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Change-point detection for high-dimensional
time series with missing data

Yao Xie, Jiaji Huang, Rebecca Willett

Abstract—This paper describes a novel approach to change-
point detection when the observed high-dimensional data may have
missing elements. The performance of classical methods forchange-
point detection typically scales poorly with the dimensionality of the
data, so that a large number of observations are collected after the
true change-point before it can be reliably detected. Furthermore,
missing components in the observed data handicap conventional
approaches. The proposed method addresses these challenges by
modeling the dynamic distribution underlying the data as lying close
to a time-varying low-dimensional submanifold embedded within the
ambient observation space. Specifically, streaming data isused to
track a submanifold approximation, measure deviations from this
approximation, and calculate a series of statistics of the deviations
for detecting when the underlying manifold has changed in a
sharp or unexpected manner. The approach described in this paper
leverages several recent results in the field of high-dimensional data
analysis, including subspace tracking with missing data, multiscale
analysis techniques for point clouds, online optimization, and change-
point detection performance analysis. Simulations and experiments
highlight the robustness and efficacy of the proposed approach in
detecting an abrupt change in an otherwise slowly varying low-
dimensional manifold.

I. I NTRODUCTION

Change-point detection is a form of anomaly detection where
the anomalies of interest are abrupt temporal changes in a stochas-
tic process [1], [2]. A “quickest” change-point detection algorithm
will accept a streaming sequence of random variables whose
distribution may change abruptly at one time, detect such a change
as soon as possible, and also have long period between false
detections. In many modern applications, the stochastic process
is non-stationary away from the change-points and very high
dimensional, resulting in significant statistical and computational
challenges. For instance, we may wish to quickly identify changes
in network traffic patterns [3], social network interactions [4],
surveillance video [5], graph structures[6], or solar flare imagery
[7], [8].

Traditional quickest change-point detection methods typically
deal with a sequence of low-dimensional, often scalar, random
variables. Naı̈vely applying these approaches to high-dimensional
data is impractical because the underlying high-dimensional dis-
tribution cannot be accurately estimated and used for developing
test statistics. This results in detection delays and falsealarm rates
that scale poorly with the dimensionality of the problem. Thus
the primary challenge here is to develop a rigorous method for
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extracting meaningful low-dimensional statistics from the high-
dimensional data stream without making restrictive modeling
assumptions.

Our method addresses these challenges by using multiscale
online manifold learning to extract univariate change-point de-
tection test statistics from high-dimensional data. We model the
dynamic distribution underlying the data as lying close to a
time-varying, low-dimensional submanifold embedded within the
ambient observation space. This submanifold model, while non-
parametric, allows us to generate meaningful test statistics for
robust and reliable change-point detection, and the multiscale
structure allows for fast, memory-efficient computations.Further-
more, these statistics can be calculated even when elementsare
missing from the observation vectors.

While manifold learning has received significant attentionin
the machine learning literature [9]–[16], online learning of a
dynamic manifold remains a significant challenge, both algorith-
mically and statistically. Most existing methods are “batch”, in
that they are designed to process a collection of independent
observations all lying near the same static submanifold, and all
data is available for processing simultaneously.

In contrast, our interest lies with “online” algorithms, which
accept streaming data and sequentially update an estimate of
the underlying dynamic submanifold structure, and change-point
detection methods which identify significant changes in the
submanifold structure rapidly and reliably. Recent progress for
a very special case of submanifolds appears in the context
of subspace tracking. For example, the Grassmannian Rank-
One Update Subspace Estimation (GROUSE) [17] and Parallel
Estimation and Tracking by REcursive Least Squares (PETRELS)
[18] [19] effectively track a single subspace using incomplete data
vectors. The subspace model used in these methods, however,
provides a poor fit to data sampled from a manifold with non-
negligible curvature or a union ofsubsets.

A. Related work

At its core, our method basically tracks a time-varying prob-
ability distribution underlying the observed data, and uses this
distribution to generate statistics for effective change-point detec-
tion. For sequential density estimation problems such as this, it
is natural to consider an online kernel density estimation (KDE)
methodsee, e.g. [20]. A naive variant of online KDEs would be
quite challenging in our setting, however, because if we model
the density using a kernel at each observed data point, then the
amount of memory and computation required increases linearly
with time and is poorly suited to large-scale streaming data
problems. Ad-hoc “compression” or “kernel herding” methods
for online kernel density estimation address this challenge [21],
[22] but face computational hurdles. Furthermore, choosing the
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kernel bandwidth, and particularly allowing it to vary spatially
and temporally, is a significant challenge. Recent works consider
variable bandwidth selection using expert strategies which in-
crease memory requirements [23], [24]. Some of these issues
are addressed by the RODEO method [25], but the sparse
additive model assumed in that work limits the applicability
of the approach; our proposed method is applicable to much
broader classes of high-dimensional densities. Finally, in high-
dimensional settings asymmetric kernels which are not necessarily
coordinate-aligned appear essential for approximating densities on
low-dimensional manifolds, but learning time-varying, spatially-
varying, and anisotropic kernels remains an open problem. In a
sense, our approach can be considered a memory-efficientsparse
online kernel density estimation method, where we only track a
small number of kernels, and we allow the number of kernels,
the center of each kernel, and the shape of each kernel to adapt
to new data over time.

Our approach also has close connections with Gaussian Mix-
ture Models (GMMs) [26]–[29]. The basic idea here is to
approximate a probability density with a mixture of Gaussian
distributions, each with its own mean and covariance matrix.
The number of mixture components is typically fixed, limiting
the memory demands of the estimate, and online expectation-
maximization algorithms can be used to track a time-varying
density [30]. In the fixed sample-size setting, there has been
work reducing the number of components in GMMs while
preserving the component structure of the original model [29].
However, this approach faces several challenges in our setting.
In particular, choosing the number of mixture components is
challenging even in batch settings, and the issue is aggravated
in online settings where the ideal number of mixture components
may vary over time.In the online setting, splitting and merging
Gaussian components of an already learned precise GMM has
been considered in [31]. However, learning a precise GMM
online is impractical when data are high-dimensional because,
without additional modeling assumptions, tracking the covariance
matrices for each of the mixture components is very ill-posed in
high-dimensional settings.

Our approach is also closely related to Geometric Multi-
Resolution Analysis (GMRA) [15], which was developed for
analyzing intrinsically low-dimensional point clouds in high-
dimensional spaces. The basic idea of GMRA is to first iteratively
partition a dataset to form a multiscale collection of subsets of
the data, then find a low-rank approximation for the data in
each subset, and finally efficiently encode the difference between
the low-rank approximations at different scales. This approach
is a batch method without a straightforward extension to online
settings.

B. Motivating applications

The proposed method is applicable in a wide variety of settings.
Consider a video surveillance problem. Many modern sensors
collect massive video streams which cannot be analyzed by
human due to the sheer volume of data; for example, the ARGUS
system developed by BAE Systems is reported to collect video-
rate gigapixel imagery [32], [33], and the Solar Dynamics Ob-
servatory (SDO) collects huge quantities of solar motion imagery
“in multiple wavelengths to [help solar physicists] link changes

in the surface to interior changes” [34]. Solar flares have a close
connection with geomagnetic storms, which can potentiallycause
large-scale power-grid failures. In recent years the sun has entered
a phase of intense activity, which makes monitoring of solarflare
bursts an even more important task [8]. With these issues in
mind, it is clear that somehowprioritizing the available data for
detailed expert or expert-system analysis is an essential step in the
timely analysis of such data. If we can reliably detect statistically
significant changes in the video, we can focus analysts’ attention
on salient aspects of the dynamic scene. For example, we may
wish to detect a solar flare in a sequence of solar images in real
time without an explicit model for flares, or detect anomalous
behaviors in surveillance video [35]. Saliency detection has been
tackled previously [36], [37], but most methods do not track
gradual changes in the scene composition and do not detect
temporalchange-points.

A second motivating example is credit history monitoring,
where we are interested in monitoring the spending pattern of
a user and raising an alarm if a user’s spending pattern is likely
to result a default [38]. Here normal spending patterns may evolve
over time, but we would expect a sharp change in the case of a
stolen identity.

An additional potential application arises in computer network
anomaly detection [39]. Malicious attacks or network failure
can significantly affect the characteristics of a network [3],
[40]. Recent work has shown that network traffic data is well-
characterized using submanifold structure [41], and using such
models may lead to more rapid detection of change-points with
fewer false alarms.

C. Contributions and paper organization

The primary contributions of this work are two-fold: we present
(a) a fast method for online tracking of a dynamic submanifold
underlying very high-dimensional noisy data with missing ele-
ments and (b) a principled change-point detection methodusing
easily computed residuals of our online submanifold approxima-
tion based on a sequential generalized likelihood ratio procedure
[42]. These methods are supported by both theoretical analyses
and numerical experiments on simulated and real data.

The paper is organized as follows. In SectionII we for-
mally define our setting and problem. SectionIII describes our
multiscale submanifold model and tracking algorithm, which is
used to generate the statistics used in the change-point detection
component described in SectionIV. Several theoretical aspects of
the performance of our method are described in SectionV, and
the performance is illustrated in several numerical examples in
SectionVI .

II. PROBLEM FORMULATION

Suppose we are given a sequence of datax1, x2, . . ., for t =
1, 2, . . ., xt ∈ R

D, whereD denotes theambient dimension. The
data are noisy measurements of points lying on a submanifold
Mt:

xt = vt + wt, where vt ∈ Mt. (1)

The intrinsic dimensionof the submanifoldMt is d. We assume
d ≪ D. The noisewt is a zero mean white Gaussian random
vector with covariance matrixσ2I. The underlying submanifold
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Mt may vary slowly with time. At each timet, we only observe
a partial vectorxt at locationsΩt⊆{1, . . . , D}. LetPΩt

represent
the |Ωt| ×D matrix that selects the axes ofRD indexed byΩt;
we observePΩt

xt, whereΩt is known.
Our goal is to design an online algorithm that generates a

sequence of approximationŝMt which trackMt when it varies
slowly, and allows us to compute residuals [1] from Mt for
detecting change-points as soon as possible after the submanifold
changes abruptly. The premise is that the statistical properties
of the tracking residuals will be different when the submanifold
varies slowly versus when it changes abruptly.

Define the operator

PMxt = arg min
x∈M

‖x− xt‖2 (2)

as the projection of observationxt on to M, where‖x‖ is the
Euclidean norm of a vectorx. If we had access to all the data
simultaneously without any memory constraints, we might solve
the following batch optimization problem using all data up to
time t for an approximation:

M̂◦
t , argmin

M

{ t∑

i=1

αt−i‖PΩi
(xi − PMxi)‖2 + µ pen(M)

}
,

(3)

wherepen(M) denotes a regularization term which penalizes the
complexity ofM, α ∈ (0, 1] is a discounting factor on the track-
ing residual at each timet, andµ is a user-determined constant
that specifies the relative weights of the data fit and regularization
terms.The cost function in (3) is chosen with the following goals
in mind: (a) to balance the tradeoff between tracking residuals and
the complexity of our estimator, thereby preventing over-fitting to
data; (b) to track the underlying manifold when it is time-varying
via discounting old samples in the cost function; (c) to enable
an easy decomposition of cost functions that facilitates online
estimation, as we demonstrate in SectionIII .

Note that (3) cannot be solved without retaining all previous
data in memory, which is impractical for the applications of
interest. To address this, we instead consider an approximation to
the cost function in (3) of the formF (M) + µ pen(M), where
F (M) measures how well the data fitsM. In SectionIII , we
will show several forms ofF (M) that lead to recursive updates
and efficient tracking algorithms,and present our new algorithm:
Multi-scale Online Union of SubSets Estimate (MOUSSE). Our
method finds a sequence of approximationŝM1, . . . ,M̂t, such
that M̂t+1 is computed by updating the previous approximation
M̂t using F (M) and the current datumxt+1 (but not older
data). One example of a MOUSSE approximation is illustrated
in Figure 1. In this figure, the dashed line corresponds to the
true submanifold, the red lines correspond to the estimatedunion
of subsetsby MOUSSE, and the+ signs correspond to the
past 500 samples, with darker colors corresponding to more
recent observations. The context is described in more detail in
SectionVI-C.

Given the sequence of submanifold estimatesM̂1, . . . ,M̂t, we
can compute the distance of eachxt to M̂t, which werefer to
as residualsand denote using{et}. We then apply change-point
detection methods to the sequence of tracking residuals{et}. In
particular, we assume that when there is no change-point, the et
are i.i.d. with distributionν0. When there is a change-point, there

exists an unknown timeκ < t such thate1, . . . , eκ are i.i.d. with
distribution ν0, andeκ+1, . . . are i.i.d. with distributionν1. Our
goals are to (a) detectas soon as possiblewhen such aκ exists
beforet and (b) when no suchκ exists, have our method accept
streaming data for as long as possible before falsely declaring a
change-point. (Note that in this setting, even if no change-point
exists and all data are i.i.d., any method will eventually incorrectly
declare a change-point; that is, for an infinite stream of data,
we will have a false alarm at some time with probability one.
However, good change-point detection methods ensure that,with
high probability, these false detections only occur after avery
long waiting time, and thus exert some measure of control over
the false alarm rate over time.)
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Fig. 1: Approximation of MOUSSE att = 250 (upper) and
t = 1150 (lower) of a 100-dimensional submanifold. In this
figure we project everything into three-dimensional space.The
blue curve corresponds to true submanifold, the plus signs are
noisy samples from the submanifold (the lighter plus signs are
more dated than the darker plus signs), and the red line segments
are the approximation subsets computed with MOUSSE. As the
curvature of the submanifold increases, MOUSSE also adaptsin
the number of subsets.

III. M ULTISCALE ONLINE UNION OF SUBSETSESTIMATION

(MOUSSE)

In this section, we describe the Multiscale Online Union of
SubSets Estimation (MOUSSE) method, including the underlying
multiscale model and online update approaches.

A. Multiscale union ofsubsetsmodel

MOUSSE uses a union of low-dimensional subsets,M̂t, to
approximateMt, and organizes these subsets using a tree struc-
ture. The idea for a multiscale tree structure is drawn from the
multiscale harmonic analysis literature [43]. The leaves of the
tree are subsets that are used for the submanifold approximation.
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Each node in the tree represents a local approximation to the
submanifold at one scale. The parent nodes aresubsetsthat
contain coarser approximations to the submanifold than their
children. The subset associated with a parent node roughly covers
the subsets associated with its two children.

More specifically, our approximation at each timet consists of
a union ofsubsetsSj,k,t that is organized using a tree structure.
Here j ∈ {1, . . . , Jt} denotes the scale or level of the subset in
the tree, whereJt is the tree depth at timet, andk ∈ {1, . . . , 2j}
denotes the index of the subset for that level. The approximation
M̂t at time t is given by:

M̂t =
⋃

(j,k)∈At

Sj,k,t, (4)

whereAt contains the indices of allleaf nodes used for approx-
imation at timet. Also defineTt to be the set of indices ofall
nodes in the tree at timet, with At ⊂ Tt. Each of these subsets
lies on a low-dimensional hyperplane with dimensiond and is
parameterized as

Sj,k,t = {v ∈ R
D : v = Uj,k,tz + cj,k,t,

z⊤Λ−1
j,k,tz ≤ 1, z ∈ R

d}, (5)

where the notation⊤ denotes transpose of a matrix or vector. The
matrix Uj,k,t ∈ R

D×d is the subspace basis, andcj,k,t ∈ R
D is

the offset of the hyperplane from the origin. The diagonal matrix

Λj,k,t , diag{λ(1)
j,k,t, . . . , λ

(d)
j,k,t} ∈ R

d×d,

with λ
(1)
j,k,t ≥ . . . ≥ λ

(d)
j,k,t ≥ 0, contains eigenvalues of the

covariance matrix of the projected data onto each hyperplane.
This parameter specifies the shape of the ellipsoid by capturing
the spread of the data within the hyperplane. In summary, the
parameters forSj,k,t are

{Uj,k,t, cj,k,t,Λj,k,t}(j,k)∈Tt
,

and these parameters will be updated online,as described in
Algorithm 2.

In our tree structure, the leaf nodes of the tree also have two
virtual children nodes that maintain estimates for corresponding
subsets at a finer scale than encapsulated by the leaf nodes ofour
tree (andM̂t); these subsets are notusedfor our instantaneous
submanifold approximation, but rather when further subdivision
with the tree is needed.We will explain more details about tree
subdivision and growth in SectionIII-E and Algorithms3 and4.
The complexityof the approximation, denotedKt, is defined to
be the total number of subsets used for approximation at timet:

Kt , |At|; (6)

this is used as the complexity regularization term in (3):
pen(M̂t) , Kt. The tree structure is illustrated in Figure2.

B. Approximate Mahalanobis distance

To update the submanifold approximation, we first determine
the affinity ofxt+1 to each subset. We might simply projectxt+1

onto each subset (i.e. ellipsoid), but computing this projection
generally requires using numerical solver. Alternatively, we could
consider the Mahalanobis distance, which is commonly used for
data classification and it measures the quadratic distance of x

S0,0,t

S
1,0,t S

1,1,t

S
2,0,t S

2,1,t
S
2,2,t S

2,3,t

S
3,4,t S

3,5,t
S
3,6,t S

3,7,t
Virtual nodes keep 

track of statistics 

used for tree splitting

Leaf nodes form cur-

rent aproximation

Ancestor nodes give 

coarser approxima-

tion and facilitate 

merging leaf nodes

Fig. 2: Illustration of tree structure forsubsets. Thesubsetsused
in our approximation are{S1,0,t ∪ S2,2,t ∪ S2,3,t}.

to a setS of data with meanc = E{x} and covarianceΣ =
E{(x − c)(x − c)⊤}. Specifically, the Mahalanobis distance is
defined as

̺(x,S) = (x− c)⊤Σ−1(x − c). (7)

However, this distance is only finite and well-defined for points
lying in one of the low dimensional subspaces in our approxima-
tion. Since our construction is a piecewise linear approximation
to a submanifold which may have some curvature, we anticipate
many observations which are near but not in our collection of
subsets, and we need a well-defined, finite distance measure for
such points.

To address these challenges, we introduce theapproximate
Mahalanobis distanceof a point x to a subsetS, which is a
hybrid of Euclidean distance and Mahalanobis distance. Assume
x with supportΩ and the parameters for a setS is given by
{U, c,Λ}. Define

UΩ , PΩU ∈ R
|Ω|×d, cΩ , PΩc ∈ R

|Ω|,

and
xΩ = PΩx ∈ R

|Ω|.

Define the pseudoinverse operator that computes the coefficients
of a vector in the subspace spanned byV as

V # , (V ⊤V )−1V ⊤. (8)

LetU⊤
Ω denote(UΩ)

⊤, and similarlyU#
Ω = (UΩ)

#. WhenU is an
orthogonal matrix, we haveU# ≡ U⊤, but in generalU#

Ω 6= U⊤
Ω .

Let
β = U#

Ω (xΩ − cΩ), (9)

and
x⊥ = (I − UΩU

#
Ω )(xΩ − cΩ). (10)

In this definition,β is the projectioncoefficientof a re-centered
x on UΩ, and x⊥ captures the projection residual. Assuming
the covariance matrix has a low-rank structure withd large
eigenvalues andD − d small eigenvalues, we can write the
eigendecomposition of the covariance matrixΣ as

Σ ,
[
U U⊥

]
Λ
[
U U⊥

]⊤
= UΛ1U

⊤ + U⊥Λ2U
⊤
⊥ ,

where Λ = diag{λ1, . . . , λD}, λ1 ≥ . . . ≥ λD, Λ1 =
diag{λ1, . . . , λd}, Λ2 = diag{λd+1, . . . , λD}. If we further
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assume that theD − d small eigenvalues are all approximately
equal to someδ > 0, i.e.,Λ2 ≈ δI, then the Mahalanobis distance
(7) may be approximated as

̺(x,S) ≈ (x − c)⊤UΛ−1
1 U⊤(x− c) + δ−1‖U⊤

⊥ (x− c)‖2. (11)

Motivated by this,we define theapproximate Mahalanobis dis-
tance:

ρδ(x,S) , β⊤Λ−1β + δ−1‖x⊥‖2. (12)

When the data is complete,ρδ(x,S) is equal to the right-hand-
side of (11), since

β =(U⊤U)−1U⊤(x− c) = U⊤(x− c),

x⊥ =(I − UU⊤)(x − c),

then we can write the right-hand-side of (11) as β⊤Λ−1β +
δ−1‖x⊥‖2. With missing data,ρδ(x,S) is an approximation to
̺(x,S).

In definition of the approximation Mahalanobis distance (12),
δ is a small number and has to be estimated from noisy data. To
avoid the numerical instability caused when dividing by a small
number, we use the following scaled approximate Mahalanobis
distance as a measure of the distance betweenx and a subset:

dδ(x,S) = δρδ(x, S) = δβ⊤Λ−1β + ‖x⊥‖2. (13)

With this definition, we can find the subset within our approxi-
mation with minimum distance to the new datumxt:

(j∗, k∗) = argmin
(j,k)

dδj,k,t
(xt,Sj,k,t). (14)

We can further define thetracking residualof the submanifold at
time t.

et ,
(
dδj∗,k∗,t

(xt,Sj∗,k∗,t)
)1/2

=
(
δj∗,k∗,tβ

∗⊤Λ−1
j∗,k∗,tβ

∗ + ‖x∗
⊥‖2

)1/2
,

(15)

whereβ∗ andx∗
⊥ are calculated forxt+1 relative toSj∗,k∗,t using

(9) and (10). We take the square root of the scaled approximate
Mahalanobis distance to ensure that theets can be well modeled
as draws from a Gaussian distribution (as demonstrated in Section
IV-C).

C. MOUSSE Algorithm

When a new samplext+1 becomes available, MOUSSE up-
datesM̂t to obtain M̂t+1. The update steps are presented in
Algorithm 1; there are three main steps, detailed in the below
subsections: (a) find the subset in̂Mt which is closest toxt+1, (b)
update a tracking estimate of that closest subset, its ancestors, and
its nearest virtual child, and (c) grow or prune the tree structure
to preserve a balance between fit to data and complexity.The
parameters{Uj,k,t,Λj,k,t, cj,k,t, δj,k,t} are calculated and updated
in Algorithm 2. We use[z]m to denote them-th element of a
vectorz.

D. Update subset parameters

When updatingsubsets, we can update allsubsetsin our
multiscale representation and make the update step-size tobe
inversely proportional to the approximate Mahalanobis distance
between the new sample and each subset, which we refer to as

Algorithm 1 MOUSSE

1: Input:
error toleranceǫ, step sizeα, relative weightµ

2: Initialize tree structure, setǫ0 = 0
3: for t = 0, 1, . . . do
4: Given new dataxt+1 and its supportΩt+1

5: find the minimum distance setSj∗,k∗,t according to (14)
6: let β∗ andx∗

⊥ denote (9) and (10) of xt+1 for Sj∗,k∗,t

7: calculate:et+1 using (15)
8: update all ancestor nodes and closest virtual child node of

(j∗, k∗) using Algorithm2
9: calculate:ǫt+1 = αǫt + e2t+1

10: denote parent node of(j∗, k∗) as (j∗ − 1, kp) and closest
virtual child node as(j∗ + 1, kv)

11: if ǫt+1 > ǫ anddδj∗+1,kv,t
(xt+1,Sj∗+1,kv ,t)+µ(Kt+1) <

dδj∗,k∗,t
(xt+1,Sj∗,k∗,t) + µKt then

12: split (j∗, k∗) using Algorithm3
13: end if
14: if ǫt+1 < ǫ anddδj∗−1,kp,t

(xt+1,Sj∗−1,kp,t)+µ(Kt−1) <
dδj∗,k∗,t

(xt+1,Sj∗,k∗,t) + µKt then
15: merge(j∗, k∗) and its sibling using Algorithm4
16: end if
17: updateAt andTt
18: end for

Algorithm 2 Update node

1: Input: node index(j, k), α, δ and subspace parameters
2: Calculate:β andx⊥ using (9) and (10)
3: Update:[cj,k,t+1]m = α[cj,k,t]m+(1−α)[xt+1]m, m ∈ Ωt+1

4: Update:λ(m)
j,k,t+1 = αλ

(m)
j,k,t + (1− α)[β]2m,m = 1, . . . , d

5: Update:δj,k,t+1 = αδj,k,t + (1− α)‖x⊥‖2/(D − d)
6: Update basisUj,k,t using (modified) subspace tracking algo-

rithm

Algorithm 3 Split node(j, k)

1: Turn two virtual children nodes(j+1, 2k) and(j+1, 2k+1)
of node(j, k) into leaf nodes

2: Initialize virtual nodes(j + 1, 2k) and(j + 1, 2k + 1):

k1 = 2k

k2 = 2k + 1

cj+1,k1,t+1 = cj,k,t +

√
λ
(1)
j,k,tu

(1)
j,k,t/2

cj+1,k2,t+1 = cj,k,t −
√
λ
(1)
j,k,tu

(1)
j,k,t/2

Uj+1,ki,t+1 = Uj,k,t, i = 1, 2

λ
(1)
j+1,ki,t+1 = λ

(1)
j,k,t/2, i = 1, 2

λ
(m)
j+1,ki,t+1 = λ

(m)
j,k,t, m = 2, . . . , d, i = 1, 2

the “update-all” approach. Alternatively, we can just update the
subset closest toxt+1, its virtual children, and all its ancestor
nodes, which we refer to as the “update-nearest” approach. The
update-all approach is computationally more expensive, especially
for high dimensional problems, so we focus our attention on the
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Algorithm 4 Merge(j, k) and its sibling

1: Make the parent node of(j, k) into a leaf node
2: Make (j, k) and its sibling into virtual children nodes of the

newly created leaf
3: Delete all four virtual children nodes of(j, k) and its sibling

greedy update-nearest approach. The below approaches extend
readily to the update-all setting, however.

In the update-nearest approach,we update the parameters of
the minimum distance subset defined in (14), all its ancestors
in the tree, and its two virtual children. The update algorithm
is summarized in Algorithm2 which denotes the parameters
associated withSj∗,k∗,t as(c, U,Λ, δ), and drops thej∗, k∗, and
t indices for simplicity of presentation.The update of the center
c, Λ andδ are provided in the following, SectionsA andB.

To decide whether to change the tree structure, we introduce
the average residualfor a “forgetting factor”α ∈ (0, 1):

ǫt ,

t∑

i=1

αt−ie2i

= αǫt−1 + e2t .

(16)

We will consider changing the tree structure whenǫt is greater
than our prescribed residual toleranceǫ > 0.

Next we will focus on three approaches to updatingU by
modifying existing subspace tracking methods. In the following,
for tractability reasons, we holdΛ fixed and update with respect
to U alone at first. We then update the shape parametersΛ and
δ for fixed U .

1) GROUSE: To use GROUSE subspace tracking in this
context, we approximate the first term in (3) as

F (M) =

t∑

i=1

αt+1−i‖PΩi
(xi − P

M̂i
xi)‖2

+ ‖PΩt+1
(xt+1 − PMxt+1)‖2.

(17)

Note the first term is a constant with respect toM, so we need
only to consider the second term in computing an update.To focus
on updating subspace without the shape parameters, we replace
‖PΩt+1

(xt+1 − PMxt+1)‖2 in (17) by

f(U) , min
a

‖PΩt+1
(xt+1 − Ua− c)‖2 (18)

(assumingU is orthonormal and including the offset vector
c). The basic idea is now to take a step in the direction of
the instantaneous gradient of this cost function (18). This task
corresponds to the basis update of GROUSE [17] with the cost
function (18).

Following the same derivation as in [17], we have that

df

dU
= −2PΩt+1

(xt+1 − c− Uβ)β⊤ , −2rβ⊤, (19)

whereβ is defined in (9), and

r = PΩt+1
(xt+1 − c− Uβ).

The gradient on the Grassmannian is given by

∇f = (I − UU⊤)
df

dU
= −2(I − UU⊤)rβ⊤ = −2rβ⊤,

since U⊤r = 0. We obtain that the update ofUt using the
Grassmannian gradient is given by

Ut+1 = Ut +
cos(ξη)− 1

‖β‖2 Utββ
⊤ + sin(ξη)

r

‖r‖
β⊤

‖β‖ ,

whereη > 0 is the step-size, andξ = ‖r‖‖Utβ‖. The step-size
η is chosen to beη = η0/‖xt+1‖, for a constantη0 > 0.

2) PETRELS:Let (j∗, k∗) denote the indices of the closest
subset toxt+1, and letIt ⊆ {1, . . . , t, t + 1} denote the set of
times corresponding to data which were closest to this subset and
used to estimate its parameters in previous rounds. Then we can
write

F (M) =
∑

i/∈It

αt−i‖PΩi
(xi − P

M̂i
xi)‖2

+
∑

i∈It

αt−i‖PΩi
(xi − PMxi)‖2.

(20)

where, as before, the first sum is independent ofM and can be
ignored during minimization.When focusing on updatingU for
fixed Λ, the minimization ofF (M) with respect to the subspace
U used for node(j∗, k∗) in (20) can be accomplished using
the PETRELS algorithm [44], yielding a solution which can be
expressed recursively as follows. Denoting by[U ]m them-th row
of U , we have the update ofU given by

[Ut+1]m = [Ut]m

+ Im∈Ωt
([Utat+1]m − a⊤t+1[Ut]m)(Rm,t+1)

#at+1,
(21)

for m = 1, . . . , D, whereIA is the indicator function for event
A, and

at+1 = (U⊤
t PΩt+1

Ut)
#U⊤

t xt+1.

The second-order information inRm,t+1 can be computed recur-
sively as

(Rm,t+1)
# = α−1(Rm,t)

#

+
α−2pm,t+1

1 + α−1a⊤t+1(Rm,t)#at+1
(Rm,t)

#ata
⊤
t (Rm,t)

#.
(22)

Note that PETRELS does not guarantee the orthogonality of
Ut+1, which is important for quickly computing projections onto
our submanifold approximation. To obtain orthonormalUt+1, we
may apply Gram-Schmidt orthonormalization after each update.
We refer to this modification of PETRELS asPETRELS-GS. This
orthogonalization requires an extra computational cost onthe or-
der ofO(Dd2) and may compromise the continuity ofUt, i.e., the
Frobenius norm‖Ut+1−Ut‖F after the orthogonalization may not
be small even when the correspondingsubsetsare very close [45].
This lack of continuity makes it impossible to effectively track
the scale parameterΛ. A faster orthonormalization (FO) strategy
with less computation which also preserves the continuity of Ut

is given in [45]. We refer to this FO strategy combined with
PETRELS asPETRELS-FO.

3) Computational complexity:For each update with complete
data (which is more complex than an update with missing data),
the computational complexity of GROUSE is on the order of
O(Dd), PETRELS-GS isO(Dd2), and PETRELS-FO isO(Dd).
More details about the relative performance of these three sub-
space update methods can be found in SectionVI .
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E. Tree structure update

When the curvature of the submanifold changes and cannot be
sufficiently characterized by the current subset approximations,
we must perform adaptive model selection. This can be accom-
plished within our framework by updating the tree structure–
growing the tree or pruning the tree, which we refer to as “split-
ting” and “merging” branches, respectively. Previous workhas
derived finite sample bounds and convergence rates of adaptive
model selection in nonparametric time series prediction [46].

Splitting tree branches increases the resolution of the approx-
imation at the cost of higher estimator complexity. Merging
reduces resolution but lowers complexity. When making deci-
sions on splitting or merging, we take into consideration the
approximation residuals as well as the model complexity (the
number ofsubsetsKt used in the approximation). This is related
to complexity-regularized tree estimation methods [43], [47],
[48] and the notion of minimum description length (MDL) in
compression theory [49], [50]. In particular, we use the sum of
the average residuals and a penalty proportional to the number
of subsetsused for approximation as the cost function when
deciding to split or merge. The splitting and merging operations
are detailed in Algorithm3 and Algorithm4. The splitting process
mimics thek-means algorithm. In these algorithms, note that for
node(j, k) the parent is node(j−1, ⌊k/2⌋) and the sibling node
is (j, k + 1) for k even or(j, k − 1) for k odd.

F. Initialization

To initialize MOUSSE, we assume a small initial training set
of samples, and perform a nested bi-partition of the training data
set to form a tree structure, as shown in Figure2. The root
of the tree represents the entire data set, and the children of
each node represent a bipartition of the data in the parent node.
The bipartition of the data can be performed by thek-means
algorithm. We start with the entire data, estimate the sample
covariance matrix, perform an eigendecomposition, extract thed-
largest eigenvectors and eigenvalues and use them forU1,1,0 and
Λ1,1,0, respectively. The average of the(D−d) minor eigenvalues
are used forδ1,1,0. If the approximation residual is greater than
the prescribed residual toleranceǫ, we further partition the data
into two clusters usingk-means (fork = 2) and repeat the above
process. We keep partitioning the data untilδj,k,0 is less thanǫ
for all leaf nodes. Then we further partition the data one level
down to form the virtual children nodes. This tree construction
is similar to that used in [15].

In principle, it is possible to bypass this training phase and
just initialize the tree with a single root node and two random
virtual children nodes. However, the training phase makes it much
easier to select algorithm parameters such asǫ and provides more
meaningful initial virtual nodes, thereby shortening the “burn in”
time of the algorithm.

G. Choice of parameters

In general,α should be close to 1, as in the Recursive Least
Squares (RLS) algorithm [51]. In the case when the subman-
ifold changes quickly, we would expect smaller weights for
approximation based on historical data and thus a smallerα. In
contrast, a slowly evolving submanifold requires a largerα. In
our experiments,α ranges from 0.8 to 0.95.ǫ controlsresidual

tolerance, which varies from problem to problem according to the
smoothness of the submanifold underlying the data and the noise
variance. Since the tree’s complexity is controlled andpen(M)
in (3) is roughly on the order ofO(1), we usually setµ close to
ǫ.

IV. CHANGE-POINT DETECTION

We are interested in detecting changes to the submanifold
that arise abruptly and change the statistics of the data. When
the submanifold varies slowly in time, MOUSSE (described in
SectionIII ) can track the submanifold and produce a sequence of
stationary tracking residuals.Because MOUSSE uses a bounded
small step-size, and only allows merging or splitting by one
level in the tree structure update,when an abrupt change oc-
curs, MOUSSEwill lose track of the manifold, resulting in
an abrupt increase in the magnitude of the tracking residuals.
This abrupt change in tracking residuals enables change-point
detection. In this section, we formulate the change-point problem
using MOUSSE residualset, show that the distribution ofet
is close to Gaussian, and adapt the generalized-likelihoodratio
(GLR) procedure [42] for change-point detection.

A. Generalized likelihood ratio (GLR)procedure

We adopt the quickest change-point detection formulation to
detect an abrupt change in the distribution of the residuals. In
particular, we assume thatν0 is a normal distribution with mean
µ0 and varianceσ2

0 , andν1 is a normal distribution with mean
µ1 and the same varianceσ2

0 . Then we can formulate the change-
point detection problem as the following hypothesis test:

H0 : e1, . . . , et ∼ N (µ0, σ
2
0),

H1 : e1, . . . , eκ ∼ N (µ0, σ
2
0), eκ+1, . . . , et ∼ N (µ1, σ

2
0).
(23)

In the case where the pre-change and post-change distributions
are completely specified, two very good procedures are the
CUSUM test [52], [53] and the quasi-Bayesian Shiryayev-Roberts
procedure [54], [55] (also see [2], [56] for surveys). The CUSUM
and Shiryayev-Roberts procedures minimize asymptotically to
first order the maximum expected delay in detecting a change-
point, under different conditions (see [53] for CUSUM and [57],
[58] for Shiryayev-Roberts procedures).

In our problem, the post-change distribution is not completely
prescribed.We assumeµ0 andσ2

0 are known since typically there
is enough normal data to estimate these parameters (when the
training phase is too short for this to be the case, these quantities
can be estimated online, as described in [59]). However, we
assumeµ1 is unknown since the magnitude of the change-point
can vary from one instance to another.With this assumption, we
instead use the generalized likelihood ratio (GLR) procedure [42]
(which is derived based on the CUSUM procedure), by replacing
µ1 with its maximum likelihood estimate (for each fixed change-
point timeκ = k):

µ̂1 =
St − Sk

t− k
,

where

St ,

t∑

i=1

ei.
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We compute a GLR statistic at each timet and stop (declare a
detected change-point) the first time the statistic hits a threshold
b:

T = inf
{
t ≥ 1 : max

t−w≤k<t

|(St − Sk)− µ0(t− k)|
σ0

√
t− k

≥ b
}
, (24)

wherew is a time-window length such that we only consider
the most recentw residuals for change-point detection, and the
thresholdb is chosen to control the false-alarm-rate, which is
characterized using average-run-length (ARL) in the change-point
detection literature [60]. Typically we would choosew to be
several times (for example, 5 to 10 times) of the anticipated
detection delay, then the window length will almost have no effect
on the detection delay [61]. This threshold choice is detailed in
SectionIV-B.

B. Choice of threshold for change-point detection

In accordance with standard change-point detection notation,
denote byE∞ the expectation when there is no change,i.e.,EH0

,
and byEk the expectation when there is a change-point atκ = k,
i.e., EH1,κ=k. The performance metric for a change-point detec-
tion algorithm is typically characterized by theexpected detection
delay supk≥0 E

k{T − k|T > k} and the average-run-length
(ARL) E

∞{T } [60]. Typically we useE0{T } as a performance
metric since it is an upper bound forsupk≥0 E

k{T − k|T > k}.
Note that theGLR procedure(24) is equivalent to

T = inf{t ≥ 1 : max
t−w≤k<t

|S̃t − S̃k|√
t− k

≥ b, } (25)

whereS̃t =
∑t

i=1(ei−µ0)/σ0. UnderH0, we have(ei−µ0)/σ0

i.i.d. Gaussian distributed with zero mean and unit variance. Using
the results in [42], we have the following approximation. When
b → ∞,

E
∞{T } ∼ (2π)1/2 exp{b2/2}

b
∫ b

0
xν2(x)dx

, (26)

where ν(x) = (2/x)[Φ(x/2)−0.5]
(x/2)Φ(x/2)+φ(x)/2 [61], φ(x) and Φ(x) are the

pdf and cdf of the normal random variable with zero mean and
unit variance. We will demonstrate in SectionVI-E that this
asymptotic approximation is fairly accurate even for finiteb and
when et’s are not exactly Gaussian distributed, which allows us
to choose the change-point detection threshold to achieve atarget
ARL without parameter tuning.

C. Distribution ofet
In deriving the GLR statistics we have assumed thatet are

i.i.d. Gaussian distributed. A fair question to ask is whether et is
truly Gaussian distributed, or even to ask whetheret is a good
statistic to use. We can verify that Gaussian distribution is a good
approximation for the distribution ofet (15). The QQ-plot of
et from one of our numerical examples in SectionVI when
D = 100 is shown in Figure3. We will also demonstrate in
SectionVI-E that the theoretical approximation for ARL using a
Gaussian assumption onet is quite accurate.

V. PERFORMANCEANALYSIS

In this section, we first study the performance of MOUSSE, and
then study the choice for the threshold parameter of the change-
point detection algorithm and provide theoretical approximations.
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Fig. 3: Q-Q plot ofet, for a D = 100 submanifold.

A complete proof of convergence of MOUSSE (or GROUSE
or PETRELS) is challenging since the space of submanifold
approximations we consider is non-convex. Nevertheless, we can
still characterize several aspects of our approach.

A. MOUSSE residuals

As mentioned earlier, our multiscale subset model is closely
related to geometric multiresolution analysis (GMRA) [15]. In
that work, the authors characterize the favorable approximation
capabilities of the proposed multiscale model. In particular, they
prove that the magnitudes of the geometric wavelet coefficients
associated with their algorithm decay asymptotically as a function
of scale, so a collection of data lying on a smooth submanifold
can be well-approximated with a small number (depending on
the submanifold curvature) of relatively large geometric wavelets.
These geometric wavelets are akin to the leaf nodes in our
approximation, so the approximation results of [15] suggest that
our model admits accurate approximations of data on smooth
submanifolds with a small number of leafs.

B. Optimality and consistency

In AppendixA, we show that the estimate ofc is optimal in the
complete data setting. In AppendixB, we show that the estimates
of Λ andδ are consistent in the complete data setting.

C. Missing data

In this section, we show thatβ andx⊥, when using a missing
data projection, are close to their counterparts when usinga
complete data projection. Hence, when the fraction of missing
data is not large, the performance of MOUSSE with missing data
is also consistent. In this section, we omit the subscriptsj, k and
t, and denoteΩt by Ω to simplify notation. Define the coherence
of the basisU as [62]

coh(U) =
D

d
max
m

‖UU#em‖22. (27)

Theorem 1:Let ε > 0. Given x = v + w, andw is a white
Gaussian noise with zero mean and covariance matrixσ2ID×D.
Let β = U⊤(x−c), andβΩ = U#

Ω (xΩ−cΩ). If for some constant
ℓ ∈ (0, 1),

|Ω| ≥ max

{
8

3
coh(U)d log(2d/ε),

4

3

D

(1− ℓ) log(2D/ε)

}
,

(28)
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then with probability at least1− 3ε,

‖βΩ − β‖22 ≤2
(1 + θ)2

(1− ℓ)2
· d

|Ω| · coh(U)‖q‖2 + σ2 (64/9)D2

(1 − ℓ)2|Ω|2 ,
(29)

where

θ =

√
2
DmaxDn=1 |[q]n|2

‖q‖2 log(1/ε),

andq , (I − UU⊤)(v − c).
The proof of Theorem1 combines techniques from [62] with a

new noise bound. Different from [62], instead of bounding‖vΩ−
UΩβΩ‖ using‖v−Uβ‖, we need to bound‖β−βΩ‖ using‖v−
Uβ‖. The proof of this theorem can be found in AppendixC. The
first term in the lower-bound (28) is a consequence of Lemma 3 in
[62]. This theorem shows that the number of non-zero entries,|Ω|,
should be on the order of the maximum ofd log d andD/ log(D)
for accurate estimation ofβΩ. The first term in the bound (29)
is proportional to‖q‖, which is related to the distance ofv from
U , and the second term in (29) is due to noise.

VI. N UMERICAL EXAMPLES

In this section, we present several numerical examples, first
based on simulated data, and then real data, to demonstrate the
performance of MOUSSE in tracking a submanifold and detecting
change-points. We also verify that the theoretical approximation
to ARL in SectionIV-B is quite accurate.

A. Comparison of tracking algorithms

We first compare the performance of different tracking al-
gorithms presented in SectionIII-D : GROUSE, PETRELS-GS
and PETRELS-FO in tracking a time varying manifold. The
dimension of the submanifold isD = 100 and the intrinsic
dimension isd = 1. Fixing θ ∈ [−2, 2], we definev(θ) ∈ R

D

with its n-th element

[v(θ)]n = 1/
√
2πe−(zn−θ)2/(2γ2

t ), (30)

wherezn = −2+4n/D, n = 1, . . . , 100, corresponds to regularly
spaced points between−2 and2. Let γt be time-varying:

γt =

{
0.6− γ0t, t = 1, 2, . . . , s,
0.6− γ0(2s− t), t = s+ 1, s+ 2, . . . , 2s,

(31)

where parameterγ0 controls how fast the submanifold changes,
ands = 1000. The observationxt is obtained from (1) with noise
varianceσ2 = 4 × 10−4. We compare the methods with various
settings of changing rateγ0 and percentage of missing entries in
xt.

In the following experiments, we usesample average approxi-
mation errorεN obtained fromN = 1200 samples{y1, . . . , yN}
as a metric for comparison:

E{e2t} ≈ 1

N

N∑

i=1

e2i , (32)

whereSi denotes the minimum distance subset for sampleyi.
We set the parameters for each tracking algorithm such that they
each having the best numerical performance. We used = 1 for
MOUSSE in all instances. The comparison results are displayed
in Figure4, where the horizontal axis is the submanifold changing

rate γ0, the vertical axis is the percentage of missing data,
and the brightness of each block corresponds to our numerical
estimate ofE{e2t}. In Figure4, PETRELS-FO performs far better
then PETRELS-GS and slightly better than GROUSE, especially
with a large fraction of missing data. For PETRELS-FO, the
best parameters are fairly stable for various combinationsof
submanifold changing rates and factions of missing data: with
α around 0.9,µ around 0.2, andǫ around 0.1. Considering its
lower computational cost and ease of parameter tuning,we adopt
PETRELS-FO in MOUSSE for the remaining experiments in this
paper.
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Fig. 4: MOUSSE tracking a slowly varying submanifold using:
(a) GROUSE, (b) PETRELS-GS and (c) PETRELS-FO. Hori-
zontal axis corresponds to rate of change for submanifold and
vertical axis corresponds to fraction of data missing. Brightness
corresponds toE{e2t}.

B. Tracking a static submanifold

We then study the performance of MOUSSE tracking a static
submanifold. The dimension of the submanifold isD = 100 and
the intrinsic dimension isd = 1. Fixing θ ∈ [−2, 2], we define
v(θ) ∈ R

D according to (30) with γt = γ = 0.6 for all t. The
observationxt is obtained from (1) with noise varianceσ2 =
4 × 10−4. We setd = 1 (the assumed intrinsic dimension is
identical to the trued), α = 0.95, ǫ = 0.1, µ = 0.1, and use
PETRELS-FO for subspace tracking. Figure5 demonstrates that
MOUSSE is able to track a static submanifold and reach the
steady state quickly from a coarse initialization.

C. Tracking a slowly time-varying submanifold

Next we looking closely at MOUSSE tracking a slowly time-
varying submanifold. Consider the submanifold defined in (31),
with D = 100 andd = 1. We set the assumed intrinsic dimension
to be identical to the trued, chooseγ0 = 2 × 10−4, s = 1000,
µ = 0.1, ǫ = 0.1, α = 0.9 for MOUSSE, and use PETRELS-FO
for subspace tracking. Let40% of the entries missing at random1.

1The result of the tracking can be found in an illustrative video at
http://nislab.ee.duke.edu/MOUSSE/

http://nislab.ee.duke.edu/MOUSSE/
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Fig. 5: MOUSSE tracking a static submanifold withD = 100
andd = 1.

Snapshots of this video at timet = 250 and t = 1150 are
shown in Figure1. In this figure, the dashed line corresponds to
the true submanifold, the red lines correspond to the estimated
union of subsetsby MOUSSE, and the+ signs correspond to
the past 500 samples, with darker colors corresponding to more
recent observations. From this video, it is clear that we are
effectively tracking the dynamics of the submanifold, and keeping
the representation parsimonious so the number ofsubsetsused
by our model is proportional to the curvature of the submanifold.
As the curvature increases and decreases, the number ofsubsets
used in our approximation similarly increases and decreases. The
number ofsubsetsKt and residualset as a function of time are
shown in Figure6. The red line in Figure6 corresponds toǫ.
Note that MOUSSE is able to track the submanifold, in that it
can maintain a stable number of leaf nodes in the approximation
and meet the target residual toleranceǫ.
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Fig. 6: MOUSSE tracking a slowly time-varying submanifold
with D = 100 and d = 1. The dashed red line depicts the
parameterǫ used to control approximation errors in the subset
tracking.

D. Choice of intrinsic dimensiond

In this section, we study the effect of the choice of the
intrinsic dimensiond in MOUSSE. We generate a chirp-signal,
with ambient dimensionD = 100 and signal intrinsic dimension

d0 = 2. Let the two-dimensional parameter beθ , [f0, φ], with
frequencyf0 ∈ [1, 100], and phaseφ ∈ [0, 1]. Definev(θ) ∈ R

D

with its n-th element

[v(θ)]n = sin

[
2π(f0zn +

k2t
2
z2n + φ)

]
(33)

wherezn = 10−4n, n = 1, 2, . . . , 100, corresponds to regularly-
spaced points between 0 and 0.01. The parameterkt controls how
fast the submanifold changes and is set according to

kt =

{
0.1t, t = 1, 2, . . . , 1000,
200− 0.1t, t = 1001, 1002, . . . , 2000.

Let 40% of the entries be missing at random. For MOUSEE, we
use PETRELS-FO for tracking. We compare the performance of
MOUSSE whend is set within the algorithm to be 1, 2, and 3, so
there can be a mismatch between the true intrinsic dimensionand
the assumedd. The parameters of MOUSSE set in these scenarios
are: ford = 1: ǫ = 1.5, µ = 0.01, α = 0.95; for d = 2: ǫ = 0.3,
µ = 0.01, α = 0.95; for d = 3: ǫ = 0.3, µ = 0.01, α = 0.95.

Fig. 7 demonstrates that MOUSSE can track the manifold well
when the intrinsic dimension is smaller or equal to the assumedd.
However, ifd is chosen to be too small, the errors are significantly
larger and we are forced to use a larger error toleranceǫ.
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Fig. 7: Tracking of MOUSSE usingd = 1, d = 2 and d =
3, respectively, when the true intrinsic dimension is 2. Red line
corresponds toǫ.

E. Change-point detection using MOUSSE

1) Approximation to ARL:The ARL approximation in (26)
assumeset is Gaussian distributed. We have shown thatet is not
exactly Gaussian distributed but close to a Gaussian. Hence, we
need to numerically verify the accuracy of (26) for et generated by
MOUSSE.To simulate ARL of the GLR procedure, we generate
10000 Monte Carlo (MC) trials, each being a noisy realization of
the same slowly time-varying submanifold in (31). We then apply
MOUSSE to track the submanifold, obtain a sequence of residuals
et, apply the GLR change-point detection procedure, and obtain
an ARL numerically. We adopt an exponential approximation in
[61] to evaluateE∞{T } efficiently. TABLE I shows the value of
b suggested by theory for different ARLs and the value ofb’s
computed via Monte Carlo are very close. For comparison, we
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also obtain thresholds for change-point detection when a single
subspace tracking using PETRELS-FO is employed.

2) Comparison of tracking algorithms for MOUSSE:To es-
timate the expected detection delay of MOUSSE detecting a
change-point, we generate instances where the parameterγt in
(30) has an abrupt jump∆γ at time t = 200:

γt =

{
0.6− γ0t t = 1, 2, . . . , 199,
γ199 −∆γ − γ0t t = 200, 201, . . . , 400.

(34)

We apply the GLR procedures based onet generated from
MOUSSE and single subspace tracking, respectively, and compare
the corresponding expected detection delay aftert = 200. We
consider two change-point magnitudes: big (∆γ = 0.05) and
small (∆γ = 0.03). The expected detection delays are estimated
using 10000 Monte Carlo trials, and are given in TableII , and
Table III . For comparison, we also obtain thresholds for change-
point detection when a single subspace tracking using PETRELS-
FO is employed. The thresholdb’s are chosen according to the
Monte Carlo thresholds given in TableI. For example, for the cell
corresponding to ARL= 1000 and0% missing data in TableII
or III , b should be set as4.55 for MOUSSE and4.28 for the single
subspace method. TableII and TableIII demonstrate that change-
point detection based on MOUSSE has a much smaller expected
detection delay than that based on single subspace tracking.

F. Real data

1) Solar flare detection:We first consider a video from the
Solar Data Observatory, which demonstrates an abrupt emergence
of a solar flare2. We also display a residual map defined as:

êt , (I − Uj∗,k∗,tU
#
j∗,k∗,t)(xt − cj∗,k∗,t), (35)

which is useful to localize the solar flare. Here(j∗, k∗) denotes
the index of the minimum distance subset.The frame is of size
232×292 pixels, which result inD = 67744 dimensional stream-
ing data. In this video, the normal states are slowly drifting solar
flares, and the anomaly is a much brighter transient solar flare.
A frame from this dataset during a solar flare aroundt = 200
is shown in Figure8a. In the original images, the background
solar images have bright spots with slowly changing shape,
which makes detection based on simple background subtraction
incapable of detecting small transient flares.

To ease parameter tuning, we scale the pixel intensities by
a factor of 10−4, so the range of data is consistent with our
simulated data experiments. The parameters for this example are
d = 1, ǫ = 0.3, µ = 0.3, andα = 0.85. Figure8 demonstrates
that MOUSSE can not only detect the emergence of a solar
flares, but also localize the flare by presentingêt, and these tasks
are accomplished far more effectively with MOUSSE (even with
d = 1) than with a single subspace. Note that with single subspace
tracking, et is not a stationary timeseries prior to the flare and
thus poorly suited for change-point detection. In contrast, with our
approach, withKt around10, the underlying manifold structure
is better tracked and thus yields more stableet before the change-
point and significant change inet when the change-point occurs.

2The video can be found athttp://nislab.ee.duke.edu/MOUSSE/. The Solar
Object Locator for the original data is SOL2011-04-30T21-45-49L061C108

2) Identity theft detection:Our second real data example is
related to automatic identity theft detection. The basic idea is
that consumers have typical spending patterns which change
abruptly after identity theft. Banks would like to identifythese
changes as quickly as possible without triggering numerousfalse
alarms. To test MOUSSE on this high-dimensional changepoint
detection problem, we examined the E-commerce transaction
history of people in a dataset used for a 2008 UCSD data mining
competition3. For each person in this dataset, there is a timeseries
of transactions. For each transaction we have a 31-dimensional
real-valued feature vector and a label of whether the transaction
is “good” (0) or “bad” (1). The full dataset was generated for
a generic anomaly detection problem, so it generally is not
appropriate for our setting. However, some of these transaction
timeseries show a clear changepoint in the labels, and we applied
MOUSSE to these timeseries. In particular, we use MOUSSE to
track the 31-dimensional feature vector and detect a changepoint,
and compare this with the “ground truth” changepoint in the label
timeseries. In calculating the GLR statistic, we estimate the µ0

andσ0 of equation24 from e1, . . . , e20. After t = 20, every time
the GLR statistic exceeds the thresholdb and an changepoint is
detected, we “reset” the GLR to only consideret after the most
recently detected changepoint. This allows us to detect multiple
change-points in a timeseries.

The effect of our procedure for one person’s transaction history
is displayed in Figure9. We first see that MOUSSE accurately
detects a temporally isolated outlier transaction att = 38,
after which the GLR is reset. After this, while MOUSSE does
not generate particularly large spikes inet, the associated GLR
statistic shows a marked increase neart = 70 and hits the
threshold att = 72 (the threshold corresponds to the Monte Carlo
threshold for ARL = 10000 in TableI) when the labels (not used
by MOUSSE) change from 0 (good) to 1 (bad). After this the
GLR is repeatedly reset and repeatedly detects the change inthe
statistics ofet from the initial stationary process.

VII. C ONCLUSIONS

This paper describes a novel multiscale method for online
tracking of high-dimensional data on a low-dimensional subman-
ifold, and using the tracking residuals to perform fast and robust
change-point detection. Change-point detection is an important
subset of anomaly detection problems due to the ever-increasing
volume of streaming data which must be efficiently prioritized
and analyzed. The multiscale structure at the heart of our method
is based on a geometric multiresolution analysis which facilitates
low-complexity piecewise-linear approximations to a manifold.
The multiscale structure allows for fast updates of the mani-
fold estimate and flexible approximations which can adapt to
the changing curvature of a dynamic submanifold. These ideas
have the potential to play an important role in analyzing large
volumes of streaming data which arise in remote sensing, credit
monitoring, and network traffic analysis.

While the algorithm proposed in this paper has been focused
on unions ofsubsets, an important open question is whether
similar techniques could be efficiently adopted based on sparse
covariance matrix selection [63], [64]. The resulting approxi-
mation space may no longer correspond to a low-dimensional

3Data available athttp://www.cs.purdue.edu/commugrate/dataaccess/alldata sets more.php?search

http://nislab.ee.duke.edu/MOUSSE/
http://www.cs.purdue.edu/commugrate/data_access/all_data_sets_more.php?search_fd0=20
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Fig. 9: Credit card user data experiments. (a) From top to bottom:
number of leaf nodes used by MOUSSE;et; GLR statistic (solid
blue line) and theoretical thresholdb corresponding to ARL =
10000 (dashed red line); ground truth label. Note that the GLR
statistic has a false alarm due to an outlier att = 38, and it starts
increasing att = 70 and frequently hits the threshold afterwards
due to the changepoint att = 70. In this case GLR catches
both the outlier and the changepoint. (b) Demonstration of the
time-varyingxt (user attributes): each column corresponds to the
31-dimensional attribute vector at a given time. The white spots
correspond to the outlier at timet = 38.

submanifold, but such structures provide good representations
of high-dimensional data in many settings, and our future work
includes tracking the evolution of a mixture of such structures.
Issues related to non-Gaussian observation models, inverse prob-
lem settings, dynamical models, and optimal selection of the
statistic used for change-point detection (i.e.,alternatives toet, as
considered in [65]) all pose additional interesting open problems.

APPENDIX A
OPTIMALITY OF ESTIMATE FOR c

We assume that there is complete data, and we restrict our
approximation to a single subspace so thatKt = 1. Assume
the mean and covariance matrix of the data are given byc⋆

and Σ⋆, respectively. Assume the covariance matrix has low-
rank structure:Σ⋆ = diag{λ⋆

1, . . . , λ
⋆
D} with λm = δ⋆ for

m = d+ 1, . . . , D.
When there is only one subspace and the data are complete,

the cost function (3) without the penalty term becomes

min
U,c

t∑

i=1

αt−i‖(I − UU⊤)(xi − c)‖2. (36)

Recall that the online update forct is given by ct+1 = αct +
(1 − α)xt, with initialization c0. We can prove that this online
estimate forc is optimal in the following sense:

Theorem 2:Assumec⋆t minimizes (36) at time t, 0 ≤ α <
1, and the initialization is bounded‖c0‖2 < ∞. Then ast →
∞, ‖ct − c⋆t ‖2 → 0 in probability. Moreover, assumext’s are
i.i.d. with E{xt} = c⋆, thenE{ct} → c⋆, i.e., the estimate is
asymptotically unbiased.

Proof: Recall that the online estimate forct is given byct+1 =
αct + (1− α)xt. Hence,

ct = (1− α)

t∑

i=1

αt−ixi + αtc0,

where the termαtc0 is a bias introduced by initial conditionc0.
Let

x̄t =
1− α

1− αt

t∑

i=1

αt−ixi, S =

t∑

i=1

αt−i(xi − x̄t)(xi − x̄t)
⊤.

(37)
By expanding‖(I − UU⊤)(xi − c)‖2 = ‖(I − UU⊤)(xi − x̄t +
x̄t − c)‖2, and using the fact that(I − UU⊤)2 = I − UU⊤, we
can write the cost function of (36) as

t∑

i=1

αt−i‖(I − UU⊤)(xi − c)‖2

=
t∑

i=1

αt−i(xi − x̄t)
⊤(I − UU⊤)(xi − x̄t)

+
t∑

i=1

αt−i(x̄t − c)⊤(I − UU⊤)(x̄t − c)

+ 2
t∑

i=1

αt−i(x̄t − c)⊤(I − UU⊤)(xi − x̄t).

(38)

Since x̄t and c are both independent ofi, the last term in (38)
can be re-written and is equal to zero by the choices ofx̄t and
S:

t∑

i=1

αt−i(x̄t − c)⊤(I − UU⊤)(xi − x̄t)

=(x̄t − c)⊤(I − UU⊤)
t∑

i=1

αt−i(xi − x̄t)

=(x̄t − c)⊤(I − UU⊤)

(
t∑

i=1

αt−ixi − x̄t

t∑

i=1

αt−i

)
= 0,

(39)

since
∑t

i=1 α
t−i = (1−αt)/(1−α). Using the fact that tr(AB) =

tr(BA) for two matrix A and B, together with (39), the cost
function (38) becomes

tr[(I − UU⊤)S] +
1− αt

1− α
(x̄− c)⊤(I − UU⊤)(x̄ − c), (40)

where the first term does not depend onc. Since the second term
in (40) is quadratic inc, it is minimized by choosingc = x̄t.
Denote this optimalc at time t by c⋆t .

Hence

‖c⋆t − ct‖2 ≤
∥∥∥∥∥

αt

1− αt
(1− α)

t∑

i=1

αt−ixi

∥∥∥∥∥

2

+ αt ‖c0‖2 . (41)

Recall thatc⋆ denote the true mean:E{xt} = c⋆. As t → ∞,∑t
i=1 α

t−ixi → 1
1−αc

⋆ in probability, the first term in the upper
bound (41) tends to 0 in probability. Given bounded‖c0‖2, the
second term in (41) also tends to 0. Hence our online-estimate
ct is asymptotically optimal in that it minimizes (36). Also, ct is
asymptotically unbiased, sinceE{ct} → (1− α) · 1

1−αc
⋆ = c⋆.

APPENDIX B
CONSISTENCY OF ESTIMATES OFΛ⋆ AND δ⋆

We assume that there is complete data, and we restrict our
approximation to a single subspace so thatKt = 1. In the
following, we show that if we have correctU = U⋆, then for
each samplext, its projection[βt]m is an unbiased estimator for
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λ⋆
m, and‖xt,⊥‖2 is an unbiased estimator for

∑D
m=d+1 λ

⋆
m. First

note

E{|[βt]m|2} = E{[e⊤
mU⊤(xt − c)]2} = e⊤

mU⊤Σ⋆Uem

= λ⋆
m[U ]⊤m[U ]m = λ⋆

m,
(42)

for m = 1, . . . , d, whereem denotes them-th row of an identity
matrix. We also have that

E{‖xt,⊥‖2} = E{‖(I − UU⊤)(xt − c)‖2}
= tr{(I − UU⊤)Σ⋆(I − UU⊤)}

=
D∑

m=d+1

λ⋆
m.

(43)

Then from the MOUSSE update equations, ast → ∞

E{λ(m)
t } = E{(1− α)

t∑

i=1

αt−i|[βt]m|2 + αtλ
(m)
0 } → λ⋆

m, (44)

for m = 1, . . . , d and

E{δt} = E{(1− α)

t∑

i=1

αt−i‖xt,⊥‖2/(D − d) + αtδ0}

→ 1

D − d

D∑

m=d+1

λ⋆
m = δ⋆.

(45)

Hence our estimators forλ⋆
m andδ⋆ are asymptotically unbiased.

APPENDIX C
PROOF OFTHEOREM 1

Proof: From (1) and (9) we have

β = U⊤(v − c) + U⊤w, (46)

Note that U⊤w is zero-mean Gaussian random vector with
covariance matrixσ2U⊤U = σ2I.

Next we consider the missing data case. RecallPΩ ∈ R
|Ω|×D

is a projection matrix. DefinewΩ = PΩw. From (9) we have

βΩ = U#
Ω (vΩ − cΩ) + U#

Ω wΩ (47)

Suppose in (1) we write v − c = p + q, with p ∈ S and q ∈
S⊥, whereS⊥ denotes the orthogonal subspace ofS. Hence,
p = UU⊤(v − c) and q = (I − UU⊤)(v − c). Let pΩ = PΩp,
qΩ = PΩq. Hence,vΩ − cΩ = pΩ + qΩ. Note that

U#
Ω pΩ =(U⊤

Ω UΩ)
−1U⊤

Ω PΩUU⊤(v − c) (48)

=(U⊤
Ω UΩ)

−1U⊤
Ω UΩU

⊤(v − c) (49)

=U⊤(v − c). (50)

So
βΩ = U⊤(v − c) + U#

Ω qΩ + U#
Ω wΩ.

Hence

‖βΩ − β‖2 ≤ 2‖U#
Ω qΩ‖2 + 2‖U#

Ω wΩ − U⊤w‖2

= 2‖(U⊤
ΩUΩ)

−1U⊤
Ω qΩ‖2

+ 2‖[(U⊤
ΩUΩ)

−1U⊤
ΩPΩ − U⊤]w‖2

We will bound these two terms separately.
First, note that

‖(U⊤
ΩUΩ)

−1U⊤
Ω qΩ‖2 ≤ ‖(U⊤

ΩUΩ)
−1‖22‖U⊤

Ω qΩ‖2 (51)

where ‖A‖2 denotes the spectral norm of matrixA. Using
[Lemma 2] in [62], we have that with probability1 − ε, if
|Ω| ≥ 8

3dcoh(U) log(2d/ε),

‖U⊤
Ω qΩ‖2 ≤ (1 + θ)2

|Ω|
D

d

D
coh(U)‖q‖2,

whereθ =
√
2
maxD

n=1
|[q]n|2

‖q‖2 log(1/ε). Using [Lemma 3] in [62]
we have that provided that0 < ℓ < 1, with probability at least
1− ε,

‖(U⊤
Ω UΩ)

−1‖2 ≤ D

(1− ℓ)|Ω| . (52)

Combine these with (51), we have that with probability1− 2ε,

‖(U⊤
ΩUΩ)

−1U⊤
Ω qΩ‖2 ≤ (1 + θ)2

(1− ℓ)2
· d

|Ω| · coh(U)‖q‖2. (53)

Next we examine the noise term. Define

w̃ = [(U⊤
Ω UΩ)

−1U⊤
Ω PΩ − U⊤]w,

which is a zero-mean Gaussian random vector with covariance
matrix

Γ = σ2(U⊤
Ω UΩ)

−1 − σ2I,

where we have used the fact thatPΩP⊤
Ω = I. Hence we bound

the tail of the noise power using Markov inequality:

P(‖w̃‖2 > 2τ2σ2) ≤ e−τ
E{e‖w̃‖2/(2τσ2)} ≤ 2De−τ (54)

provided thatτ is sufficiently large such that the maximum eigen-
value is smaller thanτ : λmax((U

⊤
Ω UΩ)

−1) < τ , i.e.,τ > D/[(1−
ℓ)|Ω|], by noting thatλmax((U

⊤
Ω UΩ)

−1) = ‖(U⊤
ΩUΩ)

−1‖2. The
last equality in (54) is because, under such condition:

E{e‖w̃‖2/(2τσ2)} =

∫
e‖x‖

2/(2τσ2)(2π)−D/2|Γ|−1/2e−
1
2
x⊤Γ−1xdx

= (2π)−D/2|Γ|−1/2

∫
e−

1
2
x⊤(Γ−1−τ−1σ−2I)xdx

= |Γ|−1/2|Γ−1 − τ−1σ−2I|−1/2

= |I − τ−1σ−2Γ|−1/2

= |(1 + 1/τ)I − τ−1(U⊤
Ω UΩ)

−1|−1/2

≤ D[(1 + 1/τ)− τ−1‖(U⊤
ΩUΩ)

−1‖2]−1/2

≤ D

[
(1 + 1/τ)− D

τ(1 − ℓ)|Ω|

]−1/2

= D

[
1− 1

τ
(

D

(1 − ℓ)|Ω| − 1)

]−1/2

In the last inequality, we have used (52). Note thatD/[(1 −
ℓ)|Ω|] > 1, and the upper bound in (??) is smaller than2D if
τ > 4

3 (
D

(1−ℓ)|Ω| − 1) or τ > 4
3

D
(1−ℓ)|Ω| . Now we set2De−τ = ε,

if ε is sufficiently small such thatlog(2D/ε) > 4
3

D
(1−ℓ)|Ω| . Hence

we have when|Ω| > 4
3

D
(1−ℓ) log(2D/ε) , ‖w̃‖2 < 32

9
D2σ2

(1−ℓ)2|Ω|2 with
probability 1 − ε. Finally, combining (53) and the noise bound
above, we obtain the statement in Theorem1.
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[21] M. Kristan, D. Skočaj, and A. Leonardis, “Online kernel density estimation
for interactive learning,”Image Vision Comput., vol. 28, no. 7, pp. 1106–
1116, 2010.

[22] M. Kristan, A. Leonardis, and D. Skočaj, “Multivariate online kernel density
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TABLE I: Average run length (ARL)E∞{T }.

ARL b
b MC, 0% data missing b MC, 20% data missing b MC, 40% data missing

MOUSSE Single Subspace MOUSSE Single Subspace MOUSSE Single Subspace
1000 3.94 4.81 3.90 4.77 3.91 5.22 3.90
5000 4.35 5.91 4.60 5.66 4.62 6.14 4.59
10000 4.52 6.38 4.91 6.02 4.91 6.49 4.91

TABLE II: Detection delay when jump ofγt is ∆γ = 0.05.

ARL
delay,0% data missing delay,20% data missing delay,40% data missing

MOUSSE Single Subspace MOUSSE Single Subspace MOUSSE Single Subspace
1000 3.69 91.92 4.02 90.49 5.38 88.72
5000 5.31 104.02 5.48 104.23 7.38 105.05
10000 6.20 98.95 6.13 101.52 8.21 102.99

TABLE III: Detection delay when jump ofγt is ∆γ = 0.03.

ARL
delay,0% data missing delay,20% data missing delay,40% data missing

MOUSSE Single Subspace MOUSSE Single Subspace MOUSSE Single Subspace
1000 2.30 54.17 2.39 52.82 2.78 51.53
5000 2.71 80.61 2.76 78.29 3.35 75.47
10000 2.91 90.87 2.94 88.30 3.62 86.48

(a) Snapshot of original SDO data att = 227 (b) MOUSSE residual map att = 227 (c) Single subspace tracking residual map att = 227
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Fig. 8: Detection of solar flare att = 227: (a) snapshot of original SDO data att = 227; (b) MOUSSE residual̂et, which clearly
identifies an outburst of solar flare; (c) single subspace tracking residualêt, which gives a poor indication of the flare; (d)et for
MOUSSE which peaks near the flare aroundt = 227; (e) the GLR statistic for MOUSSE; (f)et for single subspace tracking; (g)
the GLR statistic for single subspace tracking. Using a single subspace gives much less reliable estimates of significant changes in
the statistics of the frames.
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