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Abstract

We consider penalized estimation in hidden Markov models (HMMs) with multi-
variate Normal observations. In the moderate-to-large dimensional setting, estimation
for HMMs remains challenging in practice, due to several concerns arising from the
hidden nature of the states. We address these concerns by ℓ1-penalization of state-
specific inverse covariance matrices. Penalized estimation leads to sparse inverse co-
variance matrices which can be interpreted as state-specific conditional independence
graphs. Penalization is non-trivial in this latent variable setting; we propose a penalty
that automatically adapts to number of states K and state-specific sample size and
can cope with scaling issues arising from the unknown states. The methodology is
adaptive and very general, applying in particular to both low- and high-dimensional
settings without requiring hand tuning. Furthermore, our approach facilitates ex-
ploration of the number of states K by coupling estimation for successive candidate
values K. Empirical results on simulated examples demonstrate the effectiveness of
the proposed approach. In a challenging real data example from genome biology, we
demonstrate the ability of our approach to yields gains in predictive power and deliver
richer estimates than existing methods.

Keywords HMM, Graphical Lasso, Universal Regularization, Model Selection,
MMDL, Greedy Backwards Pruning, Genome Biology, Chromatin Modeling
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1 Introduction

In this paper we consider estimation in high-dimensional hidden Markov models. We
consider multivariate observations Xt ∈ R

p with discrete index t ∈ T = {1 . . . n} and
hidden states St ∈ {1 . . . K}. Conditional on state, emission distributions are multivariate
Normal (MVN), with Xt | St = k ∼ N (µk,Σk) (where, N (µ,Σ) denotes the MVN density
with mean µ and covariance matrix Σ). Estimation in the small p case of univariate or
low-dimensional observations is a well-studied problem. In contrast, estimation in the
larger p setting remains challenging due to several factors:

• High-dimensionality. Inference in HMMs with moderate or large number of features
is, in a sense, always a high-dimensional problem since the ratio min

k
nk/p may be

small, as it depends on the unknown number of states and the unknown size of the
states (nk denotes the number of samples in state k). Therefore, large samples for
each state cannot be relied upon at the outset, even when the overall sample size
n =

∑

k nk is large.

• Covariance structure. Estimation is especially challenging in settings where covari-
ances Σk cannot be assumed to have a simple structure (e.g. diagonal) or where
state-specific covariance structure is itself of scientific interest. Then, due to Simp-
son’s paradox, state-specific covariances must be jointly estimated along with state
assignments.

• Number of hidden states. The model selection problem of determining or explor-
ing the number of states K is coupled to the estimation problem for known K. In
the multivariate setting, estimation for known K is itself challenging. Then, the
straightforward strategy of fitting models for various values K and comparing by
model selection criteria may become difficult or intractable, especially when practi-
cally important issues like initialization and setting of tuning parameters are taken
into consideration.

We propose a penalized log-likelihood procedure involving ℓ1-norms of the state-specific
inverse covariance matrices Σ−1

k , with optimization carried out within an expectation-
maximization (EM) framework. Our approach has several attractive features:

• Penalized estimation leads to sparse inverse covariance matrices which can be inter-
preted as state-specific conditional independence graphs or networks (Yuan and Lin,
2007; Friedman et al., 2008).

• The specific penalty we propose automatically adapts to the number of states and
state-specific sample size and enjoys scale invariance that takes care of state-specific
scaling.

• The number of states K can be selected automatically, or estimates for various values
K explored, using a computationally efficient approach that couples estimation for
successive candidate values for K.

• The approach requires essentially no hand tuning; only a maximum number of states
Kmax must be set by the user. Otherwise, tuning parameters (including, if desired,

2



K itself) are set automatically.

Our approach is very general: as we demonstrate below it works well in diverse regimes,
including both low- and high-dimensional examples, with no hand-tuning required. In a
real data example from genomics the methodology leads to large gains in predictive power
relative to existing approaches.

Penalized estimators can be incorporated into EM-type algorithms and a number of re-
cent authors have done so, notably in the context of mixture models (Khalili and Chen,
2007; Städler et al., 2010; Pan and Shen, 2007). However, the unknown nature of the
states (or mixture components) poses special challenges for penalization that have not
been adequately addressed so far. In particular, appropriate penalization must account
for the number of hidden states and their respective sample sizes, but these are themselves
unknown at the outset. Furthermore, scaling also poses a subtle problem: in the classi-
cal Lasso (Tibshirani, 1996) or Graphical Lasso (Friedman et al., 2008) standardization
is an important pre-processing step to ensure appropriate scaling. However, in HMMs
and mixtures different states or components may differ with respect to scale, but since
state assignments are a priori unknown, standardization cannot be carried out as a pre-
processing step. The penalty we propose automatically adapts with state-sizes and takes
care of scaling issues. Inspired by the seminal paper of Donoho and Johnstone (1994),
and related work in the Lasso context (Zhang, 2010; Sun and Zhang, 2011; Barron et al.,
2008), our penalty allows for universal regularization by use of a tuning parameter λuni,
that depends only on n and p. Using universal regularization by λuni within our EM
algorithm allows automatic adaptation to number of states K and state-specific sample
sizes. As a consequence of these features, our procedure for penalized estimation for a
given number of states K is entirely free of user-set parameters.

Parameter estimates for successive values K,K +1 are related, and it is therefore natural
to exploit this fact in exploring the number of states; we do so using an iterative algorithm.
In principle, an iterative approach could proceed in a “top down” manner from few states
to many, or “bottom up” from many states to few. However, we cannot in general gain
information about two underlying states from estimates obtained from a single, merged
state (Simpson’s paradox); this means the “top down” approach cannot be reliably used
in the multivariate setting. We therefore proceed in a “bottom up” manner, starting with
a large number of states Kmax and iteratively reducing the number of states through the
entire considered range. Model order reduction is guided using the Kullback-Leibler diver-
gence between state densities; this naturally takes account of both mean and covariance
information. This exploration is efficient because (i) current estimates are used to provide
initialization for the subsequent iteration and (ii) we initialize the EM algorithm only once,
at the first iteration corresponding to K = Kmax. As we demonstrate below, this proce-
dure in fact outperforms the “brute-force” approach of entirely separately fitting models
for various K’s. In this way, our approach allows tractable exploration of estimates for
a range of values K and, if desired, automatic selection of K. Our approach is inspired
by the work of Figueiredo and Jain (2000) who used a similar strategy in the context of
low-dimensional mixtures.

Applications for high-dimensional HMMs are numerous, in fields ranging from engineering
to biology. The original motivation for our work comes from genome biology and we
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illustrate our methods on a real data example from that field. HMMs are very widely
used in genomics. Measurements at genome locations t constitute the vector Xt while
states St are identified with biological states of the genome (e.g. whether the location
t is within a gene-coding region). Early, pioneering applications of HMMs to genomic
data (see e.g. Durbin et al., 1998) considered univariate or low-dimensional observations
Xt (such as the gene sequence itself). However, in recent years technological advances
have begun to permit higher dimensional studies. For example, using technologies such
as DamID (van Steensel and Henikoff, 2000) or ChIP-seq (Park, 2009) it is now possible
to measure the binding of proteins to the DNA across the entire genome for dozens or
hundreds of proteins and the dimensionality (i.e. number of proteins) of such approaches
continues to increase. However, absent reliable methodology for fitting high-dimensional
HMMs, it is common practice in the field to instead consider reduced dimension versions of
the data (by selecting key “marker” variables or carrying out dimensionality reduction as
a pre-processing step, see e.g. Filion et al. (2010)) or by discretizing the data and treating
observations as independent Bernoulli (Ernst and Kellis, 2010). We show below in a real
data example from genome biology that our penalized approach applied to all available
variables (proteins) from a recent experiment yields large gains in predictive accuracy (on
held-out test data) relative to a reduced-dimension approach, as well as relative to classical
estimation applied to the full set of variables.

2 Inference in hidden Markov models with state-specific

graphical models

We consider a hidden Markov model (HMM) with multivariate Normal (MVN) emissions.
We denote by St ∈ {1, . . . ,K} the (hidden) state process, i.e., a discrete Markov chain with
transition matrix Πkk′ = P(St+1 = k′|St = k); in order to simplify the notation we omit
the initial probabilities pk = P(S1 = k) in the further description of our methodology.
We denote by Xt ∈ R

p the observed process with emission distribution Xt | St = k ∼
N (µk,Σk).

The case of sparse inverse covariance matrices Ωk = Σ−1
k will be of particular interest.

For each state we have a Gaussian graphical model with undirected graph Gk defined by
locations of zero entries in the inverse covariance matrix, i.e. (l, l′) /∈ Gk ⇐⇒ (Ωk)ll′ = 0.
We denote model parameters by ΘK = (θ1, . . . , θK ,Π), θk = (µk,Ωk). The goal, for given
K, is to infer ΘK from the observed n× p data matrix X, and further to solve the related
problem of exploring (or determining) K itself.

As noted in the Introduction, inference for multivariate HMMs is challenging due to dif-
ficulties arising from the unknown states. To motivate the methods described in this
Section, we gather these points together, highlighting four main difficulties/concerns:

(i) High-dimensionality. Inference in HMMs with moderate or large number of features
is, in a sense, always high-dimensional, as the ratio min

k

nk

p may be small, and depends

on the number of states and their size, both of which are usually unknown at the
outset.
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(ii) State-specific covariance structure. When state-specific covariance structure is of
interest or cannot be assumed to be diagonal, estimation is challenging. Importantly,
due to Simpson’s paradox, covariances must be jointly estimated along with other
parameters.

(iii) Regularization. The size and scale of individual states may vary and are usually
unknown at the outset. Regularization schemes need to self-adapt appropriately.

(iv) Model order exploration. In the HMM setting, model selection criteria are a function
of both number of states K and amount of regularization λ. However, brute force
search over (K,λ) may become intractable in practice, especially since at each grid
point, multiple initializations are needed to guard against local optima.

Points (i)-(iv) above are coupled and are difficult or impossible to address individually.
The methodology we propose aims to address all these concerns simultaneously. We first
outline the approach at a high-level and then describe the algorithms in detail.

Conceptually, it makes sense to think of inference in a HMM (or mixture model) as a com-
bination of two (coupled) tasks. The first task consists of estimating the model parameter
ΘK , given the number of states K and a regularization parameter λ. For this task, we
propose to minimize the negative penalized log-likelihood

Θ̂K,λ = argmin
ΘK,λ

−ℓ(ΘK,λ;X) + λpen(ΘK,λ), (2.1)

where ℓ(ΘK,λ;X) denotes the observed log-likelihood and pen(ΘK,λ) is a penalty function
involving the ℓ1-norms of the inverse covariance matrices (Yuan and Lin, 2007; Friedman et al.,
2008; Meinshausen and Bühlmann, 2006) that we describe in detail below. The ℓ1-norm
is especially appealing when the goal is network inference, as it induces sparsity in Ωk’s
and therefore in the corresponding undirected graphs Gk. We solve this problem by an
EM-type algorithm, using a specific penalty that we describe below; we call this approach
HMMGLasso (see Section 2.1 for details). As with every EM algorithm, HMMGLasso
only converges to a local optimum and depends on initialization.

The second task involves determining an appropriate number of states K∗, and suitable
penalization parameter λ∗. This is a model selection problem, and can in principle be
solved by minimizing a model selection criterion C(K,λ) (we consider specific criteria
below), i.e.,

(K∗, λ∗) = argmin
K,λ

C(K,λ). (2.2)

Thus, estimation in multivariate HMMs involves two coupled tasks whose solution must
address the concerns (i)-(iv) listed above. In outline, we proceed as follows. We propose
a universal regularization level λuni that can be calculated analytically and removes the
need for brute force search over λ. The idea is, that solving (2.1) with the HMMGlasso
penalty function that we describe in Section 2.1 and with λ = λuni (see Section 2.2) should
provide for each fixed K a close-to-optimal solution for that specific K. In this way, use
of universal regularization λuni reduces solving (2.2) to a search over K only.
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We also exploit the relationship between estimates Θ̂K for successive K’s to allow efficient
model exploration and, if desired, determination of K. Specifically, we start with a (too)
large number of states Kmax and then successively reduce the model size by merge/delete
operations described below. In this way we move towards a minimum number of states
Kmin, obtaining estimates for all considered values Kmin ≤ K ≤ Kmax, but initializing
only once, at K = Kmax. If desired, a specific K can then be chosen to minimize model
selection criterion C(·, λuni). We call this approach Greedy Backward Pruning. As
we show below, following the Greedy Backward Pruning strategy gives highly competitive
estimates, despite initializing only once in the entire procedure.

In summary, the adaptive regularization strategy we propose in HMMGLasso permits esti-
mation of HMMs with state-specific covariance structure in both low- and high-dimensional
settings, whilst taking care of state size and scaling; this addresses points (i)-(iii) above.
Greedy Backward Pruning, with initialization only at K = Kmax, takes care of point (iv).

The remainder of this Section provides a detailed description of our algorithms. We discuss
in turn HMMGLasso (Section 2.1), universal regularization (Section 2.2) and model order
exploration by Greedy Backward Pruning (Section 2.3).

2.1 HMMGLasso in detail: Baum-Welch algorithm and ℓ1 regularization

Maximum likelihood estimation for HMM is usually performed using the EM algorithm
(or Baum-Welch algorithm in the HMM context). Let ℓc(Θ;X,S)

ℓc(Θ;X,S) =
∑

k

ℓ(µk,Ωk;T1,T2) + ℓ(Π;T3), (2.3)

where S = (S1, . . . , Sn) are state assignments, X = (X1, . . . ,Xn)
T is the n×p data matrix,

ℓ(µk,Ωk;T1,T2) is the log-likelihood of the MVN distribution with mean µk and inverse
covariance Ωk and ℓ(Π;T3) is the log-likelihood of the Markov Chain with transition matrix
Π. T1 = XT1,T2 = XXT and (T3)kk′ =

∑

t I(St = k, St+1 = k′) are the corresponding
sufficient statistics.

Following initialization, EM produces a sequence of estimates {Θ(i); i = 1, 2, 3, . . .} by
alternating between E- and M-steps. To facilitate network inference, we seek to induce
sparsity in the Ωk’s. We do this by ℓ1-regularization. In particular, we replace maximiza-
tion with respect to (µk,Ωk) in the M-Step of the Baum-Welch algorithm by

(µ
(i+1)
k ,Ω

(i+1)
k ) = argmin

µk ,Ωk

−ℓ(µk,Ωk;T
u
(i)
k

1 ,T
u
(i)
k

2 ) + λ

√

π
(i)
k Pen(Ωk). (2.4)

Here,

T
u
(i)
k

1 =
∑

t

u
(i)
k (t)Xt, T

u
(i)
k

2 =
∑

t

u
(i)
k (t)XtX

T
t

denote the expected sufficient statistics given X and current estimate Θ(i) with state-

responsibilities u
(i)
k (t) = PΘ(i)(St = k|X) obtained from the E-Step.
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By π
(i)
k = 1

n

∑

t u
(i)
k (t) we denote the (scaled) effective sample size of state k. The penalty

term depends on a regularization parameter λ, on the effective sample size π
(i)
k and on a

function Pen(·) involving ℓ1-norm of Ωk. The reason why we incorporate the square root
of the effective sample size is that it is known from the Lasso literature that the ℓ1-penalty
term asymptotically has to grow with square root of the sample size in order to achieve op-
timality (Bühlmann and van de Geer, 2011). We consider three slightly different functions
Pen(·) defined as follows:

• Peninvcov(Ω) = ‖Ω−‖1, the classical penalty known from the Graphical Lasso. It
imposes ℓ1-constraints on the non-diagonal entries of the concentration matrix Ω.

• Penparcor(Ω) = ‖Ψ−‖1, where Ψ is the partial correlation matrix which can be written
as (Ψ)ll′ = Ωll′/

√
ΩllΩl′l′ .

• Peninvcor(Ω) = ‖Φ−‖1, where Φ is the inverse of the correlation matrix given by
Φ = C−1, Cll′ = Σll′/

√
ΣllΣl′l′ .

Note that all three functions penalize the ℓ1-norm of the concentration matrix and therefore
lead to sparse Ω’s. The advantage of Penparcor(·) and Peninvcor(·) is that they are scale-
invariant and therefore remove concerns that arise from state-specific scaling. As we noted
above, state-specific scaling cannot be removed by pre-processing in the HMM setting since
state assignments are themselves unknown at the outset.

Optimization of (2.4) is non-standard. It is easy to verify that (2.4) reduces to:

µ
(i+1)
k = T

u
(i)
k

1 /n, Ω
(i+1)
k = argmin

µk,Ωk

− log ‖Ωk‖+ tr(ΩkC
u
(i)
k ) + 2

λ

nk

√

π
(i)
k Pen(Ωk) (2.5)

where Cu
(i)
k = 1

nT
u
(i)
k

2 − µ
(i+1)
k (µ

(i+1)
k )T . For the penalty function Peninvcov(·) optimization

problem (2.5) can be solved by the Graphical Lasso algorithm presented in Friedman et al.

(2008). In the Appendix we compare these three different penalties and discuss how we
perform optimization.

Algorithm 1 summarizes HMMGLasso. As stated above the EM algorithm depends on

initial specification of parameters, i.e., θ
(0)
k ,Π(0) (k = 1, . . . ,K). For convenience (see later

in text) we directly specify u
(0)
k (t) (instead of θ

(0)
k ) and start with an M-Step followed by

an E-Step. We stop the algorithm if the relative change in the Σk’s falls below a threshold
ǫ or if for at least one state the scaled effective sample size πk is smaller than πmin.

2.2 Universal regularization

In this Section we discuss the choice of the regularization parameter λ in HMMGLasso.
We will argue that λuni =

√
2n log p/2 is a reasonable regularization parameter for HMM-

GLasso. We do this by considering connections with the Lasso (Tibshirani, 1996) and the
Graphical Lasso (or GLasso; Friedman et al., 2008). In the classical Lasso or GLasso setup
the regularization parameter is usually chosen empirically to minimize the prediction er-
ror (for example by performing cross-validation). However, in the much more complicated
HMM (or more generally latent variable) setting, with unknown number of states K, such
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Algorithm 1 HMMGLasso

Input K, λ, Υ(0) = {(u(0)k (t))k=1..K,t∈T ,Π
(0), π(0)} and set i = 0, err(0) = 0.

1: while {err(i) < ǫ}∨{π(i)
k > πmin for all k = 1 . . . K} do

2: M-Step Obtain estimates

(µ
(i+1)
k ,Ω

(i+1)
k ) = argmin

µk,Ωk

−ℓ(µk,Ωk;T
u
(i)
k

1 ,T
u
(i)
k

2 ) + λ

√

π
(i)
k Pen(Ωk)

Π
(i+1)
kk′ = v

(i)
kk′/π

(i)
k (Π

(1)
kk′ = Π

(0)
kk′ in 1st iteration)

3: E-Step Use Forward-Backward equations to update

u
(i+1)
k (t) = PΘ(i+1)(St = k|X)

v
(i+1)
kk′ (t) = PΘ(i+1)(St = k, St+1 = k′|X)

π
(i+1)
k =

∑

t u
(i+1)
k (t)/n

4: Set err(i+1) = max
k,l,l′

{

|Σ
(i+1)

k,ll′
−Σ

(i)

k,ll′
|

1+|Σ
(i+1)

k,ll′
|

}

and i← i+ 1

5: end while

Output Ξ̂(K,λ) = {Θ̂K,λ, (ûk(t))k=1..K,t∈T , π̂}

a brute force strategy is computationally burdensome, motivating the need for universal
regularization.

First, consider a classical regression setup with y = Xβ+ǫ, where ǫ ∼ N (0, σ2I). Here, X is
aN×p predictor matrix, y aN×1 response vector, β denotes the p×1 regression parameter
and σ2 is the error variance. Then, the Lasso estimator minimizes ‖y−Xβ‖2/2N +s‖β‖1.
Assuming an orthonormal predictor matrix, Donoho and Johnstone (1994) showed that
the risk of the Lasso estimator comes close to the oracle risk if we use suni = σ

√

2 log p/N
as a regularization parameter. Universal regularization and the penalty σ

√

2 log p/N is
discussed also in the non-orthonormal case in Zhang (2010) or Sun and Zhang (2011)
(see also Barron et al. (2008); they propose a universal penalty parameter based on the
minimum description length principle). It is important to note that suni decreases with
1/
√
N . This is the reason why we include the square-root of the effective sample size into

the state-specific penalty terms in the HMMGLasso (see Section 2.1).

Next, consider the Graphical Lasso,

Ω̂ = argmin
Ω
− log |Ω| − tr(SΩ) + ρ‖Ω−‖,

where S is the sample covariance matrix of X = (X(1), . . . ,X(p)) ∼ N (0,Σ) with Ω = Σ−1.
Friedman et al. (2008) showed that the last row/column of Ω̂ can be obtained by solving

β̂ = argmin
β

0.5βΣ11β + βs12 + ρ‖β‖1, (2.6)

where β and Ω are linked through σ12 = Σ11β/2 (Σ11 is the covariance matrix with
the last row and column deleted; σ12 and s12 denote the last row of the covariance and
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sample covariance matrix). Note that (2.6) can be interpreted as the Lasso estimator
corresponding to regression of variable X(p) against X(1), . . . ,X(p−1). As Ωpp is the error

variance in regressing X(p) against X(1), . . . ,X(p−1), we can identify Ω
−1/2
pp

√

2 log p/N as
a good choice for ρ in (2.6). If Ω is standardized to have unit diagonal entries, then we
can write ρuni =

√

2 log p/N .

Now consider equation (2.5) of the HMMGLasso with Peninvcov(·) and assume all Ωk’s

are standardized to have unit diagonal. Equating 2 λ
nk

√

π
(i)
k with ρuni =

√

2 log p/nk (the
universal shrinkage level in the Graphical Lasso with sample size N = nk) and solving for
λ we obtain

λuni =
√

2n log p/2.

For the penalty function Peninvcov(·) the foregoing indicates that λuni =
√
2n log p/2 only

holds if the Ωk’s are standardized and therefore equal the corresponding partial correla-
tion matrix. In general, since state assignments are themselves unknown, this standard-
ization cannot be done as a pre-processing step. However, if we use Penparcor(·) instead,
λuni =

√
2n log p/2 applies regardless of scaling. Penalizing the partial correlation can be

seen as a generalization of the “scaled” Lasso proposed by Städler et al. (2010). There,

the negative log-likelihood is penalized by s‖β‖
σ and optimization is performed over β and

σ simultaneously. A reasonable choice for s is
√

2 log p/N , which does not depend any-
more on the unknown noise level (see Sun and Zhang (2011) and also the discussion in
Städler et al. (2010)).

Thus, λuni is the penalty level we use for estimation in HMMGLasso. It is “universal” in the
sense that it only depends on the dimensionality of the input data n and p. Furthermore,
when λuni is used with the penalty Penparcor(·) the penalization self-adapts to the hidden
states by incorporating the square-root of the effective sample size and by taking care of
scaling.

2.3 Model order exploration using Greedy Backward Pruning

Greedy Backward Pruning can in principle be used with a wide range of model selection
criteria; here we consider the popular Bayesian Information Criterion (BIC) and the Mix-
ture Minimum Description Length (MMDL). MMDL was introduced by Figueiredo et al.

(1999) and was specifically proposed for the purpose of determining the number of compo-
nents in finite mixtures. We first describe these criteria and then go on to give a detailed
description of the Greedy Backward Pruning algorithm.

Model selection criteria. A model selection criterion C has to trade off goodness-of-fit
and model complexity. BIC and MMDL are defined by

BIC(Θ̂K,λ) = −ℓ(Θ̂K,λ;X) +
1

2
log(n)K(K − 1) +

1

2
log(n)

∑

k

Df(k, λ)

MMDL(Θ̂K,λ) = −ℓ(Θ̂K,λ;X) +
1

2
log(n)K(K − 1) +

∑

k

1

2
log(nπ̂k)Df(k, λ),
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where in the context of ℓ1 penalized log-likelihood we set the degrees of freedom as
Df(k, λ) = p+

∑

l′>l

1(Ω̂k,λ)ll′ 6=0.

MMDL can be motivated by the minimum description length principle (Grünwald, 2007).
The negative log-likelihood represents the optimal code-length of the data given model
parameters Θ. The term 1

2 log(n)K(K− 1) is the “optimal” code-length for the transition
matrix Π (note that Π is estimated from all data). As nπk is the effective sample size from
which θk = (µk,Ωk) is estimated we get 1

2 log(nπk)Df(k, λ) as an “optimal” code-length
for describing θk.

The main difference between BIC and MMDL is the use of the effective sample size nπ̂k in
the code-lengths for parameters which are state-specific. Figueiredo et al. (1999) argued
using ideas from minimum description length literature that MMDL is more appropriate
for mixtures than BIC. They demonstrate on real and synthetic data that MMDL out-
performs BIC. In Section 3 we compare performance of Greedy Backward Pruning using
BIC and MMDL as model selection criteria. In our more involved inference task we come
to the same conclusion as Figueiredo et al. (1999), namely that MMDL outperforms BIC.

Greedy Backward Pruning in detail. Greedy Backward Pruning works by first es-
timating parameters using HMMGLasso with a large number of states Kmax and then
iteratively reducing the number of states until some minimal number of states Kmin is
reached. Each iteration involves either merging the two “closest” states or deleting the
“smallest” state, and then re-running HMMGLasso with one fewer state, using estimates
from the previous step as initialization. This scheme is summarized in Algorithm 2.

We give now a definition of “smallest” state and “closest” states and describe the “merge”
and “delete” operation in detail. Let Θ̂K be the current estimate for K states. The merge
operation consists of detecting the two closest states k1 and k2 defined as

(k1, k2) = argmin
k,k′∈{1,...,K}

Ds(θ̂k||θ̂k′),

where Ds(θ̂k||θ̂k′) is the symmetric Kullback-Leibler divergence given by

Ds(θ̂k||θ̂k′) = tr{(Σk − Σk′)(Σ
−1
k′ − Σ−1

k )}+ (µk − µk′)
T (Σ−1

k − Σ−1
k′ )(µk − µk′).

We merge states k1 and k2 into a new state (denoted by k1 ∪ k2) by forming new initial
conditions for the next run of HMMGLasso with K − 1 states. In particular we compute
merged responsibilities as

umer k1∪k2(t) = ûk1(t) + ûk2(t)

umer k(t) = ûk(t) (for k 6= k1 ∪ k2)

and get a merged transition matrix using updates

Πmer k1∪k2,k′ = Π̂k1k′ + Π̂k2k′ (for k′ 6= k1 ∪ k2)

Πmer k,k′ = Π̂k,k′ (for k′, k 6= k1 ∪ k2)

Πmer k′,k1∪k2 = 1/(K − 1) (for k′ = 1, . . . ,K − 1).

10



All these operations are based on the relation: P(St=k1∪St=k2|·)=P(St=k1|·)+P(St=
k2|·).
The delete operation simply discards the smallest state according to mink∈{1,...,K} π̂k. Ini-
tial conditions udel,Πdel arising from deleting a state are derived by omitting correspond-
ing row/column of û, Π̂ and renormalizing these quantities such that rows sum up to one.

Note that Greedy Backward Pruning algorithm needs to be initialized only once, namely
at Kmax. Further, we note from Algorithm 2 that we decide between the “merging”
and “deleting” operations based on the model selection criterion, i.e., if initial conditions
obtained from merging leads to estimate with smaller criterion C we choose that solution
otherwise we take the solution obtained from the “delete” operation. As demonstrated
in examples below, Greedy Backward Pruning with only a single initialization at large
Kmax yields remarkably good estimates in the unknown K case. Our procedure originates
from the algorithms proposed in Figueiredo et al. (1999), Figueiredo and Jain (2000) and
Bicego et al. (2003). Our empirical results below echo the findings of these authors that
Greedy Backward Pruning-like approaches can confer robustness to initialization.

Algorithm 2 Greedy Backward Pruning with HMMGLasso

Input Kmin and Kmax.

Initialization of Υ(Kmax)={(uk(t))k=1..Kmax,t∈T ,Π, π}.
1: Fit HMMGLasso and obtain: Ξ̂(Kmax,λuni) ← HMMGLasso(Kmax, λuni,Υ

(Kmax)).

2: Set κ = Kmax.

3: while κ ≥ Kmin do

4: Merge Or Delete

Compute merged/deleted initial conditions: Υmer and Υdel.
Compute Ξmer ← HMMGLasso(κ− 1, λuni,Υmer)
Compute Ξdel ← HMMGLasso(κ− 1, λuni,Υdel).

5: Update:

Set κ← κ− 1.
Set Ξ(κ,λuni) ← Ξmer if C(Θmer) < C(Θdel).
Set Ξ(κ,λuni) ← Ξdel if C(Θdel) < C(Θmer).

6: end while

7: Set: K̂opt = argmin
κ
C(Θκ,λuni

).

Output final estimates: Θ̂Kopt,λuni
.

3 Examples

3.1 Simulation studies

In this Section we describe data-generating models that we use for simulation examples.
We consider the following data-generating models:
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Model 1 Ktrue ∈ {2, 4, 6}, n = 2000, p = 10, (n/p-ratio=200).

Transition matrix. Πkk′ = 0.1γ and Πkk = 0.9γ, where k, k′ ∈ {1, . . . ,Ktrue} and γ
is chosen such that

∑Ktrue
k′=1 Πkk′ = 1.

Means µk, k = 1, . . . ,Ktrue. Each state has p/Ktrue nonzero entries with value
(−1)kα/

√

p/Ktrue. Nonzero’s are at different locations for each state.

Concentration matrix Ωk, k = 1, . . . ,Ktrue. Each state has p nonzero (off-diagonal)
entries. To reflect the setting in which states share some aspects of graphical model
structure, p/2 non-zeros are shared between all states, whereas the other p/2 non-
zeros are at different locations for each state. Concentration matrices are generated
as in Rothman et al. (2008) but standardized to have unit diagonal entries.

Model 2 As model 1 but with p = 75, (n/p-ratio=26 2/3)

Model 3 As model 1 but with n = 1000 and p = 100 , (n/p-ratio=10)

Model 4 Ktrue ∈ {2, 4, 6}, n = 5000, p = 50.

Transition matrix. Πkk′ = 0.1γ, Πkk = 0.9γ for k 6= Ktrue; ΠKtrue,k′ = 1/Ktrue

(k′ ∈ {1, . . . ,Ktrue}). Again, γ is chosen such that rows sum up to one.

Means. (µk)l = α for l ∈ {1, 2} and k ∈ {1, 2}. All other entries equal zero.
Concentration matrix. For k = 1, 2: Ωk = Ip. For k = 3, . . . ,Ktrue: Ωk has two
nonzero entries, at different locations for each state. Concentration matrices are
standardized to have unit diagonal entries.

Ideally we seek methodology that can automatically adapt to both low- and high-dimensional
settings. Accordingly, Models 1, 2 and 3 have the same design but differ with respect to
n/p-ratio. We include the small p, large n Model 1 as a baseline and to investigate the
performance of universal regularization in the classical low-dimensional setting. Model 4
is a challenging problem, similar in terms of n, p to the real, genomic data example below.

Experiment I: Number of States. In this Experiment the focus is on state recovery.
We explore the ability to estimate the correct number of states K and recover the state
assignments. We compare the following methods

• HMMGLasso initialized by Kmeans (Hmmgl)

• HMMGLasso with Greedy Backward Pruning (Bwprun)

• Unpenalized maximum likelihood estimation (MLE) (Unpen)

• MLE with diagonal restricted covariance matrices (Diagcov)

• Model-based clustering via Gaussian mixture models (Mclust; Fraley and Raftery,
2006)

Thus, Hmmgl and Bwprun are the methods we propose. Both Hmmgl and Bwprun carry
out estimation (for given K) using the penalty and universal regularization via λuni that
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we put forward above; the former embeds our estimator within a standard, “brute-force”
exploration of K, whilst the latter uses Greedy Backward Pruning.

In all numerical experiments we stop the algorithms according to the rule described in
Algorithm 1 with ǫ = 10−3 and πmin = 5/n (for Unpen we use πmin = p/n to ensure
non-singular covariance estimates). For each method we use each of BIC and MMDL
as model selection criteria. For Hmmgl, Unpen and Diagcov we compute estimates for
K = 1, . . . ,Ktrue + 2 and pick the number of states minimizing BIC or MMDL. As a
reference, we also cluster the data using theR-package mclust (Fraley and Raftery, 2006).
We use the function Mclust; this employs Gaussian mixture models and uses BIC to
automatically select between different covariance structures and numbers of clusters (we
allow K = 1, . . . ,Ktrue+2). We initialize Mclust using model based hierarchical clustering
with equal spherical covariances (we note that the default initialization of Mclust, using
hierarchical clustering with unconstrained covariances, performs worse in the examples
below). For more details see Fraley and Raftery (2002). Specifications of all the methods
are summarized in Table 1.

Method Selection Criterion C Regularization/Constraints Initialization

Bwprun BIC/MMDL (Penparcor, λuni) KM (100 r.s.) at Kmax = 15
Hmmgl BIC/MMDL (Penparcor, λuni) KM (100 r.s.)
Unpen BIC/MMDL No constraints KM (100 r.s.)
Diagcov BIC/MMDL Diagonal covariances KM (100 r.s.)
Mclust BIC Various covariance structures Hierarchical clustering

(see Fraley and Raftery (2002))

Table 1: Methods used in simulation Experiment I. [r.s. stands for random starts]

We generated 50 datasets from each of Models 1-4 with α = 2 and report for all methods
number of selected states and adjusted Rand index (this quantifies the extent to which
estimated state assignments agree with true state membership). The results for Models 3
and 4 are summarized in Figures 1 and 2; Figures 7 and 8 at the end of this manuscript
show results for Models 1 and 2.

In nearly all settings Diagcov is unable to recover the correct number of states and performs
poorly in terms of adjusted Rand index. This is not surprising as Diagcov imposes incorrect
model assumptions. Only in Model 3 with Ktrue = 2, where for both states the data
generating covariance matrices are diagonal, does Diagcov perform well. MLE without
penalization (Unpen) does well only in the low-dimensional Model 1. Both the proposed
methods (Hmmgl and Bwprun) greatly outperform the other methods in Models 2-4. This
supports the notion that regularization can be useful even when sample size n is seemingly
large.

HMMGLasso also works well in Model 1 with large n and very small p, a scenario where
no constraints are necessary. This demonstrates that the adaptive strategy and universal
regularization can be applied without any hand tuning also in the low-dimensional setting.
We also read-off from Figures 1-2 (see especially scenarios with K = 6) the substantial
improvement of Greedy Backward Pruning relative to HMMGLasso, despite the fact that
the latter carries out essentially a brute-force search over K. Also the use of MMDL
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further improves performance (it never performs worse than BIC). Especially in tough
and very high-dimensional scenarios (Model 3 and Model 4 with K=6) MMDL seems to
perform better.
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Figure 1: Simulation Model 3 (p = 100, n = 1000), number of states and state assignments.
Left panels: frequency of estimated number of states; in each case the correct number of
states (i.e. number of states in data-generating model) is indicated in black. Right panels:
adjusted Rand index with respect to true state assignments. [Legend: Results for Mclust
(mclust), MLE with diagonal covariance matrices (diag), MLE (unpen) and Greedy
Backward Pruning (bw) are shown. The extensions “.b” and “.m” stand for BIC and
MMDL respectively.]
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Figure 2: Simulation Model 4 (p = 50, n = 5000), number of states and state assignments.
Left panels: frequency of estimated number of states (as in Fig 1 correct number of states
indicated in black). Right panels: adjusted Rand index with respect to true state assign-
ments. [Legend: Results for Mclust (mclust), MLE with diagonal covariance matrices
(diag), MLE (unpen) and Greedy Backward Pruning (bw) are shown. Extensions “.b”
and “.m” stand for BIC and MMDL respectively.]
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Experiment II: Graph Structure. In this experiment we focus on recovering state-
specific graphical model structure. We consider Model 3 with Ktrue ∈ {2, 4, 6} and α ∈
{2, 6, 10}. We compare Greedy Backward Pruning; HMMGLasso (K = Kopt,Penparcor, λuni);
Kmeans (with number of clusters set to K = Ktrue) followed by estimating cluster-specific
inverse covariance matrices using Graphical Lasso; and Graphical Lasso using all samples
(no state assignment or clustering). In Figure 3 True Positive Rate (TPR; with respect
to edges in the data-generating graph) is plotted against the corresponding False Positive
Rate (FPR) for all combinations of K and α and different methods. We note that Greedy
Backward Pruning consistently selects the correct number of states in all scenarios except
in (Ktrue, α) = (6, 2) where it chooses K correctly in 36 out of 50 datasets.

Greedy Backward Pruning performs well in terms of TPR and FPR. It is noteworthy
that universal regularization using λuni gives consistently good results under a range of
conditions. We see that HMMGLasso exhibits a smaller true positive rate in the most
challenging Ktrue = 6 case. For α = 2 Kmeans in combination with GLasso performs
much worse in particular in terms of TPR. For larger α’s (and therefore with increased
information about state-assignment in the means) TPR and FPR of Kmeans improves.
Finally, GLasso applied to all data without any clustering leads to very poor performance
(this is likely a consequence of Simpson’s paradox).

3.2 Application to genomic data

We consider genome-wide binding data for 53 proteins in the Drosophila cell line Kc167
(data from Filion et al., 2010). Filion et al. (2010) represents an important step forward
in the genome biology of Drosophila, showing for the first time how multivariate data can
reveal protein-DNA binding patterns that depend on genome region. Here, we use this
dataset to test our HMM methodology. The dataset offers a number of advantages for
our purposes. First, the coverage of a relatively large number of proteins (p = 53) in
the full data gives a high-dimensional example from current genome biology. Second the
abundance of data (n = 33, 632 for chromosome 2L and n = 32, 791 for chromsome 2R)
allows fully held-out validation on a large test set (we use the latter half of chromsome 2R,
giving ntest = 16, 396) as well as exploration of the effect of (training) sample size. Finally,
although substantive biological questions are beyond the scope of this paper, several open
questions concerning genome organization in Drosophila, including the likely number of
genome regions, and the possibility of region-specific protein-protein interplay, help to
motivate the methodological questions we address here.

Filion et al. (2010) identified regions of the genome by fitting a HMM (using classical,
unpenalized estimation) to reduced-dimension data. Dimensionality reduction was carried
out using principal component analysis (PCA) as a pre-processing step, with the HMM
fitted to the first three principal components. Such approaches are currently widely used
in genome biology. By looking at principal components, Filion et al. (2010) suggested a
model with five states (corresponding to different chromatin types). They further noted
that these five states are marked by enriched binding of the proteins HP1, PC, H1, BRM
and MRG15 and that a 5-state HMM using only the five marker proteins as an input
recapitulates 85.5% of the original state classification.
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We investigated performance in a held-out predictive sense by training on the first ntrain =
500, 1000, 2000, . . . , 5000 observations of chromosome 2L and then reporting the test log-
likelihood obtained from the second half of chromosome 2R (ntest = 16, 396). As above
we compare HMMGLasso (Hmmgl); Greedy Backward Pruning (Bwprun); unpenalized
MLE (Unpen); and MLE with diagonal covariance matrices (Diagcov). Additionally,
we include a five-state MLE using only the five marker proteins reported by Filion et al.
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Figure 3: Simulation experiment II, graphical model estimation. Comparing estimated
state-specific conditional independence graphs against the data-generating graphs gave
true positive and false positive rates with respect to edges in the graphs (TPR and FPR
respectively). We show TPR plotted against FPR with K ∈ {2, 4, 6}, α ∈ {2, 6, 10}
for Model 3.[Legend: Results for Greedy Backward Pruning (bwprun), HMMGLasso
(hmmgl), Kmeans clustering with cluster-wise Graphical Lasso (km+glasso) and Graph-
ical Lasso applied to non-clustered data (glasso) are shown]
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(2010) (Marker). For Hmmgl, Unpen and Diagcov the number of states is determined by
exploring different K’s in a forward stepwise manner. We use MMDL and BIC as model
selection criteria. All methods are initialized by Kmeans with initial centroids obtained
using hierarchical clustering; this renders the overall analysis deterministic by removing
variability due to random initialization of Kmeans.

Figure 4 shows the MMDL(BIC)-scores (scaled by ntrain) and the negative test log-
likelihood as a function of ntrain. Figure 5 depicts the selected number of states for
each method and training sample size. Overall, we notice that MMDL (BIC) and test
log-likelihood show similar patterns for different methods and different sample sizes. Bw-
prun and Hmmgl greatly outperform Marker and Diagcov. This provides a topical example
where a multivariate view (using all variables and modelling also state-specific covariances)
improves out-of-sample predictive performance. The predictive gain of penalization com-
pared to unpenalized MLE for moderate n/p-ratios is also noteworthy. As expected, the
performance of Unpen in terms of MMDL (BIC) and test log-likelihood approaches the
penalized methods with increasing sample size. However, in terms of number of states
(Figure 5) the estimates are very different even for large ntrain, i.e., penalization typically
leads to more states than unpenalized MLE. This illustrates that the prediction-optimal
number of states depends on the estimation procedure employed: regularization allows
estimation for a greater number of states. If state-specific estimates have scientific rele-
vance, this property can be important, since due to Simpson’s paradox, estimates for finer
state distinctions (larger K) cannot, in general, be recovered from coarser models (smaller
K). We return to the question of exploration of number of states in Discussion below.

We note that for each training sample size ntrain the results shown in Figures 4-5 reflect
performance for a single training sample of the specified length. For completeness, Figure 9
in the Appendix shows performance over 9 different training datasets of size ntrain = 1000.

4 Discussion

We considered penalized estimation in multivariate HMMs, including in particular the case
of high dimensions and state-specific graphical models. As we demonstrated in simulated
and real data examples, the methodology we propose substantially improves upon current
practice. Our results demonstrate the utility of regularization for HMMs, even when
sample sizes are not small.

It is interesting to consider why careful penalization is needed in HMMs (and related latent
variable settings like mixture models). In a simple linear model, as in regression, the ratio
n/p is a measure to distinguish between a low- and high-dimensional problem. If the ratio
n/p small, classical least-squares estimation leads to poor predictive performance due to
a large number of predictors compared to a small sample size. On the other hand if n/p
is large (for example > 20), then, very likely, least-squares regression performs well. In
HMMs (and mixtures) the situation is more subtle. It is instructive to consider the ratios
nk/p (nk denotes the number of samples belonging to state k) as a measure whether an
inference problem is high-dimensional or not. If for at least one state this ratio is small,
then MLE is likely to overfit and results in a poor generalization error. A fundamental
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Figure 4: Genomic data, MMDL(BIC) and predictive performance. Models were fitted to
protein binding data from Filion et al. (2010) (see text for details) and tested on held-out
data from the same study. Left panel: MMDL(BIC)-scores (scaled by ntrain) for different
methods trained on the first ntrain = 500, 1000, . . . , 5000 observations of chromosome 2L.
Right panel: negative test log-likelihood evaluated on a test set (second half of chromosome
2R; training data is from parts of chromosome 2L). [Legend: Greedy Backward Pruning
(Bwprun); HMMGLasso (Hmmgl); Unpenalized MLE (Unpen); MLE with diagonal
restricted covariance matrices (Diagcov); Five-state MLE using only marker proteins
(Marker)]

problem that we emphasized throughout the paper is the fact that the ratios nk/p depend
on the number of states K and on the state-sizes nk, which are themselves usually unknown
a priori. So, a seemingly low-dimensional problem with a large sample size and with a
moderate number of features can become a high-dimensional task in practice, especially
if a large number of states cannot be ruled out a priori. In fact, our simulations illustrate
that even when mink nk/p is relatively large, the MLE can be ill-behaved. For example,
in our simulated Model 2, with K = 2, we have n = 2000 and nk/p > 13 in each state;
nevertheless the MLE fails completely to recover correct state assignments (Fig 8).

A straightforward approach to handle inference in high-dimensional HMMs is to fix con-
straints on the state-specific covariance matrices (for example assuming diagonal covari-
ance matrices). However, such an approach leads to poor predictive performance when
the assumption is invalid and precludes discovery of state-specific covariance structure.
As in the genome biology example we considered, such structure may itself be of scientific
interest. We note also that the hidden nature of the states makes it difficult to test any
such model assumption. In fact, if the covariance matrices of an HMM with a specific
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number of states satisfy some constraints, than these constraints do not necessarily hold
for an HMM with smaller or larger number of states (Simpson’s paradox).

In the context of mixtures, there is a growing literature on penalized likelihood meth-
ods which address the high-dimensional context to some extent (Khalili and Chen, 2007;
Städler et al., 2010; Pan and Shen, 2007). However, none of these methods address the
need to ensure penalties are able to handle state-specific scaling (that cannot be dealt
with by pre-processing) and size (that is unknown at the outset). The selection of the
number of mixture components also remains an open issue in this literature. Our ap-
proach handles these issues that arise due to the hidden nature of the states and could be
straightforwardly applied in the mixture model setting. Further generalization to other
latent variable models may also be possible.

The backward pruning approach gives an efficient way to estimate parameters for a se-
quence of candidate number of states K. If desired, a single “optimal” number of states
can then be selected using model selection criteria, as we demonstrated in examples above.
For a given estimator, the optimal number of states is well defined in a predictive sense
as the value that minimizes risk. From this point of view it is easy to understand why
the prediction-optimal number of states may be higher under regularization or when more
training data are available (see Figure 5). However, when scientific understanding rather
than prediction alone is one of the goals of analysis, it is not clear whether it is useful to
think in terms of a “correct” number of states. Rather, it may be useful to think of the
estimates {ΘK} that we obtain via backward pruning as collectively providing a resource
for exploration of a system of interest.

In the genome biology example we considered, penalization led to gains in predictive
ability relative to the MLE and to reduced dimension approaches that have been used in
the literature. This suggests that despite redundancy in biological signals, a multivariate
view can enhance predictive ability. Further, we were able to learn richer models than is
possible using currently available methods, including estimates of state-specific graphical
model structure. The latter may shed light on protein-protein interplay that is specific
to genomic region; such interplay has not been investigated to date and is one focus of
our ongoing efforts in this application area. We used data from Filion et al. (2010); we
note that the main substantive conclusions drawn in that paper are broadly supported
by our analyses and the richer set of states uncovered by our approach are related to
the states they report. Genomic datasets are becoming increasingly high-dimensional and
we anticipate that the methodology presented here will be useful to researchers in that
field. Beyond biology, applications for high-dimensional HMMs are numerous, including
in signal processing.

We showed that the approaches we put forward for HMMs, including universal regular-
ization and Greedy Backward Pruning, work well in empirical examples. However, there
remains a need for theoretical investigation of these ideas. Our penalty in combination
with λuni was inspired by making connections to results obtained for the well-studied
Lasso case. A challenge for future theoretical work is to provide insight into optimality
of these and related approaches and establish global convergence properties of penalized
estimation in latent variable settings.
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A Graphical Lasso with different penalty functions

In this section we briefly discuss optimization and performance of the Graphical Lasso
problem

Ω̂ = argmin
Ω
− log |Ω| − tr(SΩ) + ρPen(Ω) (A.7)

with the different penalty functions Pen(·) introduced in Section 2.1.

A.1 Optimization

Case 1: Peninvcov(Ω) = ‖Ω−‖1. This case can be directly solved by the GLasso algorithm
presented in Friedman et al. (2008). This algorithm is implemented in the R-package
glasso. Note that this implementation allows specification of different penalty levels for
different entries in Ω.
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Case 2: Peninvcor(Ω) = ‖Φ−‖1, where Φ is the inverse correlation matrix. Note, that we
can write Ω = V ΦV where V is a diagonal matrix with entries Vjj = 1/

√

Σjj. Now, the
objective function in (A.7) can be written as

−2 log |V| − log |Φ|+ tr(VSVΩ) + ρ‖Φ−‖1. (A.8)

or as

− log |Ω| − tr(SΩ) +
∑

j 6=j′

ρ√
VjjVj′j′

|Ωjj′ |. (A.9)

Taking partial derivatives of (A.8) with respect to Φjj yields

Vjj = 1/
√

Sjj (j = 1, . . . , p). (A.10)

By plugging-in (A.10) into equation (A.9) the desired optimization problem can be solved
with the GLasso algorithm.

Case 3: Penparcor(Ω) = ‖Ψ−‖1, where Ψ is the partial correlation matrix. The objective
function in (A.7) then equals

− log |Ω| − tr(SΩ) +
∑

j 6=j′

ρ√
ΩjjΩj′j′

|Ωjj′|. (A.11)

We solve (A.11) by setting Ω(0) = Diag(S)−1 and iteratively calling the GLasso algorithm
according to:

Ω(i+1) = argmin
Ω
− log |Ω| − tr(SΩ) +

∑

j 6=j′

ρ
√

Ω
(i)
jj Ω

(i)
j′j′

|Ωjj′ | (i = 0, 1, 2, . . .).

Note, that with the R-package glasso we can specify different penalty levels (here:

ρ/
√

Ω
(i)
jj Ω

(i)
j′j′ , j, j

′ = 1, . . . , p) for different entries in Ω.

A.2 Performance

We compare the penalty functions Peninvcov, Penparcor and Peninvcor proposed in Section 2.1
under two different regimes:

Model 5: Gaussian graphical model with p = 50 and n = 100; Concentration matrix
Ω is generated as in Rothman et al. (2008) with p nonzero (off-diagonal) entries;
Diagonal standardized to have entries equal one.

Model 6: Gaussian graphical model with p = 50 and n = 100; Concentration matrix
follows an AR(1) model with Σll′ = 0.9|l−l′|. Note that in the AR(1) model, the
diagonal entries of Ω are not equal to one and therefore Ω does not coincide with
the partial correlation matrix.

We generate training and test data for each model. For Model 5 and Model 6 we fit
estimator A.7 using different penalty functions and various tuning parameters (including
λuni) on the training data and on scaled training data, where half of the variables are

23



scaled by 0.1 and the other half by 10 (in Model 5 the two halves are chosen randomly
for each simulation run; in Model 6 one half are the variables 1, 3, 5, . . . , 49 and the other
half the variables 2, 4, 6, . . . , 50). We then report the log-likelihood obtained on test data.

Boxplots in Figure 6 clearly demonstrate that penalization with Penparcor and Peninvcor is
scale invariant, whereas penalizing the ℓ1-norm of the inverse covariance matrix, which is
the common practice in the Graphical Lasso, is not. The results in Figure 6 also agree
with our findings in Section 2.2: Regularization with λuni performs well with Peninvcov
only in Model 5, where Ω equals the partial correlation matrix. In both setting Peninvcor
with λuni does not perform well. However, penalizing the ℓ1-norm of the partial correlation
matrix using λuni does a good job in both models, i.e., nearly as good as picking the best
solution obtained with λopt. In Model 5, where Ω coincides with the partial correlation
matrix, Peninvcov performs slightly better then Penparcor as the former penalty is optimal
from a distributional point of view. Similarly, in simulation Experiment I, where all Ω’s
in the data generating models are standardized to have unit diagonal entries, we obtain
slightly better performance if we use Peninvcov instead.
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Figure 5: Genomic data, number of states. Number of states selected (at various training
sample sizes) by Greedy Backward Pruning (Bwprun), HMMGLasso (Hmmgl), unpe-
nalised MLE (Unpen) and MLE with diagonal restricted covariance matrices (Diagcov).
All methods are trained on parts of chromosome 2L and use MMDL or BIC as the model
selection criterion. The number of states in Hmmgl, Unpen and Diagcov are determined
by a forward stepwise selection.
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Figure 6: Test log-likelihood for different penalty functions for simulation Models 5 (left
panel) and 6 (right panel). Red boxplots show results obtained from fitting on scaled
training data and back-transforming parameter estimates on original scale.

26



mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

Model 1: K=2

es
tim

at
ed

 K

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Model 1: K=2

A
dj

us
te

d 
R

an
d 

In
de

x

mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

Model 1: K=4

es
tim

at
ed

 K

0

5

10

15

20

25

30

35

40

45

50

1 3 5 2 4 6 1 3 5 2 4 6 1 3 5 2 4 6 1 3 5 2 4 6 1 3 5

mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Model 1: K=4

A
dj

us
te

d 
R

an
d 

In
de

x

mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

Model 1: K=6

es
tim

at
ed

 K

0

5

10

15

20

25

30

35

40

45

50

1 3 5 7 2 4 6 8 1 3 5 7 2 4 6 8 1 3 5 7 2 4 6 8 1 3 5 7 2 4 6 8 1 3 5 7

mclust diag.b diag.m unpen.b unpen.m hmmgl.b hmmgl.m bw.b bw.m

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Model 1: K=6

A
dj

us
te

d 
R

an
d 

In
de

x

Figure 7: Simulation Experiment I, Model 1 (p = 10, n = 2000), number of states and
state assignments. Left panels: frequency of estimated number of states (as in Fig 1
correct number of states indicated in black). Right panels: adjusted Rand index with
respect to true state assignments. [Legend: Results for Mclust (mclust), MLE with
diagonal covariance matrices (diag), MLE (unpen) and Greedy Backward Pruning (bw)
are shown. Extensions “.b” and “.m” stand for BIC and MMDL respectively.]
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Figure 8: Model 2 (p = 75, n = 2000), number of states and state assignments. Left pan-
els: frequency of estimated number of states (correct number of states indicated in black).
Right panels: adjusted Rand index with respect to true state assignments. [Legend: Re-
sults for Mclust (mclust), MLE with diagonal covariance matrices (diag), MLE (unpen)
and Greedy Backward Pruning (bw) are shown. Extensions “.b” and “.m” stand for BIC
and MMDL respectively.]
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Figure 9: Genomic data (Section 3.2), multiple training datasets. Boxplots of
MMDL(BIC)-scores, negative test log-likelihood (using test data as described in text)
and number of selected states obtained over nine training datasets each of size ntrain =
1000. The ten datasets were obtained from chromosome 2L as Xt0 , . . . ,Xt0+1000 with
t0 = 0, 500, 1000, 1500, . . . , 4000. [Legend: Backward Pruning (bw), HMMGLasso (hm-
mgl) and unpenalized MLE (unpen); extensions “.b” and “.m” stand for BIC respectively
MMDL.]
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