
set to form a tree structure, as shown in Fig@eThe root point detection problem as the following hypothesis test:
of the tree represents the entire data set, and the children
each node represent a bipartition of the data in the paresd.no 5 9
The bipartition of the data can be performed by theneans 111 €L---:€x ~ Npo,a7),  ertts- s e~ N, o).
algorithm. We start with the entire data, estimate the sampl (23)
covariance matrix, perform an eigendecomposition, ektteed-  In the case where the pre-change and post-change disprisuti
largest eigenvectors and eigenvalues and use theii;fpr and are completely specified, two very good procedures are the
A4 1,0, respectively. The average of th® —d) minor eigenvalues CUSUM test (2], [53] and the quasi-Bayesian Shiryayev-Roberts
are used fow; 1 o. If the approximation residual is greater tharprocedure$4], [55] (also see %], [56] for surveys). The CUSUM
the prescribed residual toleraneewe further partition the data and Shiryayev-Roberts procedures minimize asymptoyicill
into two clusters using-means (fork = 2) and repeat the abovefirst order the maximum expected delay in detecting a change-
process. We keep partitioning the data ugjik o is less thane  point, under different conditions (se&q for CUSUM and F7],
for all leaf nodes. Then we further partition the data oneellev[58] for Shiryayev-Roberts procedures).
down to form the virtual children nodes. This tree consimrct  In our problem, the post-change distribution is not congjet
is similar to that used in1[)]. prescribedWe assumey, ando? are known since typically there

In principle, it is possible to bypass this training phasel ans enough normal data to estimate these parameters (when the
just initialize the tree with a single root node and two ramdotraining phase is too short for this to be the case, thesetitjean
virtual children nodes. However, the training phase makesich can be estimated online, as described &9 However, we
easier to select algorithm parameters such asd provides more assumeu; is unknown since the magnitude of the change-point
meaningful initial virtual nodes, thereby shortening therh in”  can vary from one instance to anothéfith this assumption, we

€1,...,6¢ NN(HOvo'g)v

time of the algorithm. instead use the generalized likelihood ratio (GLR) proce{c]
(which is derived based on the CUSUM proceduby replacing
G. Choice of parameters 1 with its maximum likelihood estimate (for each fixed change-
In general,a should be close to 1, as in the Recursive LeaBPiNt timex = k): S _g
Squares (RLS) algorithm5[l]. In the case when the subman- = ! b

ifold changes quickly, we would expect smaller weights for t—k

approximation based on historical data and thus a smallén Where .

contrast, a slowly evolving submanifold requires a largern S é} :e,
. . t 7

our experimentsq ranges from 0.8 to 0.95: controlsresidual =



QQ Plot of Sample Data versus Standard Normal

We compute a GLR statistic at each timeand stop (declare a 0.351
detected change-point) the first time the statistic hitsrastmold .
b:

o
w
T

T:inf{tZl: max |(St_Sk)_uo(t_k)|Zb}, (24)

t—w<k<t ooVt —k

where w is a time-window length such that we only consider
the most recentv residuals for change-point detection, and the
thresholdb is chosen to control the false-alarm-rate, which is
characterized using average-run-length (ARL) in the ckapgjnt
detection literature g0]. Typically we would choosew to be o1t - L L ‘-1
several times (for example, 5 to 10 times) of the anticipated Standard Normal Quantiles
detection delay, then the window length will almost have fiea ; . ;

2 . N S Fig. 3: Q-Q plot ofe,, for a D = 100 submanifold.
on the detection delay6[l]. This threshold choice is detailed in g QP “
SectionlV-B.
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A complete proof of convergence of MOUSSE (or GROUSE
B. Choice of threshold for change-point detection or PETRELS) is challenging since the space of submanifold
In accordance with standard change-point detection motati approximations we consider is non-convex. Neverthelessgan
denote byE> the expectation when there is no chanige, Ey,, still characterize several aspects of our approach.
and byE* the expectation when there is a change-point at k,
i.e., En, «—x. The performance metric for a change-point deteéd. MOUSSE residuals

tion algorithm is typically characterized by te&pected detection  As mentioned earlier, our multiscale subset model is cjosel
delay supyo E*{T — k[T > k} and theaverage-run-length related to geometric multiresolution analysis (GMRAY] In
(ARL) E>{T'} [60]. Typically we useE’{T'} as a performance that work, the authors characterize the favorable appratian
metric since it is an upper bound feup, ., E*{T — k|T > k}. capabilities of the proposed multiscale model. In particuhey

Note that theGLR procedurg24) is equivalent to prove that the magnitudes of the geometric wavelet coeffisie
| 3, — §k| associated with their algorithm decay asymptotically asrection
T =inf{t > 1: . max N >0, } (25) of scale, so a collection of data lying on a smooth submauhifol

can be well-approximated with a small humber (depending on
whereS; = Zzzl(ei —10)/00. UnderHy, we have(e; — ug) /oo the submanifold curvature) of relatively large geometraalets.
i.i.d. Gaussian distributed with zero mean and unit vagaktsing These geometric wavelets are akin to the leaf nodes in our
the results in 42], we have the following approximation. Whenapproximation, so the approximation results ©$][suggest that
b — oo, our model admits accurate approximations of data on smooth
E®{T} ~ (2m)!/2 eXP{52/2}’ (26) submanifolds with a small number of leafs.

b j;Jb v (z)dz

B. Optimality and consistency
2/x)[®(x/2)—0.5
wherev(z) = i/é)%[(m(/z/)ju)(b(m)}z [61], ¢(x) and ®(x) are the |y AppendixA, we show that the estimate ofis optimal in the

pdf and cdf of the normal random variable with zero mean aR@mplete data setting. In Appends we show that the estimates
unit variance. We will demonstrate in Sectiafi-E that this of A ands are consistent in the complete data setting.

asymptotic approximation is fairly accurate even for firtitand
whene,’s are not exactly Gaussian distributeghich allows us C. Missing data
to choose the change-point detection threshold to achi¢xmat
ARL without parameter tuning.

In this section, we show that andz , when using a missing
data projection, are close to their counterparts when using
o complete data projection. Hence, when the fraction of mgssi
c. D'sm.bl_mon ofe; o data is not large, the performance of MOUSSE with missing dat

In deriving the GLR statistics we have assumed thadre s ai5o consistent. In this section, we omit the subscriptsand

i.i.d. Gaussi_an di_striputed. A fair question to ask is _Wleetsh IS+ and denote, by 2 to simplify notation. Define the coherence
truly Gaussian distributed, or even to ask whetheis a good of the pasisU as 2]

statistic to use. We can verify that Gaussian distribut®a good D

approximation for the distribution of, (15). The QQ-plot of coh(U) = = max |UU%e,,||3. (27)
e, from one of our numerical examples in Sectioxl when d m

D = 100 is shown in Figure3. We will also demonstrate in

SectionVI-E that the theoretical approximation for ARL using a Theorem 1:Let ?h> 0. Givenz :d” +w, andw 'Sg white
Gaussian assumption ag is quite accurate. Gaussian noise with zero mean and covariance matrip . p.

Let3=UT(z—c), andpn = Uﬁ(zg—m). If for some constant
V. PERFORMANCEANALYSIS ¢ e (0,1),
In this section, we first study the performance of MOUSSE, and 8 4 D
|| > max gcoh(U)dlog(2d/5)7 3 ,

then study the choice for the threshold parameter of thegdan (1—¢)log(2D/z)
point detection algorithm and provide theoretical appmadions. (28)




then with probability at least — 3¢, rate vy, the vertical axis is the percentage of missing data,
(1+0)2 d (64/9)D? and the brightness of each block corresponds to our nunherica
1Ba — Bl §2W T coh(U)||q||* + azm, estimate of£{e?}. In Figure4, PETRELS-FO performs far better
(29) then PETRELS-GS and slightly better than GROUSE, espgciall
with a large fraction of missing data. For PETRELS-FO, the
where best parameters are fairly stable for various combinatiohs
90— \/2Dmax7?_1 |lgln|? log(1/¢) submanifold changing rates and factions of missing dat# wi
o llql? & ’ « around 0.9,u around 0.2, and around 0.1. Considering its
N . lower computational cost and ease of parameter tumiregadopt
andg = (I —UU ")(v —c). PETRELS-FO in MOUSSE for the remaining experiments in this

The proof of Theoreni combines techniques fromdf] with a  paper.
1 1
0.8 i 0.8
0.6 0.6
0.4 0.4
0.2 0.2
2 4 6 8 10 0 2 4 6 8 10 0

new noise bound. Different fron®p], instead of boundingjvg —
UaBall using|lv —UpB||, we need to boundl — Bq|| using|lv —
Up||. The proof of this theorem can be found in Appen@ixThe j
first term in the lower-bound@) is a consequence of Lemma 3 in
[62]. This theorem shows that the number of non-zero entfiss,
should be on the order of the maximumdiog d and D/ log(D)
for accurate estimation ofq,. The first term in the bound2g)

ing

Percentage of missing
Percentage of missi

is proportional to||¢||, which is related to the distance offrom Changing rate (x 10™) Changing rate (< 10
U, and the second term ir29) is due to noise. (@) E{e?} of MOUSSE using  (b) E{e?} of MOUSSE using
GROUSE PETRELS-GS
VI. NUMERICAL EXAMPLES g [1)8
In this section, we present several numerical exampleg, firs § .‘06
based on simulated data, and then real data, to demongieate t S o4
performance of MOUSSE in tracking a submanifold and detegcti g 02
change-points. We also verify that the theoretical appnation & b
to ARL in SectionlV-B is quite accurate. Coanging rave (x 307
(c) E{e?} of MOUSSE using
PETRELS-FO

A. Comparison of tracking algorithms

We first compare the performance of different tracking aFig. 4: MOUSSE tracking a slowly varying submanifold using:
gorithms presented in Sectidii-D: GROUSE, PETRELS-GS (@) GROUSE, (b) PETRELS-GS and (c) PETRELS-FO. Hori-
and PETRELS-FO in tracking a time varying manifold. Th@ontal axis corresponds to rate of change for submanifotti an
dimension of the submanifold i = 100 and the intrinsic Vvertical axis corresponds to fraction of data missing. Bingss
dimension isd = 1. Fixing 6 € [-2,2], we definev(d) € RP corresponds t@{e7}.
with its n-th element

— —(2n—0)%/(277)
(O 1/\/%6 ’ (30) B. Tracking a static submanifold
wherez, = —2+4n/D,n =1,...,100, corresponds to regularly \yg then study the performance of MOUSSE tracking a static
spaced points between2 and2. Let y; be time-varying: submanifold. The dimension of the submanifoldiis= 100 and
0.6 — vot, t=1,2,...,s, the intrinsic dimension isl = 1. Fixing 6 € [-2,2], we define
"= { 0.6 —7(2s—1t), t=s+1,5+2,...,2s, (31) v(0) € RP according to 80) with , = v = 0.6 for all t. The

. observationz; is obtained from 1) with noise variancer? =
where parametet, controls how fast the submanifold changes v Y

—4 . A - A H A .
ands = 1000. The observation; is obtained from 1) with noise 4> 1077, We setd = 1 (the assumed intrinsic dimension is

variances? — 4 x 10-*. We compare the methods with varioud2SMica! 10 the trued), a = 0.95, ¢ = 0.1, p = 0.1, and use
. 7 - . ' P . MOUSS ETRELS-FO for subspace tracking. Fig@relemonstrates that
settings of changing ratg, and percentage of missing entries i

rMOUSSE is able to track a static submanifold and reach the

Tt . . . steady state quickly from a coarse initialization.
In the following experiments, we usample average approxi-
mation errore v obtained fromN = 1200 samples{y:,...,yn} . . _ _
as a metric for comparison: C. Tracking a slowly time-varying submanifold
N Next we looking closely at MOUSSE tracking a slowly time-
E{e?} ~ L e2, (32) varying submanifold. Consider the submanifold defined3t),(
N &~ with D = 100 andd = 1. We set the assumed intrinsic dimension

to be identical to the trud, choosey, = 2 x 10~%, s = 1000,
u=0.1,e=0.1, « = 0.9 for MOUSSE, and use PETRELS-FO
for subspace tracking. Leb% of the entries missing at randém

where S; denotes the minimum distance subset for sample
We set the parameters for each tracking algorithm such liegt t
each having the best numerical performance. Weduse1 for
_MO_USSE in all mStance_S' The CO_mPa”SO” reSUltS_ are dleﬂlqy 1The result of the tracking can be found in an illustrative edd at
in Figure4, where the horizontal axis is the submanifold changirgtp:/nislab.ee.duke.edu/MOUSSE/


http://nislab.ee.duke.edu/MOUSSE/
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dy = 2. Let the two-dimensional parameter Be> [fy, ¢], with
frequencyf, € [1,100], and phase € [0, 1]. Definev(9) € R”

6_
_ /_/ with its n-th element
¥4— 1 /{2
[v(0)], = sin {277(]”0,2” + éz?l +¢) (33)

2 0 ll ’ IIIl2 l3
10 10 ‘ 10 10 wherez, = 107%n,n = 1,2,...,100, corresponds to regularly-
Q4T T spaced points between 0 and 0.01. The paramgteontrols how
fast the submanifold changes and is set according to
b 0.1¢, t=1,2,...,1000,
71 200 —0.1t, t=1001,1002,...,2000.

10° 10 10° 10° Let 40% of the entries be missing at random. For MOUSEE, we
t use PETRELS-FO for tracking. We compare the performance of
Fig. 5: MOUSSE tracking a static submanifold with = 100 MOUSSE wheni is set within the algorithm to be 1, 2, and 3, so
andd = 1. there can be a mismatch between the true intrinsic dimerasidn
the assumed. The parameters of MOUSSE set in these scenarios
are: ford =1: e=1.5, £ = 0.01, « = 0.95; for d = 2: ¢ = 0.3,
Snapshots of this video at time= 250 and¢ = 1150 are ;, = 0.01, a = 0.95; for d = 3: ¢ = 0.3, . = 0.01, o = 0.95.
shown in Figurel. In this figure, the dashed line corresponds to Fig. 7 demonstrates that MOUSSE can track the manifold well
the true submanifold, the red lines correspond to the es&ihawhen the intrinsic dimension is smaller or equal to the agsirn
union of subsetsby MOUSSE, and thet- signs correspond to However, ifd is chosen to be too small, the errors are significantly
the past 500 samples, with darker colors corresponding i mearger and we are forced to use a larger error tolerance
recent observations. From this video, it is clear that we are
effectively tracking the dynamics of the submanifold, aeéping ‘ ‘ y ‘ ‘ —
the representation parsimonious so the numbesulfsetsused x—zj S
by our model is proportional to the curvature of the subnwdif I | R N N I ———
As the curvature increases and decreases, the numiseibeéts o : ; : . ;
used in our approximation similarly increases and decsedsee
number ofsubsetsk; and residualg; as a function of time are
shown in Figure6. The red line in Figures corresponds ta.

0 500 1000 1500 2000 0 500 1000 1500 2000
t t

Note that MOUSSE is able to track the submanifold, in that it @d=1 (b) d =2
can maintain a stable number of leaf nodes in the approxamati ‘ ‘ ‘
and meet the target residual tolerarce JF

12 ; ; ; ) '

10l - o

!H 8 - '_| - UO 500 lD‘DG 1500 2000

GI e ©d=3

4 i

0 500 000 500 000 Fig. 7: Tracking of MOUSSE using = 1, d = 2 andd =

t 3, respectively, when the true intrinsic dimension is 2. Reé |
. T T corresponds te.

E. Change-point detection using MOUSSE

5 =00 1000 500 2000 1) Approximation to ARL:The ARL approximation in Z6)
t assumes; is Gaussian distributed. We have shown thais not
(fxactly Gaussian distributed but close to a Gaussian. Hewnee
need to numerically verify the accuracy @fj for e; generated by
MOUSSE.To simulate ARL of the GLR procedure, we generate
S%000 Monte Carlo (MC) trials, each being a noisy realization of
the same slowly time-varying submanifold i81j. We then apply
MOUSSE to track the submanifold, obtain a sequence of raldu
) S ) e, apply the GLR change-point detection procedure, and obtai
D. Choice of intrinsic dimensior an ARL numerically. We adopt an exponential approximation i
In this section, we study the effect of the choice of thf51] to evaluateE>{T'} efficiently. TABLE | shows the value of
intrinsic dimensiond in MOUSSE. We generate a chirp-signal) suggested by theory for different ARLs and the valuebsf
with ambient dimensioD = 100 and signal intrinsic dimension computed via Monte Carlo are very close. For comparison, we

Fig. 6: MOUSSE tracking a slowly time-varying submanifol
with D = 100 andd = 1. The dashed red line depicts th
parametere used to control approximation errors in the sub
tracking.
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also obtain thresholds for change-point detection whemglesi  2) Identity theft detection:Our second real data example is
subspace tracking using PETRELS-FO is employed. related to automatic identity theft detection. The basieaids

2) Comparison of tracking algorithms for MOUSSHo es- that consumers have typical spending patterns which change
timate the expected detection delay of MOUSSE detectingaBruptly after identity theft. Banks would like to identithese
change-point, we generate instances where the parametar changes as quickly as possible without triggering numefalss

(30) has an abrupt jump., at timet = 200: alarms. To test MOUSSE on this high-dimensional changépoin
detection problem, we examined the E-commerce transaction

= { 0.6 — 7ot t=1,2,...,199, (34) history of people in a dataset used for a 2008 UCSD data mining
M99 — Ay =70t 1 =200,20L,...,400. competitiors. For each person in this dataset, there is a timeseries

We apply the GLR procedures based en generated from of transactions. For each transaction we have a 31-dimealsio
MOUSSE and single subspace tracking, respectively, anghaoen real-valued feature vector and a label of whether the tctitsa
the corresponding expected detection delay after 200. We is “good” (0) or “bad” (1). The full dataset was generated for
consider two change-point magnitudes: bify.( = 0.05) and a generic anomaly detection problem, so it generally is not
small (A, = 0.03). The expected detection delays are estimatégpropriate for our setting. However, some of these traitsac
using 10000 Monte Carlo trials, and are given in Taldlg and timeseries show a clear changepoint in the labels, and wiedpp
Table 11l For comparison, we also obtain thresholds for chang®lfOUSSE to these timeseries. In particular, we use MOUSSE to
point detection when a single subspace tracking using PEBRE track the 31-dimensional feature vector and detect a chpamge
FO is employed. The thresholgs are chosen according to theand compare this with the “ground truth” changepoint in tieel
Monte Carlo thresholds given in TablleFor example, for the cell timeseries. In calculating the GLR statistic, we estiméie /iy
corresponding to ARL= 1000 and 0% missing data in Tablél ando, of equation24fromey, ..., ex. After ¢t = 20, every time
orIll, b should be set a&55 for MOUSSE andt.28 for the single the GLR statistic exceeds the threshéldnd an changepoint is
subspace method. Talleand Tablelll demonstrate that change-detected, we “reset” the GLR to only considgrafter the most
point detection based on MOUSSE has a much smaller expeotecently detected changepoint. This allows us to detectiphel
detection delay than that based on single subspace tracking change-points in a timeseries.
The effect of our procedure for one person’s transactiotohyis
is displayed in Figur®. We first see that MOUSSE accurately
E Real data detects a temporally isolated outlier transactiontat= 38,
after which the GLR is reset. After this, while MOUSSE does
1) Solar flare detection:We first consider a video from thenot generate particularly large spikesdp the associated GLR
Solar Data Observatory, which demonstrates an abrupt @meeg statistic shows a marked increase near= 70 and hits the
of a solar flare. We also display a residual map defined as: threshold at = 72 (the threshold corresponds to the Monte Carlo
N _ # _ threshold for ARL = 10000 in Tabl§ when the labels (not used
€0 = (1= Uy tUjs e o) (@0 = e ), (35) by MOUSSE) change from 0 (good) to 1 (bad). After this the
which is useful to localize the solar flare. Herg, k*) denotes GLR is repeatedly reset and repeatedly detects the charthe in
the index of the minimum distance subséhe frame is of size statistics ofe; from the initial stationary process.
232 x 292 pixels, which result inD = 67744 dimensional stream-
ing data. In this video, the normal states are slowly driftaolar VIl. CONCLUSIONS

flares, and the anomaly is a much brighter transient solae.flar This paper describes a novel multiscale method for online

A frﬁme fr_om _this datasethduring_ a ISF""” flare ﬁrol;tndk 200 racking of high-dimensional data on a low-dimensionalrsah-
s shown in FigureBa In the original images, the backgroun fold, and using the tracking residuals to perform fast apiolst

sol_ar images have .bright spots V‘,'ith slowly changing Shap(fﬁange-point detection. Change-point detection is an ftapd
which makes detection based on simple background summaCtéubset of anomaly detection problems due to the ever-istrga

incapable of detecting smz_;\II transient flares. S ~ volume of streaming data which must be efficiently prioatiz

To ease parameter tuning, we scale the pixel intensities By analyzed. The multiscale structure at the heart of otinode
a factor of 107%, so the range of data is consistent with Oug hased on a geometric multiresolution analysis whicHifatgs
simulated data experiments. The paramgters for this exaarpl low-complexity piecewise-linear approximations to a nfialdi.
d=1,¢=03, p=03 anda = 0.85. Figure8 demonstrates the multiscale structure allows for fast updates of the mani
that MOUSSE can not only detect the emergence of a Sofg[y estimate and flexible approximations which can adapt to
flares, but also localize the flare by presentingand these tasks the changing curvature of a dynamic submanifold. Thesesidea
are accomplished far more effectively with MOUSSE (everwityaye the potential to play an important role in analyzingyéar
d = 1) than with a single subspace. Note that with single subspaggimes of streaming data which arise in remote sensingijtcre
tracking, e; is not a stationary timeseries prior to the flare anlq\onitoring, and network traffic analysis.
thus poorly suited for change-point detection. In contraih our While the algorithm proposed in this paper has been focused
approach, withK; around10, the underlying manifold structure 5, nions ofsubsets an important open question is whether
is better tracked and thus yields more stahleéefore the change- gimilar techniques could be efficiently adopted based omsspa
point and significant change in when the change-point occurs ¢oyariance matrix selection6f], [64]. The resulting approxi-

mation space may no longer correspond to a low-dimensional

2The video can be found dtttp://nislab.ee.duke.edu/MOUSSEThe Solar
Object Locator for the original data is SOL2011-04-30T5t49L061C108 3Data available dhttp://www.cs.purdue.edu/commugrate/datecess/alldata sets more


http://nislab.ee.duke.edu/MOUSSE/
http://www.cs.purdue.edu/commugrate/data_access/all_data_sets_more.php?search_fd0=20
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where the termyic is a bias introduced by initial conditios.

0.6 Let
I—o & t
0.4 _ - —q —1 — —
Ty = ot < a7y, S = Zozt (x; — &) (2 — a:t)T.
0.2 1=1 =1
(37)
o By expanding|(I —UU ")(z; —¢)||> = ||(I = UU ") (z; — & +
., Zt—o)|*, and using the fact that —UU")> =1 -UU", we
20 40 60 80 100 ’

can write the cost function of3¢) as

60 80 100
1

K

(a) Obtained from MOUSSE (b) Visualization of time-varying At- t
tributes Z atﬂ'”(l _ UUT)(Ii _ C)HQ

Fig. 9: Credit card user data experiments. (a) From top ttobot i=1
number of leaf nodes used by MOUSSE; GLR statistic (solid t )
blue line) and theoretical thresholdcorresponding to ARL = = Zatﬂ(xi — &) (I =UU ") (w; — 3y)
10000 (dashed red line); ground truth label. Note that thd&RGL i=1 (38)
statistic has a false alarm due to an outliet at 38, and it starts Lo . Ty
increasing at = 70 and frequently hits the threshold afterwards + _ZO‘ (@ —c) (I -UU )@t —c)
due to the changepoint @ = 70. In this case GLR catches =t
both the outlier and the changepoint. (b) Demonstrationhef t T 220‘ (@ — )T —UUT (i — 7).

time-varyingx; (user attributes): each column corresponds to the
31-dimensional attribute vector at a given time. The whjiets

correspond to the outlier at time= 3. Sincez; and ¢ are both independent af the last term in 38)

can be re-written and is equal to zero by the choices;cnd
St

submanifold, but such structures provide good representat Z
o

T _
of high-dimensional data in many settings, and our futurekwo (@ =) ([ =UUT (@i — 1)

includes tracking the evolution of a mixture of such struetu =t .
Issues related to non-Gaussian observation models, anypeob- D)
—o)'(I-UU - 39
lem settings, dynamical models, and optimal selection &f th =@ —c) ; z) (39)
statistic used for change-point detectide.( alternatives te;, as ‘
considered in§5]) all pose additional interesting open problems.:(g—ct —o)TI-UU") (ZO‘ — Za ) =0,
=1
APPENDIX A sinced"l_, o'~ = (1-a')/(1—a). Using the fact that tA B) =
OPTIMALITY OF ESTIMATE FOR ¢ tr(BA) for two matrix A and B, together with 89), the cost
We assume that there is complete data, and we restrict éumction (38) becomes
approximation to a single subspace so tligt = 1. Assume 1— ot
the mean and covariance matrix of the data are givencby  tr[(/ — UU ™S = (:‘c —o)'(I-UU(z —¢), (40)
and X*, respectively. Assume the covariance matrix has low-
rank structure:X* = diag{\%,..., A5} with A, = & for where the first term does not depend@rsince the second term
—d+1,...,D. in (40) is quadratic inc, it is minimized by choosing: = ;.

When there is only one subspace and the data are complB{gnote this optimat at timet by ;.

the cost functiong) without the penalty term becomes Hence

+ 2

o t—i
1_at(1—a)Za Z;

i=1

+al [leol”. (41)

t
. t—i (7 TN (|2 ch—ct||2§
n[yana (T = TU ) (i — o). (36)

Recall that the online update fes is given byc,.1 = ac, + Recall thatc denote the true mear{z,} = c¢*. Ast — oo,

(1 — a)xy, with initialization ¢;. We can prove that this online >ioi @' 'w; — tig¢ in probability, the first term in th(2§ upper

estimate forc is optimal in the following sense: bound @1) tends 0 0 in probability. Given boundeg, |, the
Theorem 2:Assumec; minimizes @6) at time¢, 0 < o < second term in41) also tends to 0. Hence our online-estimate

1, and the initialization is boundefco||? < cc. Then ast — ¢t is asymptotically optimal in that it minimize$§). Also, ¢, is

1
00, |le; — ¢t||*> — 0 in probability. Moreover assume,’s are asymptotically unbiased, sind@®&{c:} — (1 —a) - —5c* =c¢*

i.i.d. with E{z;} = ¢*, thenE{¢;} — ¢* , the estimate is
asymptotically unbiased. APPENDIXB
Proof: Recall that the online estimate fey is given byc, 1 = CONSISTENCY OF ESTIMATES OF\* AND §*
acy + (1 — a)x;. Hence, We assume that there is complete data, and we restrict our
. approximation to a single subspace so thigt = 1. In the
e =(1— a)zat—ixi +atep, following, we show that if we have corre¢t = U*, then for

= each sample;, its projection[3;],, is an unbiased estimator for



A%, and||z, 1 ||? is an unbiased estimator er: —q41 A First
note
E{l8nl*} = E{lenUT (- P} = efU TS Ven
= AUl Ul = X5,
form =1,...,d, wheree,, denotes then-th row of an identity

matrix. We also have that
E{|lze, LI’} = E{|(I = UU ") (2, — 0[P}

=tr{(I -UU "SI -UU")}
D (43)
> A
m=d+1
Then from the MOUSSE update equationstas oo
t
EQA™Y=E{(1-a) Y ot |[Biml? + oA} = AL, (44)
i=1
form=1,...,d and
t
E{6} =E{(1 -« Zat Yo 12/ (D —d) + ado}
h (45)

Hence our estimators fox;,, andd* are asymptotically unbiased.

APPENDIXC
PROOF OFTHEOREM 1

Proof: From (1) and @) we have

B=U"(v—c)+U"w, (46)

Note that UTw is zero-mean Gaussian random vector with

covariance matrix2U U = o2].
Next we consider the missing data case. RePalle RI®I*P
is a projection matrix. Definevg = Pow. From ©) we have

Ba (47)

Suppose in 1) we writev —c = p+¢, with p € S andq €
S+, where S+ denotes the orthogonal subspaceSfHence,
p=UU"(v—c)andqg= (I —UUT)(v — ¢). Let po = Pap,
qgo = Pagq. Hencewq — co = po + qq. Note that

= U¥ (v — cq) + U wq

U po =(Ug Ua) " Uqg PaUU " (v — ¢) (48)
=(UgUq) tUqUaU " (v — ¢) (49)
=UT(v—c). (50)
So
Ba = UT(U_C)""U;;EQQ'FUS&U}Q.
Hence
18a = BII* < 2|Uf qall® + 2| Ui wa — U Tw|?
=2[|(Ug Uq)™~ lUQ qol?
+2|[(Uq Ua) 'Uq Pa — U T wl?
We will bound these two terms separately.
First, note that
1(UqUa) ' Uqaall® < [(UsUa) 31U aell>  (51)

13

where ||A||2 denotes the spectral norm of matrit. Using
[Lemma 2] in B2, we have that with probabilityl — ¢, if
Q2 > Sdcoh(U) log(2d/e),

Q| d
2 « 234 & 2
|UG gall* < (14 6)* 55 con(@) gl %,
wheref = \/2%10&1/5). Using [Lemma 3] in $2]
we have that provided th&t < ¢ < 1, with probability at least
1—¢,
D
TUQ) Yo < ————. 52
[(UqUa)™ '[l2 < =09 (52)
Combine these with51), we have that with probability — 2¢,
Tt 2. L6 d 2
[(UqUa) " Uq gl < =0 T coh(U)llq|”.  (53)

Next we examine the noise term. Define
W = [(UgUq) *UqgPa — U w

which is a zero-mean Gaussian random vector with covariance
matrix

= UQ(US—ZFUQ)71 — O'QI,

where we have used the fact tWQgtﬂ?g = I. Hence we bound
the tail of the noise power using Markov inequality:

P(|‘U~}H2 > 27-20'2) < e_TE{eH"D||2/(27'U2)} <2De" 7 (54)

provided thatr is sufficiently large such that the maximum eigen-
value is smaller tham: Apax((Ug Uq) 1Y) < 7,i.e.,7 > D/[(1—

0)|2], by noting thatAmax((Ug Ua)™1) = ||(Ugd Ua)~1|2. The
last equality in $4) is because, under such condition:

E{ell?/(2r0%)y — /e||z||2/<2m2>(%)—D/z|p|—1/2e—%ﬂr*1wdx

(271') D/2|F| 1/2/8 2IT(F7177*1072[)md:C

_ |l—\|71/2|1—\71 _ 7_71072‘”71/2
=|I- 7_10_2F|_1/2
=|(1+1/7) — 7 (Ug Ua)~t|71/?

< DA +1/7) =7 [(Ug Ua) 2] 72

D ~1/2
=D [““”’ T —mm}

D [1_;<(1+;M_1>]1“

In the last inequality, we have use82j. Note thatD/[(1 —
)|Q|] > 1, and the upper bound ir?®) is smaller tharTZD if

D 4 D —-T _
T > ((1 —7a —1)orr > 3 TT=na) Now We setZDe =g,
if e is sufficiently small such thdbg(2D/¢) > (1 é) o7~ Hence
we have wherlQ| > 3 —i2mnyey 190117 < F iy for with

probability 1 — e. Flnally, comblmng 53) and the noise bound
above, we obtain the statement in Theorém
[ |
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TABLE I: Average run length (ARLJE>{T'}.
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(a) Snapshot of original SDO data @at= 227

ARL b b MC, 0% data missing b MC, 20% data missing b MC, 40% data missing
MOUSSE | Single Subspace| MOUSSE | Single Subspace| MOUSSE | Single Subspace
1000 | 3.94 4.81 3.90 4.77 3.91 5.22 3.90
5000 | 4.35 5.91 4.60 5.66 4.62 6.14 4.59
10000 | 4.52 6.38 4.91 6.02 4.91 6.49 4.91
TABLE II: Detection delay when jump ofy, is A, = 0.05.
ARL delay, 0% data missing delay, 20% data missing delay, 40% data missing
MOUSSE | Single Subspace| MOUSSE | Single Subspace| MOUSSE | Single Subspace
1000 3.69 91.92 4.02 90.49 5.38 88.72
5000 5.31 104.02 5.48 104.23 7.38 105.05
10000 6.20 98.95 6.13 101.52 8.21 102.99
TABLE lII: Detection delay when jump ofy is A, = 0.03.
ARL delay, 0% data missing delay, 20% data missing delay, 40% data missing
MOUSSE | Single Subspace| MOUSSE | Single Subspace| MOUSSE | Single Subspace
1000 2.30 54.17 2.39 52.82 2.78 51.53
5000 2.71 80.61 2.76 78.29 3.35 75.47
10000 291 90.87 2.94 88.30 3.62 86.48
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Fig. 8: Detection of solar flare d@t= 227: (a) snapshot of original SDO data @at= 227; (b) MOUSSE residuaé,, which clearly
identifies an outburst of solar flare; (c) single subspaceking residualé;, which gives a poor indication of the flare; (d) for
MOUSSE which peaks near the flare around 227; (e) the GLR statistic for MOUSSE; (), for single subspace tracking; (g)

the GLR statistic for single subspace tracking. Using alsisgbspace gives much less reliable estimates of signifidfaanges in
the statistics of the frames.
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