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Guaranteed Conservative Fixed Width
Confidence Intervals Via Monte Carlo Sampling
∗

Fred J. Hickernell1, Lan Jiang1, Yuewei Liu2, and Art Owen3

Abstract Monte Carlo methods are used to approximate the means,µ , of random
variablesY, whose distributions are not known explicitly. The key ideais that the
average of a random sample,Y1, . . . ,Yn, tends toµ asn tends to infinity. This article
explores how one can reliably construct a confidence interval for µ with a prescribed
half-width (or error tolerance)ε. Our proposed two-stage algorithm assumes that the
kurtosisof Y does not exceed some user-specified bound. An initial independent and
identically distributed (IID) sample is used to confidentlyestimate the variance of
Y. A Berry-Esseen inequality then makes it possible to determine the size of the IID
sample required to construct the desired confidence interval for µ . We discuss the
important case whereY = f (XXX) andXXX is a randomd-vector with probability density
functionρ . In this caseµ can be interpreted as the integral

∫

Rd f (xxx)ρ(xxx) dxxx, and the
Monte Carlo method becomes a method for multidimensional cubature.

1 Introduction

Monte Carlo algorithms provide a flexible way to approximateµ = E(Y) when
one can generate samples of the random variableY. For example,Y might be the
discounted payoff of some financial derivative, which depends on the future perfor-
mance of assets that are described by a stochastic model. Then µ is the fair option
price. The goal is to obtain aconfidence interval
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Pr[|µ − µ̂| ≤ ε]≥ 1−α, (1)

where

• µ is approximated by the sample average ofn independent and identically dis-
tributed (IID) samples ofY,

µ̂ = µ̂n =
1
n

n

∑
i=1

Yi , (2)

• ε is the half-width of the confidence interval, which also serves as anerror toler-
ance, and

• α is the level ofuncertainty, e.g., 1% or 0.1%, which is fixed in advance.

Often the sample size,n, is fixed in advance, and the central limit theorem (CLT)
provides an approximate value forε in terms ofn and

σ2 = Var(Y) = E[(Y− µ)2], (3)

which itself may be approximated by the sample variance. Thegoal here is some-
what different. We want to fixε in advance and then determine how large the sample
size must be to obtain a fixed width confidence interval of the form (1). Moreover,
we want to make sure that our confidence interval is correct, not just approximately
correct, or correct in the limit of vanishingε. In this paper we present Algorithm 1
for obtaining such a fixed width confidence interval for the mean of a real random
variable when one is performing Monte Carlo sampling.

Before presenting the method, we outline the reasons that existing fixed width
confidence intervals are not suitable. In summary, there aretwo drawbacks of ex-
isting procedures. Much existing theory isasymptotic, i.e., the proposed procedure
attains the desired coverage level in the limit asε → 0 but does not provide coverage
guarantees for fixedε > 0. We want such fixedε guarantees. A second drawback is
that the theory may make distributional assumptions that are too strong. In Monte
Carlo applications one typically does not have much information about the underly-
ing distribution. The form of the distribution forY is generally not known, Var(Y)
is generally not known, andY is not necessarily bounded. We are aiming to derive
fixed width confidence intervals that do not require such assumptions.

The width (equivalently length) of a confidence interval tends to become smaller
as the numbern of sampled function values increases. In special circumstances, we
can choosen to get a confidence interval of at most the desired length and at least the
desired coverage level, 1−α. For instance, if the variance,σ2 = Var(Y), is known
then an approach based on Chebychev’s inequality is available, though the actual
coverage will usually be much higher than the nominal level,meaning that much
narrower intervals would have sufficed. Known variance in addition to a Gaussian
distribution forY supports a fixed width confidence interval construction thatis not
too conservative. The CLT provides a confidence interval that is asymptotically cor-
rect, but our aim is for something that is definitely correct for finite sample sizes.
Finally, conservative fixed width confidence intervals for means can be constructed
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for bounded random variables, by appealing to exponential inequalities such as Ho-
effding’s or Chernoff’s inequality. Unfortunately,Y is often unbounded, e.g., in the
case where it represents the payoff of a call option.

If the relevant variance or bound is unknown, then approaches based on sequen-
tial statistics (Siegmund, 1985) may be available. In sequential methods one keeps
increasingn until the interval is narrow enough. Sequential confidence intervals re-
quire us to take account of the stopping rule when computing the confidence level.
Unfortunately, all existing sequential methods are lacking in some aspects.

Serfling and Wackerly (1976) consider sequential confidenceintervals for the
mean (alternatively for the median) in parametric distributions, symmetric about
their center point. The symmetry condition is not suitable for general purpose Monte
Carlo applications.

Chow and Robbins (1965) develop a sequential sampling fixed width confidence
interval procedure for the mean, but its guarantees are onlyasymptotic (asε → 0).
Mukhopadhyay and Datta (1996) give a procedure similar to Chow and Robbins’,
and it has similar drawbacks.

Bayesian methods can support a fixed width interval containing µ with 1−α
posterior probability, and Bayesian methods famously do not require one to account
for stopping rules. They do however require strong distributional assumptions.

There is no assumption-free way to obtain exact confidence intervals for a mean,
as has been known since Bahadur and Savage (1956). Some kind of assumption is
needed to rule out settings where the desired quantity is themean of a heavy tailed
random variable in which rarely seen large values dominate the mean and spoil the
estimate of the variance. The assumption we use is an upper bound on the modified
kurtosis (normalized fourth moment) of the random variableY:

κ̃ =
E[(Y− µ)4]

σ4 ≤ κ̃max. (4)

(The quantityκ̃ −3 is commonly called the kurtosis.) Under such an assumptionwe
present a two-stage algorithm: the first stage generates a conservative upper bound
on the variance, and the second stage uses this variance bound and a Berry-Esseen
Theorem, which can be thought of as a non-asymptotic CLT, to determine how
largen must be for the sample mean to satisfy confidence interval (1). Theorem
5 demonstrates the validity of the fixed width confidence interval, and Theorem 6
demonstrates that the cost of this algorithm is reasonable.These are our main new
theoretical results.

Our procedure is a two-stage procedure rather than a fully sequential one. In
this it is similar to the method of Stein (1945, 1949), exceptthat the latter requires
normally distributed data.

One might question whether assumption (4), which involves fourth moments of
Y, is more reasonable than an assumption involving only the second moment ofY.
For example, using Chebychev’s inequality with the assumption

σ2 ≤ σ2
max (5)
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also yields a fixed width confidence interval of the form (1). We would argue that (4)
is indeed more reasonable. First, ifY satisfies (4), then so doescY for any nonzero
c, however, the analog does not hold for (5). In fact, ifσ is nonzero, then (5) must
be violated bycY for c sufficiently large. Second, making̃κmax a factor of 10 or
100 larger thanκ̃ does not significantly affect the total cost (number of samples
required) of our two-stage Monte Carlo Algorithm 1 for a large range of values of
σ/ε. However, the cost of our Monte Carlo algorithm, and indeed any Monte Carlo
algorithm based on IID sampling is proportional toσ2, so overestimatingσ2 by a
factor of 10 or 100 or more to be safe increases the cost of the algorithm by that
factor.

An important special case of computingµ = E(Y) arises in the situation where
Y = f (XXX) for some functionf : Rd → R and some random vectorXXX with probabil-
ity density functionρ : Rd → [0,∞). One may then interpret the mean ofY as the
multidimensional integral

µ = µ( f ) = E(Y) =
∫

Rd
f (xxx)ρ(xxx) dxxx. (6)

Note that unlike the typical probability and statistics setting, where f denotes a
probability density function, in this paperf denotes an integrand, andρ denotes
the probability density function. Given the problem of evaluatingµ =

∫

Rd g(xxx) dxxx,
one must choose a probability density functionρ for which one can easily generate
random vectorsXXX, and then setf = g/ρ . The quantitiesσ2 andκ̃ defined above can
be written in terms of weightedLp-norms of f :

‖ f‖p :=

{

∫

Rd
| f (xxx)|p ρ(xxx) dxxx

}1/p

, σ2 = ‖ f − µ‖2
2 , κ̃ =

‖ f − µ‖4
4

‖ f − µ‖4
2

. (7)

For a giveng, the choice ofρ is not unique, and making an optimal choice belongs
to the realm ofimportance sampling. The assumption of bounded kurtosis, (4), re-
quired by Algorithm 1, corresponds to an assumption that theintegrandf lies in the
coneof functions

Cκ̃max = { f ∈ L4 : ‖ f − µ( f )‖4 ≤ κ̃1/4
max‖ f − µ( f )‖2}. (8)

This is in contrast to aball of functions, which would be the case if one was satis-
fying a bounded variance condition, (5).

From the perspective of numerical analysis, ifρ has independent marginals, one
may apply a product form of a univariate quadrature rule to evaluateµ . However,
this consumes a geometrically increasing number of samplesas d increases, and
moreover, such methods often require rather strict smoothness assumptions onf .

If f satisfies moderate smoothness conditions, then (randomized) quasi-Monte
Carlo methods, or low discrepancy sampling methods for evaluatingµ are more ef-
ficient than simple Monte Carlo (Niederreiter, 1992; Sloan and Joe, 1994; Lemieux,
2009; Dick and Pillichshammer, 2010). Unfortunately, practical error estimation re-
mains a challenge for quasi-Monte Carlo methods. Heuristicmethods have been
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proposed, but they lack theoretical justification. One suchheuristic is used with
reasonable success in the numerical examples of Section 4. Independent random-
izations of quasi-Monte Carlo rules of fixed sample size can be used to estimate
their errors, but they do not yet lead to guaranteed, fixed width confidence intervals.

Computational mathematicians have also addressed the problem of constructing
automatic algorithms, i.e., given an error tolerance ofε, one computes an approx-
imation, µ̂ , based onn evaluations of the integrandf , such that|µ − µ̂| ≤ ε. For
example, MATLAB (The MathWorks, Inc., 2012), a popular numerical package,
containsquad, an adaptive Simpson’s rule for univariate quadrature routine devel-
oped by Gander and Gautschi (2000). Althoughquad and other automatic rules
generally work well in practice, they do not have any rigorous guarantees that the
error tolerance is met, and it is relatively simple to construct functions that fool
them. This is discussed in Section 4. Since a random algorithm, like Monte Carlo,
gives a random answer, any statements about satisfying an error criterion must be
probabilistic. This leads us back to the problem of finding a fixed width confidence
interval, (1).

An outline of this paper follows. Section 2 defines key terminology and provides
certain inequalities used to construct our fixed width confidence intervals. The new
two-stage Algorithm 1 is described in Section 3, where rigorous guarantees of its
success and its cost are provided. Section 4 illustrates thechallenges of computing
µ to a guaranteed precision through several numerical examples. This paper ends
with a discussion of our results and further work to be done.

2 Background probability and statistics

In our Monte Carlo applications, a quantity of interest is written as an expectation:
µ = E(Y), whereY is a real valued random variable. As mentioned above, very
oftenY = f (XXX) whereXXX ∈ R

d is a random vector with probability density function
ρ . In other settings the random quantityXXX might have a discrete distribution or be
infinite dimensional (e.g,. a Gaussian process) or both. ForMonte Carlo estimation,
we can work with the distribution ofY alone. The Monte Carlo estimate ofµ is the
sample mean, as given in (2), where theYi are IID random variables with the same
distribution asY.

2.1 Moments

Our methods require conditions on the first four moments ofY as described here.
The variance ofY, as defined in (3), is denoted byσ2, and its non-negative square
root, σ , is the standard deviation ofY. Some of our expressions assume without
stating it thatσ > 0, and all will requireσ < ∞. The skewness ofY is γ = E[(Y−
µ)3]/σ3, and the kurtosis ofY is κ = κ̃ − 3 = E[(Y− µ)4]/σ4− 3 (see (4)). The
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mysterious 3 inκ is there to make it zero for Gaussian random variables. Also,
µ ,σ2,γ,κ are related to the first four cumulants (McCullagh, 1987, Chap. 2) of the
distribution ofY, meaning that

log(E[exp(tY)]) = µt +
σ2t2

2
+

γσ3t3

3!
+

κσ4t4

4!
+o(t4).

Our main results require a known upper bound forκ , which then implies thatσ and
γ are finite.

2.2 CLT intervals

A random variableZ has the standard normal distribution, denoted byN (0,1), if

Pr(Z ≤ z) =
1√
2π

∫ z

−∞
exp(−t2/2)dt =: Φ(z).

Under the central limit theorem, the distribution of
√

n(µ̂n − µ)/σ approaches
N (0,1) as n → ∞, where µ̂n denotes the sample mean ofn IID samples. As a
result

Pr
(

µ̂n−2.58σ
√

n≤ µ ≤ µ̂n+2.58σ/
√

n
)

→ 0.99 (9)

asn → ∞. We write the interval in (9) aŝµn±2.58σ/
√

n. Equation (9) cannot be
used whenσ2 is unknown, but the usual estimate

s2
n =

1
n−1

n

∑
i=1

(Yi − µ̂n)
2 (10)

may be substituted, yielding the intervalµ̂n ± 2.58sn/
√

n which also satisfies the
limit in (9) by Slutsky’s theorem (Lehmann and Romano, 2005). For an arbitrary
confidence level 1−α ∈ (0,1), we replace the constant 2.58 by zα/2 = Φ−1(1−
α/2). The width of this interval is 2zα/2sn/

√
n, and whenµ is in the interval then

the absolute error|µ − µ̂n| ≤ ε := zα/2sn/
√

n.
The coverage level of the CLT interval is only asymptotic. Inmore detail, (Hall,

1988, p. 948) shows that

Pr
(

|µ − µ̂n| ≤ 2.58s/
√

n
)

= 0.99+
1
n
(A+Bγ2+Cκ)+O

( 1
n2

)

(11)

for constantsA, B, andC that depend on the desired coverage level (here 99%).
Hall’s theorem requires only that the random variableY has sufficiently many finite
moments and is not supported solely on a lattice (such as the integers). It is interest-
ing to note that theO(1/n) coverage error in (11) is better than theO(1/

√
n) root

mean squared error for the estimateµ̂n itself.
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2.3 Standard Probability Inequalities

Here we present some well known inequalities that we will use. First, Chebychev’s
inequality ensures that a random variable (such asµ̂n) is seldom too far from its
mean.

Theorem 1 (Chebychev’s Inequality).(Lin and Bai, 2010, 6.1c, p. 52) Let Z be a
random variable with meanµ and varianceσ2 ≥ 0. Then for allε > 0,

Pr[|Z− µ | ≥ ε]≤ σ2

ε2 .

In some settings we need a one sided inequality like Chebychev’s. We will use
this one due to Cantelli.

Theorem 2 (Cantelli’s Inequality). (Lin and Bai, 2010, 6.1e, p. 53) Let Z be any
random variable with meanµ and finite varianceσ2. For any a≥ 0, it follows that:

Pr[Z− µ ≥ a]≤ σ2

a2+σ2 .

Berry-Esseen type theorems govern the rate at which a CLT takes hold. We will
use the following theorem which combines recent work on bothuniform and non-
uniform (x-dependent right hand side) versions.

Theorem 3 (Berry-Esseen Inequality).Let Y1, . . . ,Yn be IID random variables
with meanµ , varianceσ2 > 0, and third centered moment M3 = E |Yi − µ |3/σ3 <
∞. Let µ̂n = (Y1+ · · ·+Yn)/n denote the sample mean. Then

∣

∣

∣

∣

Pr

[

µ̂ − µ
σ/

√
n
< x

]

−Φ(x)

∣

∣

∣

∣

≤ ∆n(x,M3) :=
1√
n

min

(

A1(M3+A2),
A3M3

1+ |x|3

)

∀x∈ R,

where A1 = 0.3328and A2 = 0.429(Shevtsova, 2011), and A3 = 18.1139(Nefedova
and Shevtsova, 2012).

The constants in the Berry-Esseen Inequality above have been an area of active
research. We would not be surprised if there are further improvements in the near
future.

Our method requires probabilistic bounds on the sample variance,s2
n. For that,

we will use some moments of the variance estimate.

Theorem 4.(Miller, 1986, Eq. (7.16), p. 265) Let Y1, . . . ,Yn be IID random vari-
ables with varianceσ2 and modified kurtosis̃κ defined in(4). Let s2n be the sample
variance as defined in(10). Then the sample variance is unbiased,E(s2

n) = σ2, and
its variance is
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Var(s2
n) =

σ4

n

(

κ̃ − n−3
n−1

)

.

3 Two-stage confidence interval

Our two-stage procedure works as follows. In the first stage,we take a sample of
independent valuesY1, . . . ,Ynσ from the distribution ofY. From this sample we com-
pute the sample variance,s2

nσ , according to (10) and estimate the variance ofYi by
σ̂2 = C

2ŝ2
nσ , whereC2 > 1 is a “variance inflation factor” that will reduce the prob-

ability that we have underestimatedσ2 = Var(Y). For the second stage, we use the
estimateσ̂2 as if it were the true variance ofYi and use Berry-Esseen theorem to
obtain a suitable sample size,nµ , for computing the sample average,µ̂ , that satisfies
the fixed with confidence interval (1).

The next two subsections give details of these two steps thatwill let us bound
their error probabilities. Then we give a theorem on the method as a whole.

3.1 Conservative variance estimates

We need to ensure that our first stage estimate of the varianceσ2 is not too small.
The following result bounds the probability of such an underestimate.

Lemma 1. Let Y1, . . . ,Yn be IID random variables with varianceσ2 >0 and kurtosis
κ . Let s2n be the sample variance defined at(10), and letκ̃ = κ +3. Then

Pr

[

s2
n < σ2

{

1+

√

(

κ̃ − n−3
n−1

)(

1−α
αn

)

}]

≥ 1−α, (12a)

Pr

[

s2
n > σ2

{

1−
√

(

κ̃ − n−3
n−1

)(

1−α
αn

)

}]

≥ 1−α. (12b)

Proof. Applying Theorem 4 and choosing

a=

√

Var(s2
n)

1−α
α

= σ2

√

(

κ̃ − n−3
n−1

)(

1−α
αn

)

> 0,

it follows from Cantelli’s inequality (Theorem 2) that
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Pr

[

s2
n−σ2 ≥ σ2

√

(

κ̃ − n−3
n−1

)(

1−α
αn

)

]

= Pr
[

s2
n−σ2 ≥ a

]

≤ Var(s2
n)

a2+Var(s2
n)

=
Var(s2

n)

Var(s2
n)

1−α
α +Var(s2

n)
=

1
(

1−α
α
)

+1
= α.

Then (12a) follows directly. By a similar argument, applying Cantelli’s inequality
to the expression Pr

[

−s2
n+σ2 ≥ a

]

implies (12b). ⊓⊔

Using Lemma 1 we can bound the probability thatσ̂2 = C
2s2

nσ overestimatesσ2.
Equation (12a) implies that

Pr









s2
nσ

1−
√

(

κ̃ − nσ−3
nσ−1

)(

1−α
αnσ

)

> σ2









≥ 1−α.

Thus, it makes sense for us to require the modified kurtosis,κ̃ , to be small enough,
relative tonσ , α, andC, in order to ensure that Pr(σ̂2 > σ2) ≥ 1−α. Specifically,
we require

1

1−
√

(

κ̃ − nσ−3
nσ−1

)(

1−α
αnσ

)

≤ C
2,

or equivalently,

κ̃ ≤ nσ −3
nσ −1

+

(

αnσ
1−α

)(

1− 1
C2

)2

=: κ̃max(α,nσ ,C). (13)

This condition is the explicit version of (4) mentioned in the introduction.

3.2 Conservative interval widths

Here we consider how to choose the sample sizenµ to get the desired coverage level
from an interval with half-length at mostε. We suppose here thatσ is known. In
practice we will use a conservative (biased high) estimate for σ .

First, if the CLT held exactly and not just asymptotically, then we could use a
CLT sample size of

NCLT(ε,σ ,α) =
⌈(zα/2σ

ε

)2⌉

independent values ofYi in an interval like the one in (9).
Given knowledge ofσ , but no assurance of a Gaussian distribution forµ̂n, we

could instead select a sample size based on Chebychev’s inequality (Theorem 1).
Taking



10 Fred J. Hickernell, Lan Jiang, Yuewei Liu, and Art Owen

NCheb(ε,σ ,α) =
⌈ σ2

αε2

⌉

(14)

IID observations ofY gives the confidence interval (1). NaturallyNCheb≥ NCLT.
Finally, we could use the non-uniform Berry-Esseen inequality from Theorem 3.

This inequality requires a finite scaled third momentM3 = E |Yi − µ |3/σ3. If µ̂n

denotes a sample mean ofn IID random instances ofY, then the non-uniform Berry-
Esseen inequality implies that

Pr[|µ − µ̂n| ≤ ε] = Pr

[

µ̂n− µ
σ/

√
n
≤

√
nε

σ

]

−Pr

[

µ̂n− µ
σ/

√
n
<−

√
nε

σ

]

≥
[

Φ(
√

nε/σ)−∆n(
√

nε/σ ,M3)
]

−
[

Φ(−
√

nε/σ)+∆n(−
√

nε/σ ,M3)
]

= 1−2[Φ(−
√

nε/σ)+∆n(
√

nε/σ ,M3)], (15)

since∆n(−x,M3) = ∆n(x,M3). The probability of making an error no greater than
ε is bounded below by 1−α, i.e., the fixed width confidence interval (1) holds with
µ̂ = µ̂n, providedn≥ NBE(ε,σ ,α,M3), where the Berry-Esseen sample size is

NBE(ε,σ ,α,M3) := min
{

n∈N : Φ
(

−
√

nε/σ
)

+∆n(
√

nε/σ ,M3)≤
α
2

}

. (16)

To computeNBE(ε,σ ,α,M3), we need to knowM3. In practice, substituting an up-
per bound onM3 yields an upper bound on the necessary sample size.

Note that if the∆n term in (16) were absent,NBE would correspond to the CLT
sample sizeNCLT, and in generalNBE > NCLT. It is possible that in some situations
NBE > NChebmight hold, and in such cases we could useNCheb instead ofNBE.

3.3 Algorithm and Proof of Its Success

In detail, the two-stage algorithm works as described below.

Algorithm 1 (Two Stage).The user specifies four quantities:

• an initial sample size for variance estimation,nσ ∈ {2,3, . . .},
• a variance inflation factorC2 ∈ (1,∞),
• an uncertaintyα ∈ (0,1), and,
• an error tolerance or confidence interval half-width,ε > 0.

At the first stage of the algorithm,Y1, . . . ,Ynσ are sampled independently from
the same distribution asY. Then the conservative variance estimate,σ̂2 = C

2s2
nσ , is

computed in terms of the sample variance,s2
nσ , defined by (10).

To prepare for the second stage of the algorithm we computeα̃ = 1−
√

1−α
and thenκ̃max= κ̃max(α̃ ,nσ ,C) using equation (13). The sample size for the second
stage is
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nµ = Nµ(ε, σ̂ , α̃ , κ̃3/4
max), (17)

where

Nµ(ε,σ ,α,M) := max
(

1,min
(

NCheb(ε,σ ,α),NBE(ε,σ ,α,M)
))

. (18)

Recall thatNCheb is defined in (14) andNBE is defined in (16).
After this preparation, the second stage is to sampleYnσ+1, . . . ,Ynσ+nµ indepen-

dently from the distribution ofY, and independently ofY1, . . . ,Ynσ . The algorithm
then returns the sample mean,

µ̂ =
1
nµ

nσ+nµ

∑
i=nσ+1

Yi . (19)

The success of this algorithm is guaranteed in the followingtheorem. The main
assumption needed is an upper bound on the kurtosis.

Theorem 5.Let Y be a random variable with meanµ , and either zero variance
or positive variance with modified kurtosis̃κ ≤ κ̃max(α̃ ,nσ ,C). It follows that Al-
gorithm 1 above yields an estimateµ̂ given by(19) which satisfies the fixed width
confidence interval condition

Pr(|µ̂ − µ | ≤ ε)≥ 1−α.

Proof. If σ2 = 0, thens2
nσ = 0, nµ = 1 andµ̂ = µ with probability one. Now con-

sider the case of positive variance. The first stage yields a variance estimate satis-
fying Pr(σ̂2 > σ2) ≥ 1− α̃ by the argument preceding the kurtosis bound in (13)
applied with uncertaintỹα. The second stage yields Pr(|µ̂ −µ | ≤ ε)≥ 1− α̃ by the
Berry-Esseen result (15), so long asσ̂ ≥ σ andM3 ≤ κ̃max(α̃,nσ ,C)

3/4. The sec-
ond condition holds becauseM3 ≤ κ̃3/4 by Jensen’s Inequality (Lin and Bai, 2010,
8.4.b). Thus, in the two-stage algorithm we have

Pr(|µ̂ − µ | ≤ ε) = E
[

Pr(|µ̂ − µ | ≤ ε | σ̂)
]

≥ E [(1− α̃)1σ≤σ̂ ]

≥ (1− α̃)(1− α̃) = 1−α. ⊓⊔

Remark 1.As pointed out earlier, the guarantees in this theorem require that the
modified kurtosis ofY not exceed the specified upper boundκ̃max. As it is presented,
Algorithm 1 takes as inputs,nσ ,C, andα, and uses these to computeκ̃max according
to (13). The reason for doing so is that one might have a betterintuition for nσ , C,
andα. Alternatively, one may specifynσ and κ̃max and use (13) to computeC, or
specifyC andκ̃max and use (13) to computenσ . The issue of how one should choose
nσ , C, andκ̃max in practice is discussed further in Section 5.

Remark 2.In this algorithm it is possible to choosenµ much smaller thannσ if the
sample variance is small. As a practical matter we suggest that if one is willing to
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investnσ samples to estimate the variance then one should be willing to invest at
least that many additional samples to estimate the mean. Therefore, in the numerical
examples of Section 4 we use

Nµ(ε,σ ,α,M) := max
(

nσ ,min
(

NCheb(ε,σ ,α),NBE(ε,σ ,α,M)
))

(20)

instead of (18) to determine the sample size for the sample mean. Because the vari-
ance is typically harder to estimate accurately than the mean, one may wonder
whethernσ should be chosen greater thannµ . However, for Monte Carlo simula-
tion we only need the variance to one or two digits accuracy, whereas we typically
want to know the mean to a much higher accuracy. By the error bound following
from Chebychev’s inequality (Theorem 1), the definition ofNµ in (20) means that
the fixed width confidence interval constructed by Algorithm1 also holds for any
random variables,Y, with small variance, namely,σ2 ≤ ε2αnσ , even if its kurtosis
is arbitrarily large.

As mentioned in the introduction, one frequently encountered case occurs when
Y is a d-variate function of a random vectorXXX. Thenµ corresponds to the multi-
variate integral in (6) and Theorem 5 may be interpreted as below:

Corollary 1. Suppose thatρ : Rd → R is a probability density function, the inte-
grand f :Rd →R has finiteL4 norm as defined in(7), and furthermore f lies in the
coneCκ̃max defined in(8), whereκ̃max = κ̃max(α̃,nσ ,C). It follows that Algorithm
1 yields an estimate,̂µ , of the multidimensional integralµ defined in(6), which
satisfies the fixed width confidence interval condition

Pr(|µ̂ − µ | ≤ ε)≥ 1−α.

3.4 Cost of the Algorithm

The number of function values required by the two-stage Algorithm 1 is nσ +nµ ,
the sum of the initial sample size used to estimate the variance ofY and the sample
size used to estimate the mean ofY. Althoughnσ is deterministic,nµ is a random
variable, and so the cost of this algorithm might be best defined probabilistically.
Moreover, the only random quantity in the formula fornµ in (17) is σ̂2, the upper
bound on variance. Clearly this depends on the unknown population variance,σ2,
and we expect̂σ2 not to overestimateσ2 by much. Thus, the algorithm cost is
defined below in terms ofσ2 and the error tolerance (interval half-width)ε. An
upper bound on the cost is then derived in Theorem 6.

Let A be any random algorithm that takes as its input, a method for generat-
ing random samples,Y1,Y2, . . . with common distribution functionF having vari-
anceσ2 and modified kurtosis̃κ . Additional algorithm inputs are an error tolerance,
ε, an uncertainty,α, and a maximum modified kurtosis,κ̃max. The algorithm then
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computesµ̂ = A(F,ε,α, κ̃max), an approximation toµ = E(Y), based on a total of
Ntot(ε,α, κ̃max,F) samples. The probabilistic cost of the algorithm, with uncertainty
β , for integrands of variance no greater thanσ2

max and modified kurtosis no greater
thanκ̃max is defined as

Ntot(ε,α,β , κ̃max,σmax) := sup
κ̃≤κ̃max
σ≤σmax

min{N : Pr[Ntot(ε,α, κ̃max,F)≤ N]≥ 1−β}.

Note thatκ̃max is an input to the algorithm, butσmax is not. The cost of an arbitrary
algorithm,A may also depend on other parameters, such asnσ andC in our Algo-
rithm 1, which are related tõκmax. However, this dependence is not shown explicitly
to keep the notation simple.

The cost of the particular two-stage Monte Carlo algorithm defined in Algorithm
1 is

sup
κ̃≤κ̃max
σ≤σmax

min
{

N : Pr(nσ +Nµ(ε, σ̂ , α̃, κ̃3/4
max)≤ N)≥ 1−β

}

.

Sincenσ is fixed, bounding this cost depends on boundingNµ(ε, σ̂ , α̃ , κ̃3/4
max), which

depends on̂σ as given by Algorithm 1. Moreover,̂σ can be bounded above using
(12a) in Lemma 1. For̃κ ≤ κ̃max,

1−β ≤ Pr

[

s2
nσ < σ2

{

1+

√

(

κ̃ − nσ −3
nσ −1

)(

1−β
βnσ

)

}]

≤ Pr

[

σ̂2 = C
2s2

nσ < C
2σ2

{

1+

√

(

κ̃max(nσ , α̃,C)− nσ −3
nσ −1

)(

1−β
βnσ

)

}]

= Pr
[

σ̂2 < σ2v2(α̃,β ,C)
]

,

where

v2(α̃,β ,C) := C
2+
(

C
2−1

)

√

α̃(1−β )
(1− α̃)β

> 1.

Noting thatNµ(ε, ·, α̃ , κ̃3/4
max) is a non-decreasing function allows one to derive the

following upper bound on the cost of the adaptive Monte Carloalgorithm.

Theorem 6.The two-stage Monte Carlo algorithm for fixed width confidence in-
tervals based on IID sampling described in Algorithm 1 has a probabilistic cost
bounded above by

Ntot(ε,α,β , κ̃max,σmax)

≤ Nup(ε,α,β , κ̃max,σmax) := nσ +Nµ(ε,σmaxv(α̃,β ,C), α̃ , κ̃3/4
max).

Note that the Chebychev sample size,NCheb, defined in (14), the Berry-Esseen
sample size,NBE, defined in (16), and thusNµ all depend onσ and ε through
their ratio,σ/ε. Thus, ignoring the initial sample used to estimate the variance,
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Ntot(ε,α,β , κ̃max,σmax) is roughly proportional toσ2
max/ε2, even thoughσmax is

not a parameter of the algorithm. Algorithm 1adaptivelydetermines the sample
size, and thus the cost, to fit the unknown variance ofY. Random variables,Y, with
small variances will require a lower cost to estimateµ with a given error tolerance
than random variables with large variances.
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Fig. 1 (a) The cost ratios ofNup(ε ,0.01,0.01, κ̃max,σ )/NCLT(ε ,σ ,0.01) for κ̃max= 2,10, and 100,
with nσ = 4000κ̃max (dashed) andnσ optimized (solid); (b) the optimal values ofnσ (solid) andC
(dashed).

Figure 1a shows the ratio of the upper bound of the cost,Nup(ε,0.01,0.01, κ̃max,σ),
to the ideal CLT cost,NCLT(ε,σ ,0.01) = ⌈(2.58σ/ε)2⌉, for a range ofσ/ε ratios
and forκ̃max= 2,10, and 100. In these graphs the formula definingNup in Theorem
6 uses the alternative and somewhat costlier formula forNµ in (20). The dashed
curves in Figure 1a show these cost ratios withnσ = 4000κ̃max, which corresponds
to C≈ 1.1. The solid curves denote the case wherenσ andC vary with σ/ε to min-
imize Nup. Figure 1b displays the optimal values ofnσ (solid) andC (dashed). In
both figures, higher curves correspond to higher values ofκ̃max.

Here,NCLT denotes the ideal cost if one knew the variance ofY a priori and knew
that the distribution of the sample mean was close to Gaussian. The cost ratio is the
penalty for having a guaranteed fixed width confidence interval in the absence of
this knowledge about the distribution ofY. For smaller values ofNCLT, equivalently
smallerσ/ε, this cost ratio can be rather large. However the absolute effect of this
large penalty is mitigated by the fact that the total number of samples needed is not
much. For largerNCLT, equivalently largerσ/ε, the cost ratio approaches somewhat
less than 1.4 in the case of optimalnσ andC, and somewhat less than 2 fornσ =
1000κ̃max.

The discontinuous derivatives in the curves in Figure 1 arise from the minimum
and maximum values arising in formulas (16) and (20) forNBE andNµ , respectively.
Taking the upper dashed curve in Figure 1a as an example, forNCLT less than about
3.5×104, Nµ = nσ . ForNCLT from about 3.5×104 to about 6×106, Nµ corresponds
to the second term in the minimum in the Berry-Esseen inequality, (16), i.e., the non-
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uniform term. ForNCLT greater than 6×106, Nµ corresponds to the first term in the
minimum in the Berry-Esseen inequality, (16), i.e., the uniform term.

The ideal case of optimizingnσ andC with respect toσ/ε is impractical, since
σ is not known in advance. Our suggestion is to chooseC around 1.1, and then
choosenσ as large as needed to ensure thatκ̃max is as large as desired. For example
with C = 1.1 and κ̃max = 2,10, and 100 we getnσ = 6593, 59311, and 652417
respectively.

4 Numerical Examples

4.1 Univariate Fooling Functions for Deterministic Algorithms

Several commonly used software packages have automatic algorithms for integrat-
ing functions of a single variable. These include

• quad in MATLAB (The MathWorks, Inc., 2012), adaptive Simpson’s rule based
onadaptsim by Gander and Gautschi (2000),

• quadgk in MATLAB (The MathWorks, Inc., 2012), adaptive Gauss-Kronrod
quadrature based onquadva by Shampine (2008), and

• thechebfun (Hale et al, 2012) toolbox for MATLAB (The MathWorks, Inc.,
2012), which approximates integrals by integrating interpolatory Chebychev
polynomial approximations to the integrands.

For these three automatic algorithms one can easily probe where they sample
the integrand, feed the algorithms zero values, and then construct fooling functions
for which the automatic algorithms will return a zero value for the integral. Figure
2 displays these fooling functions for the problemµ =

∫ 1
0 f (x) dx for these three

algorithms. Each of these algorithms is asked to provide an answer with an absolute
error no greater than 10−14, but in fact the absolute error is 1 for these fooling
functions. The algorithmsquad andchebfun sample only about a dozen points
before concluding that the function is zero, whereas the algorithmquadgk samples
a much larger number of points (only those between 0 and 0.01 are shown in the
plot).

4.2 Integrating a Single Hump

Accuracy and timing results have been recorded for the integration problemµ =
∫

[0,1]d f (xxx) dxxx for a single hump test integrand

f (xxx) = a0+b0

d

∏
j=1

[

1+b j exp

(

− (x j −h j)
2

c2
j

)]

. (21)
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Fig. 2 Plots of fooling functions,f , with µ =
∫ 1

0 f (x) dx = 1, but for which the corresponding
algorithms return values of̂µ = 0.

Herexxx is ad dimensional vector, anda0,b0, . . . ,bd,c1, . . . ,cd,h1, . . . ,hd are param-
eters. Figure 3 shows the results of different algorithms being used to integrate 500
different instances off . For each instance off , the parameters are chosen as fol-
lows:

• b1, . . . ,bd ∈ [0.1,10] with log(b j) being i.i.d. uniform,
• c1, . . . ,cd ∈ [10−6,1] with log(c j) being i.i.d. uniform,
• h1, . . . ,hd ∈ [0,1] with h j being i.i.d. uniform,
• b0 chosen in terms of theb1, . . . ,bd,c1, . . . ,cd,h1, . . . ,hd to makeσ2 = ‖ f − µ‖2

2 ∈
[10−2,102], with log(σ) being i.i.d. uniform for each instance, and

• a0 chosen in terms of theb0, . . . ,bd,c1, . . . ,cd,h1, . . . ,hd to makeµ = 1.

These ranges of parameters are chosen so that the algorithmsbeing tested fail to
meet the error tolerance a significant number of times.

These 500 random constructions off with d = 1 are integrated usingquad,
quadgk, chebfun, Algorithm 1, and an automatic quasi-Monte Carlo algorithm
that uses scrambled Sobol’ sampling (Owen, 1995, 1997a,b; Matoušek, 1998; Hong
and Hickernell, 2003; Dick and Pillichshammer, 2010). For the Sobol’ sampling al-
gorithm the error is estimated by an inflation factor of 1.1 times the sample standard
deviation of 8 internal replicates of one scrambled Sobol’ sequence (Owen, 2006).
The sample size is increased until this error estimate decreases to no more than the
tolerance. We have not yet found simple conditions on integrands for which this
procedure is guaranteed to produce an estimate satisfying the error tolerance, and
so we do not discuss it in detail. We are however, intrigued bythe fact that it does
seem to perform rather well in practice.

For all butchebfun, the specified absolute error tolerance isε = 0.001. The
algorithmchebfun attempts to do all calculations to near machine precision. The
observed error and execution times are plotted in Figure 3. Whereaschebfun uses
a minimum of 23 + 1 = 9 function values, the figure labeled “chebfun (heavy
duty)” displays the results of requiringchebfun to use at least 28+1= 257 func-
tion values. Algorithm 1 takesα = 0.01, andC = 1.1. For the plot on the left,
nσ = 213 = 8192, which corresponds tõκmax = 2.24. For the heavy duty plot on
the right,nσ = 218 = 262144, which corresponds tõκmax= 40.1. The same initial
sample sizes are used for the Sobol’ sampling algorithm.
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Fig. 3 Execution times and errors for test function (21) ford = 1 and error toleranceε = 10−3,
and a variety of parameters giving a range ofσ andκ̃ . Those points to the left/right of the dashed
vertical line represent successes/failures of the automatic algorithms. The solid line shows that
cumulative distribution of actual errors, and the dot-dashed line shows the cumulative distribution
of execution times. For the Algorithm 1 the points labeled * are those for which the Corollary 1
guarantees the error tolerance.
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Figure 3 shows thatquad andquadgk are quite fast, nearly always providing
an answer in less than 0.01 seconds. Unfortunately, they successfully meet the er-
ror tolerance only about 30% of the time forquad and 50–60% of the time for
quadgk. The difficult cases are those wherec1 is quite small, and these algorithms
miss the sharp peak. The performance ofchebfun is similar to that ofquad and
quadgk. The heavy duty version ofchebfun fares somewhat better. For both of
thechebfun plots there are a significant proportion of the data that do not appear
because their errors are smaller than 10−5.

In the plots for Algorithm 1 the alternative and somewhat costlier formula forNµ
in (20) is employed. An asterisk is used to label those pointssatisfyingκ̃ ≤ κ̃max,
where κ̃ is defined in (7). All such points fall within the prescribed error toler-
ance, which is even better than the guaranteed confidence of 99%. For Algorithm 1
(heavy duty)κ̃max is larger, so there are more points for which the guarantee holds.
Those points labeled with a dot, are those for whichκ̃ > κ̃max, and so no guar-
antee holds. The points labeled with a diamond are those for which Algorithm 1
attempts to exceed the cost budget that we set, i.e., it wantsto choosenµ such that
nσ +nµ > Nmax := 109. In these casesnµ is chosen as⌊109−nσ⌋, which often is
still large enough to get an answer that satisfies the error tolerance. Algorithm 1
performs somewhat more robustly thanquad, quadgk, andchebfun, because it
requires only a low degree of smoothness and takes a fairly large minimum sample.
Algorithm 1 is generally much slower than the other algorithms because it does not
assume any smoothness of the integrand. The more important point is that Algo-
rithm 1 has a guarantee, whereas to our knowledge, the other routines do not.

From Figure 3, the Sobol’ sampling algorithm is more reliable and takes less
time than Algorithm 1. This is due primarily to the fact that in dimension one,
Sobol’ sampling is equivalent to stratified sampling, wherethe points are more
evenly spread than IID sampling.

Figure 4 repeats the simulation shown in Figure 3 for the sametest function (21),
but now withd = 2, . . . ,8 chosen randomly and uniformly. For this case the univari-
ate integration algorithms are inapplicable, but the multidimensional routines can
be used. There are more cases where the Algorithm 1 tries to exceed the maximum
sample size allowed, i.e.,(nσ +nµ)d> Nmax := 109, but the behavior seen ford= 1
still generally applies.

4.3 Asian Geometric Mean Call Option Pricing

The next example involves pricing an Asian geometric mean call option. Suppose
that the price of a stockS at time t follows a geometric Brownian motion with
constant interest rate,r, and constant volatility,v. One may express the stock price
in terms of the initial condition,S(0), as

S(t) = S(0)exp[(r − v2/2)t+ vB(t)], t ≥ 0,



Fixed Width Confidence Intervals 19

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

Error

T
im

e 
(s

ec
on

ds
)

0

0.2

0.4

0.6

0.8

10 0.2 0.4 0.6 0.8 1

Algorithm 1

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

Error

T
im

e 
(s

ec
on

ds
)

0

0.2

0.4

0.6

0.8

10 0.2 0.4 0.6 0.8 1

Algorithm 1 (heavy duty)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

Error

T
im

e 
(s

ec
on

ds
)

0

0.2

0.4

0.6

0.8

10 0.2 0.4 0.6 0.8 1

Sobol’

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
−2

10
0

10
2

Error

T
im

e 
(s

ec
on

ds
)

0

0.2

0.4

0.6

0.8

10 0.2 0.4 0.6 0.8 1

Sobol’ (heavy duty)

Fig. 4 Execution times and errors for test function (21) ford = 2, . . . ,8 andε = 10−3, with the rest
of the parameters as in Figure 3.

whereB is a standard Brownian motion. The discounted payoff of the Asian geo-
metric mean call option with an expiry ofT years, a strike price ofK, and assuming
a discretization atd times is

Y = max

(

[
√

S(0)S(T/d)S(2T/d) · · ·S(T(d−1)/d)
√

S(T)]1/d −K,0

)

e−rT .

(22)
The fair price of this option isµ = E(Y). One of our chief reasons for choosing
this option for numerical experiments is that its price can be computed analytically,
while the numerical computation is non-trivial.

In our numerical experiments, the values of the Brownian motion at different
times required for evaluating the stock price,B(T/d),B(2T/d), . . . ,B(T), are com-
puted via a Brownian bridge construction. This means that for one instance of
the Brownian motion we first computeB(T), then B(T/2), etc., using indepen-
dent Gaussian random variablesX1, . . . ,Xd, suitably scaled. The Brownian bridge
accounts for more of the low frequency motion of the stock price by theXj with
smaller j, which allows the Sobol’ sampling algorithm to do a better job.

The option price,µ = E(Y), is approximated by Algorithm 1 and the Sobol’
sampling algorithm using an error tolerance ofε = 0.05, and compared to the an-
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alytic value ofµ . The result of 500 replications is given in Figure 5. Some of the
parameters are set to be fixed values, namely,

S(0) = K = 100, T = 1, r = 0.03.

The volatility,v, is drawn uniformly between 0.1 and 0.7. The number of time steps,
d, is chosen to be uniform over{1,2,4,8,16,32}. The true value ofµ for these
parameters is between about 2.8 and 14.
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Fig. 5 Execution times and errors for the Asian geometric mean calloption ford = 1,2,4,8,16,32
andε = 0.05.

For this example the true kurtosis ofY is unknown. Both Algorithm 1 and the
Sobol’ sampling algorithm compute the option price to the desired error tolerance
with high reliability. For the IID sampling Algorithm 1 and the ordinary Sobol’
sampling algorithm it can be seen that some of the errors are barely under the error
tolerance, meaning that the sample size is not chosen too conservatively. For the
heavy duty Sobol’ algorithm, the high initial sample size seems to lead to smaller
than expected errors and larger than necessary computationtimes.
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5 Discussion

Practitioners often construct CLT-based confidence intervals with the true variance
estimated by the sample variance, perhaps multiplied by some inflation factor. Of-
ten, this approach works, but it has no guarantee of success.The two-stage algorithm
presented here is similar to the approach just described, but it carries guarantees.
These are derived by employing Cantelli’s inequality to ensure a reliable variance
upper bound, and by employing a Berry-Esseen inequality to ensure a large enough
sample for the sample mean.

In certain cases our procedure multiplies the computational cost by a large factor
such as 2 or 10 or even 100 compared to what one might spend based on the CLT
with a known value ofσ (see Figure 1). While this seems inefficient, one should
remember that the total elapsed time may still be well below several seconds. Fur-
thermore, one typically does not knowσ in advance, and our adaptive algorithm
estimatesσ and then an appropriate sample sizenµ from the data. Our algorithmic
cost will be low when the unknownσ is small and large whenσ is large.

Like any algorithm with guarantees, our algorithm does needto make assump-
tions about the random variableY. We assume a known bound on the kurtosis ofY,
either specified directly or implied by the user’s choice of the sample size for esti-
mating the variance,nσ , and the variance inflation factor,C2. This is a philosophical
choice. We prefer not to construct an algorithm that assumesa bound on the vari-
ance ofY, because such an algorithm would not be guaranteed forcY with |c| large
enough. If our algorithm works forY, it will also work for cY, no matter how large
|c| is.

In practice the user may not know a priori ifκ̃ ≤ κ̃max since it is even more
difficult to estimateκ̃ from a sample than it is to estimateσ2. Thus, the choice of
κ̃max relies on the user’s best judgement. Here are a few thoughts that might help.
One might try a sample of typical problems for which one knowsthe answers and
use these problems to suggest an appropriateκ̃max. Alternatively, one may think of
κ̃max not as a parameter to be prescribed, but as a reflection of the robustness of
one’s Monte Carlo algorithm having chosenα, nσ andC. The discussion at the end
of Section 3.4 provides guidance on how to choosenσ andC to achieve a given
κ̃max in a manner that minimizes total computational cost. Briefly, one should not
skimp onnσ , but choosenσ to be several thousand timesκ̃max and employ aC that
is relatively close to unity. Another way to look at the Theorem 5 is that, like a
pathologist, it tells you what went wrong if the two-stage adaptive algorithm fails:
the kurtosis of the random variable must have been too large.In any case, as one
can see in Figure 1, in the limit of vanishingε/σ , i.e., NCLT → ∞, the choice of
κ̃max makes a negligible contribution to the total cost of the algorithm. The main
determinant of computational cost isε/σ .

Bahadur and Savage (1956) prove in Corollary 2 that it isimpossibleto construct
exact confidence intervals for the mean of random variable whose distribution lies
in a set satisfying a few assumptions. One of these assumptions is that the set of
distributions is convex. This assumption is violated by ourassumption of bounded
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kurtosis in Theorem 5. Thus, we are able to construct guaranteed confidence inter-
vals.

Our algorithm is adaptive becausenµ is determined from the sample variance.
Information-basedcomplexity theory tells us that adaptive information does not help
for the integration problem for symmetric, convex sets of integrands,f , in the worst
case and probabilistic settings (Traub et al, 1988, Chapter4, Theorem 5.2.1; Chapter
8, Corollary 5.3.1). Here, in Corollary 1 the cone,Cκ̃max, although symmetric, is not
a convex set, so it is possible for adaption to help.

There are a couple of areas that suggest themselves for further investigation. One
is relative error, i.e., a fixed width confidence interval of the form

Pr[|µ − µ̂| ≤ ε |µ |]≥ 1−α.

Here the challenge is that the right hand side of the first inequality includes the
unknown mean.

Another area for further work is to provide guarantees for automatic quasi-Monte
Carlo algorithms. Here the challenge is finding reliable formulas for error estima-
tion. Typical error bounds involve a semi-norm of the integrand that is harder to
compute than the original integral. For randomized quasi-Monte Carlo an estimate
of the variance of the sample mean usingn samples does not tell you much about
the variance of the sample mean using a different number of samples.
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