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Guaranteed Conservative Fixed Width
Confidence Intervals Via Monte Carlo Sampling

Xx

Fred J. Hickernel, Lan Jiang, Yuewei Lit?, and Art Owen

Abstract Monte Carlo methods are used to approximate the meansf, random
variablesY, whose distributions are not known explicitly. The key idedhat the
average of a random samplg, ..., Yy, tends tou asn tends to infinity. This article
explores how one can reliably construct a confidence intéswa with a prescribed
half-width (or error tolerance). Our proposed two-stage algorithm assumes that the
kurtosisof Y does not exceed some user-specified bound. An initial inthpd and
identically distributed (1ID) sample is used to confiderglstimate the variance of
Y. A Berry-Esseen inequality then makes it possible to datezitine size of the 11D
sample required to construct the desired confidence iftlawvau. We discuss the
important case wheté = f(X) andX is a randonu-vector with probability density
functionp. In this casqu can be interpreted as the integfak f (x)p(X) dx, and the
Monte Carlo method becomes a method for multidimensionaature.

1 Introduction

Monte Carlo algorithms provide a flexible way to approximgte- E(Y) when
one can generate samples of the random varidbleor exampleY might be the
discounted payoff of some financial derivative, which dejfseon the future perfor-
mance of assets that are described by a stochastic model (iTisethe fair option
price. The goal is to obtain@nfidence interval
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Pllu—fj|<e]>1-a, 1)

where

e U is approximated by the sample averagenafdependent and identically dis-
tributed (11D) samples oY,

1 n
ﬂ:ﬁn:_ Yi7 (2)
”i;

e ¢ isthe half-width of the confidence interval, which also ssras amrror toler-
ance and
e 0 is the level ofuncertainty e.g., 1% or QL%, which is fixed in advance.

Often the sample size, is fixed in advance, and the central limit theorem (CLT)
provides an approximate value foiin terms ofn and

0 = Var(Y) = E[(Y — p)?], 3

which itself may be approximated by the sample variance.gde here is some-
what different. We want to fix in advance and then determine how large the sample
size must be to obtain a fixed width confidence interval of trenf(1). Moreover,

we want to make sure that our confidence interval is corretust approximately
correct, or correct in the limit of vanishirg In this paper we present Algorithm 1
for obtaining such a fixed width confidence interval for theamef a real random
variable when one is performing Monte Carlo sampling.

Before presenting the method, we outline the reasons thstirex fixed width
confidence intervals are not suitable. In summary, therdvewedrawbacks of ex-
isting procedures. Much existing theoryasymptotici.e., the proposed procedure
attains the desired coverage level in the limitas O but does not provide coverage
guarantees for fixed > 0. We want such fixed guarantees. A second drawback is
that the theory may make distributional assumptions that@w strong. In Monte
Carlo applications one typically does not have much infdiomeabout the underly-
ing distribution. The form of the distribution fof is generally not known, V&Y)
is generally not known, and is not necessarily bounded. We are aiming to derive
fixed width confidence intervals that do not require suchmagsions.

The width (equivalently length) of a confidence intervaldeto become smaller
as the numben of sampled function values increases. In special circumesis, we
can chooseato get a confidence interval of at most the desired length tledst the
desired coverage level,-1a. For instance, if the variance? = Var(Y), is known
then an approach based on Chebychev’s inequality is al@ildtough the actual
coverage will usually be much higher than the nominal ler@aning that much
narrower intervals would have sufficed. Known variance iditoh to a Gaussian
distribution forY supports a fixed width confidence interval construction ihabt
too conservative. The CLT provides a confidence intervalighasymptotically cor-
rect, but our aim is for something that is definitely corremtfinite sample sizes.
Finally, conservative fixed width confidence intervals farans can be constructed
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for bounded random variables, by appealing to exponengagjualities such as Ho-
effding’s or Chernoff’s inequality. Unfortunately, is often unbounded, e.g., in the
case where it represents the payoff of a call option.

If the relevant variance or bound is unknown, then approsiblased on sequen-
tial statistics (Siegmund, 1985) may be available. In satiaemethods one keeps
increasingn until the interval is narrow enough. Sequential confidentervals re-
quire us to take account of the stopping rule when computiegbnfidence level.
Unfortunately, all existing sequential methods are laghinsome aspects.

Serfling and Wackerly (1976) consider sequential confidentvals for the
mean (alternatively for the median) in parametric disttitous, symmetric about
their center point. The symmetry condition is not suitablegfeneral purpose Monte
Carlo applications.

Chow and Robbins (1965) develop a sequential sampling fixéthwonfidence
interval procedure for the mean, but its guarantees areamygnptotic (ag — 0).
Mukhopadhyay and Datta (1996) give a procedure similar toncand Robbins’,
and it has similar drawbacks.

Bayesian methods can support a fixed width interval comntgipi with 1 — a
posterior probability, and Bayesian methods famously daexuire one to account
for stopping rules. They do however require strong distidmal assumptions.

There is no assumption-free way to obtain exact confiderieevials for a mean,
as has been known since Bahadur and Savage (1956). Somefldsslonption is
needed to rule out settings where the desired quantity im#ten of a heavy tailed
random variable in which rarely seen large values domirregertean and spoil the
estimate of the variance. The assumption we use is an uppadtmm the modified
kurtosis (normalized fourth moment) of the random variahle

E[(Y — p)"]

o2 < Kmax- 4)

K=
(The quantityk — 3 is commonly called the kurtosis.) Under such an assumptén
present a two-stage algorithm: the first stage generatesseoative upper bound
on the variance, and the second stage uses this variancd bodra Berry-Esseen
Theorem, which can be thought of as a non-asymptotic CLT,eterchine how
largen must be for the sample mean to satisfy confidence intervalT{i¢orem
5 demonstrates the validity of the fixed width confidencerirgk and Theorem 6
demonstrates that the cost of this algorithm is reasonadblese are our main new
theoretical results.

Our procedure is a two-stage procedure rather than a futjyesgial one. In
this it is similar to the method of Stein (1945, 1949), exdbpt the latter requires
normally distributed data.

One might question whether assumption (4), which involeesth moments of
Y, is more reasonable than an assumption involving only thersémoment of .
For example, using Chebychev’s inequality with the assionpt

0% < Ofax (5)



4 Fred J. Hickernell, Lan Jiang, Yuewei Liu, and Art Owen

also yields a fixed width confidence interval of the form (1 Mbuld argue that (4)
is indeed more reasonable. Firstyisatisfies (4), then so doe¥ for any nonzero
¢, however, the analog does not hold for (5). In factyifs nonzero, then (5) must
be violated bycY for c sufficiently large. Second, makingnax a factor of 10 or
100 larger thark does not significantly affect the total cost (number of saspl
required) of our two-stage Monte Carlo Algorithm 1 for a kargnge of values of
o/€. However, the cost of our Monte Carlo algorithm, and indeggdMonte Carlo
algorithm based on 11D sampling is proportionaldd, so overestimating? by a
factor of 10 or 100 or more to be safe increases the cost oflgfogitam by that
factor.

An important special case of computipg= E(Y) arises in the situation where
Y = f(X) for some functiorf : RY — R and some random vectdrwith probabil-
ity density functionp : RY — [0,). One may then interpret the meanYofs the
multidimensional integral

p=u(f) =E(Y) = [ fxp(x)dx (6)
Note that unlike the typical probability and statisticstieef, where f denotes a
probability density function, in this papdr denotes an integrand, amddenotes
the probability density function. Given the problem of exatingt = [za 9(X) dx,
one must choose a probability density functmfor which one can easily generate
random vectorX, and then set = g/p. The quantitiewr? andk defined above can
be written in terms of weighted’,-norms off:

lily={ [ roopom e} . e=piopg k= 12HE g
oo | ) I~ ul

For a giveng, the choice op is not unique, and making an optimal choice belongs
to the realm ofimportance samplingThe assumption of bounded kurtosis, (4), re-
quired by Algorithm 1, corresponds to an assumption thairttegrandf lies in the
coneof functions

G = {1 € La2 || = (1) L4 < R F = (D)2} (8)

This is in contrast to &all of functions, which would be the case if one was satis-
fying a bounded variance condition, (5).

From the perspective of numerical analysig ifias independent marginals, one
may apply a product form of a univariate quadrature rule &leateu. However,
this consumes a geometrically increasing number of sangsdésincreases, and
moreover, such methods often require rather strict smesthassumptions dn

If f satisfies moderate smoothness conditions, then (randdjizasi-Monte
Carlo methods, or low discrepancy sampling methods fouawadgu are more ef-
ficient than simple Monte Carlo (Niederreiter, 1992; Sload doe, 1994; Lemieux,
2009; Dick and Pillichshammer, 2010). Unfortunately, picat error estimation re-
mains a challenge for quasi-Monte Carlo methods. Heurieithods have been
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proposed, but they lack theoretical justification. One shebristic is used with
reasonable success in the numerical examples of Sectiorddpéndent random-
izations of quasi-Monte Carlo rules of fixed sample size carued to estimate
their errors, but they do not yet lead to guaranteed, fixedhwddnfidence intervals.

Computational mathematicians have also addressed th&epraih constructing
automatic algorithms, i.e., given an error tolerance,odne computes an approx-
imation, {1, based om evaluations of the integranfi such thatu — fi| < €. For
example, MATLAB (The MathWorks, Inc., 2012), a popular nuioal package,
containgguad, an adaptive Simpson'’s rule for univariate quadratureimeutevel-
oped by Gander and Gautschi (2000). Althougrad and other automatic rules
generally work well in practice, they do not have any rig@guarantees that the
error tolerance is met, and it is relatively simple to comstrfunctions that fool
them. This is discussed in Section 4. Since a random algoyiike Monte Carlo,
gives a random answer, any statements about satisfyingranceiterion must be
probabilistic. This leads us back to the problem of findingcadiwidth confidence
interval, (1).

An outline of this paper follows. Section 2 defines key terohdgy and provides
certain inequalities used to construct our fixed width canfizk intervals. The new
two-stage Algorithm 1 is described in Section 3, where ogerguarantees of its
success and its cost are provided. Section 4 illustrateshtidenges of computing
U to a guaranteed precision through several numerical exaanphis paper ends
with a discussion of our results and further work to be done.

2 Background probability and statistics

In our Monte Carlo applications, a quantity of interest isti®n as an expectation:

u = E(Y), whereY is a real valued random variable. As mentioned above, very
oftenY = f(X) whereX € RY is a random vector with probability density function
p. In other settings the random quantKymight have a discrete distribution or be
infinite dimensional (e.g,. a Gaussian process) or bothiviemte Carlo estimation,
we can work with the distribution of alone. The Monte Carlo estimate pfis the
sample mean, as given in (2), where thare 11D random variables with the same
distribution asy'.

2.1 Moments

Our methods require conditions on the first four momentg as described here.
The variance oY, as defined in (3), is denoted w#, and its non-negative square
root, g, is the standard deviation &f. Some of our expressions assume without
stating it thato > 0, and all will required < «. The skewness of is y = E[(Y —
u)3]/03, and the kurtosis of is k = K — 3 =E[(Y — u)*/0o* — 3 (see (4)). The
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mysterious 3 ink is there to make it zero for Gaussian random variables. Also,
u,0?,y,k are related to the first four cumulants (McCullagh, 1987, CI23 of the
distribution ofY, meaning that

2t2 3t3 4-t4
log(E[exp(tY)]) = ut + 02 + VZI + Kf“ +o(th).

Our main results require a known upper bounddpwhich then implies thatr and
y are finite.

2.2 CLT intervals
A random variabl& has the standard normal distribution, denotedty0, 1), if

1 4
PrZ<z :—/ exp(—t2/2)dt =: d(2).
29 = | ex-t/2d= 00
Under the central limit theorem, the distribution ¢fn({, — u)/o approaches

A4(0,1) asn — o, wherefi, denotes the sample mean ofllD samples. As a
result

Pr(fin—2.580/n < u < fin+2.580//n) — 0.99 9)

asn — . We write the interval in (9) agin +2.580/+/n. Equation (9) cannot be
used whero? is unknown, but the usual estimate

S= rll i;(Yi — fIn)? (10)

may be substituted, yielding the interva} + 2.58s,/+/n which also satisfies the
limit in (9) by Slutsky’s theorem (Lehmann and Romano, 20@%) an arbitrary
confidence level + a € (0,1), we replace the constant5B by z, , = o 11—
a/2). The width of this interval is 2, ,$/+/n, and wheru is in the interval then
the absolute errdu — fin| < & := Z4 /28 /+/N.

The coverage level of the CLT interval is only asymptoticimore detail, (Hall,
1988, p. 948) shows that

Pr(| 1 — fin] < 2.585/y/f) = 0.99+ %(A+ By?+CK) + o(n—lz) (11)
for constantsA, B, andC that depend on the desired coverage level (here 99%).
Hall's theorem requires only that the random variableas sufficiently many finite
moments and is not supported solely on a lattice (such astibgars). It is interest-
ing to note that th&(1/n) coverage error in (11) is better than t®¢1/,/n) root
mean squared error for the estimatgitself.
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2.3 Standard Probability I nequalities

Here we present some well known inequalities that we will &sest, Chebychev’s
inequality ensures that a random variable (sucliigsis seldom too far from its
mean.

Theorem 1 (Chebychev’s Inequality).(Lin and Bai, 2010, 6.1c, p. 52) Let Z be a
random variable with meap and variances? > 0. Then for alls > 0,

2
o
PllZ—ulz¢l < —.
In some settings we need a one sided inequality like Chemgh&ke will use
this one due to Cantelli.

Theorem 2 (Cantelli’'s Inequality). (Lin and Bai, 2010, 6.1e, p. 53) Let Z be any
random variable with meap and finite variances?. For any a> 0, it follows that:

o2

PlZ—u>a < ———.
Z-nzd a?+0?

Berry-Esseen type theorems govern the rate at which a Clestagld. We will
use the following theorem which combines recent work on huwiifiorm and non-
uniform (x-dependent right hand side) versions.

Theorem 3 (Berry-Esseen Inequality).Let Yi,...,Y, be IID random variables
with meany, variancea? > 0, and third centered momentav- E |Y; — u|* /03 <
oo, Letfin = (Y14 - -+ Yn)/n denote the sample mean. Then

Pr[g/_\/‘% <x} — P(x)

1 AsM3
<Ap(X,M3) ;= —min| Ay (M3 +Ay), —= VX € R,
n(X,Ms) Wi ( 1(M3+Az) 1+|x|3>

where A = 0.3328and A = 0.429(Shevtsova, 2011), angA- 18.1139(Nefedova
and Shevtsova, 2012).

The constants in the Berry-Esseen Inequality above have dearea of active
research. We would not be surprised if there are further dvgments in the near
future.

Our method requires probabilistic bounds on the sampleanaei,s:. For that,
we will use some moments of the variance estimate.

Theorem 4. (Miller, 1986, Eq. (7.16), p. 265) LetY...,Y, be IID random vari-
ables with variancer? and modified kurtosi& defined in(4). Let § be the sample
variance as defined i(L0). Then the sample variance is unbiasés?) = o2, and
its variance is
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Var(s) = %4 (R — :%i) .

3 Two-stage confidence interval

Our two-stage procedure works as follows. In the first stagetake a sample of
independentvalues, .. .. Yy, fromthe distribution of. From this sample we com-
pute the sample variancx%,a, according to (10) and estimate the varianc#;dfy
G2 =¢?& _, where¢? > 1 s a “variance inflation factor” that will reduce the prob-
ability that we have underestimated = Var(Y). For the second stage, we use the
estimated? as if it were the true variance of and use Berry-Esseen theorem to
obtain a suitable sample sizg,, for computing the sample average that satisfies
the fixed with confidence interval (1).

The next two subsections give details of these two stepsatiiaet us bound
their error probabilities. Then we give a theorem on the meths a whole.

3.1 Conservative variance estimates

We need to ensure that our first stage estimate of the var@héenot too small.
The following result bounds the probability of such an usdtimate.

Lemma 1.LetY,..., Y, be lID random variables with varianag? > 0 and kurtosis
K. Let § be the sample variance defined(@0), and letk = k + 3. Then

ofg<afin (=22 ()} e aza
g fi (-2 (59210 am

Proof. Applying Theorem 4 and choosing

a= 1/Var(§)1770 :02\/<R—:%i) (1;:) >0,

it follows from Cantelli’s inequality (Theorem 2) that
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Prlﬁ—ozz 02\/(;2_2%?) (1;:)1 =Pr[£— 02> 3]

Var(s) Var(sf) -,
T @+Var(s)  Var()E +Var(s)  (HE)+1

Then (12a) follows directly. By a similar argument, apptyi@antelli's inequality
to the expression Br-s3 + 02 > a] implies (12b). O

Using Lemma 1 we can bound the probability tfidt= ¢?s; overestimates?.
Equation (12a) implies that

S 2

Pr >0
-2 ()

Thus, it makes sense for us to require the modified kurt&si® be small enough,
relative tong, a, ande, in order to ensure that f¥2 > 02) > 1— a. Specifically,
we require

or equivalently,

2
k< ng—3+ ( o ) <1 ! ) =: Kmax(0,Ng,<). (13)

n—1 \l-a - e2

This condition is the explicit version of (4) mentioned iretimtroduction.

3.2 Conservative interval widths

Here we consider how to choose the sample sizi® get the desired coverage level
from an interval with half-length at most We suppose here that is known. In
practice we will use a conservative (biased high) estimatterf

First, if the CLT held exactly and not just asymptoticallyeh we could use a

CLT sample size of
_ (%292
NCLT(S,O-,C{) - ’V(T) _‘
independent values of in an interval like the one in (9).
Given knowledge oy, but no assurance of a Gaussian distributionffgrwe
could instead select a sample size based on ChebychevisalitygTheorem 1).
Taking
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Nched( €, 0, @) = [:—;] (14)

IID observations o¥ gives the confidence interval (1). Naturagnep > Ncit.

Finally, we could use the non-uniform Berry-Esseen ineiggutbm Theorem 3.
This inequality requires a finite scaled third moméfg = E|Y; — u|3/03. If fin
denotes a sample meanroifiD random instances of, then the non-uniform Berry-
Esseen inequality implies that

N _ fin—p _ e fin — 1 Ve
Pl < 1= | G < SO | e Bk <
> [®(ve/0) — An(vNe/ 0, M3)]
— [®(~iE/0) + An(—/Fie /0, Ms)
= 1 2[®(—/e/0) + An(v/Re/ 0, M3)), (15)
sinceAn(—x,M3) = An(x,M3). The probability of making an error no greater than

€ is bounded below by % a, i.e., the fixed width confidence interval (1) holds with
i = [In, providedn > Ngg (€, 0,a,Ms), where the Berry-Esseen sample size is

Nge(€,0,a,M3) := min{n eN:®(—/ne/0) + An(v/Ne/T,M3) < %} (16)

To computeNge(&, 0, a,Ms), we need to knowivis. In practice, substituting an up-
per bound orMj3 yields an upper bound on the necessary sample size.

Note that if theA, term in (16) were absenigg would correspond to the CLT
sample sizé\Nc 1, and in generaNsg > Ncit1. It is possible that in some situations
Nse > Nchepmight hold, and in such cases we could dggepinstead ofNgg.

3.3 Algorithm and Proof of Its Success

In detail, the two-stage algorithm works as described below

Algorithm 1 (Two Stage). The user specifies four quantities:

an initial sample size for variance estimatiog,c€ {2,3,...},
a variance inflation factaf? € (1, ),

an uncertaintyr € (0,1), and,

an error tolerance or confidence interval half-widths; O.

At the first stage of the algorithnYy,...,Ys, are sampled independently from
the same distribution a. Then the conservative variance estimaté= ¢?s;_, is
computed in terms of the sample variamfg, defined by (10).

To prepare for the second stage of the algorithm we computel —/1—a
and themkKmax = Kmax(@, Ng, €) using equation (13). The sample size for the second
stage is
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Ny = Ny (€, 8,8, Rala), (17)

where
Ny (g, 0,0,M) := max(1,min(Nchen(€,0,a),Nge(g,0,a,M))).  (18)

Recall thatNchepis defined in (14) antlzg is defined in (16).

After this preparation, the second stage is to sampley, . .., Yn,+n, indepen-
dently from the distribution o¥, and independently ofy,...,Y,,. The algorithm
then returns the sample mean,

1 Notny
p=— Yi. (19)
Ny i:r;l

The success of this algorithm is guaranteed in the followlemrem. The main
assumption needed is an upper bound on the kurtosis.

Theorem 5.Let Y be a random variable with mean and either zero variance
or positive variance with modified kurtosis< Kmax(&,ng, €). It follows that Al-
gorithm 1 above yields an estimagegiven by(19) which satisfies the fixed width
confidence interval condition

Prlid—ul<e)>1-a.

Proof. If 02 =0, thens; =0, n, = 1 andI = p with probability one. Now con-
sider the case of positive variance. The first stage yieldsriance estimate satis-
fying Pr(62 > 02) > 1— @ by the argument preceding the kurtosis bound in (13)
applied with uncertaintyi. The second stage yields(Ht — p| < &) > 1—a by the
Berry-Esseen result (15), so long @s> 0 andMz < Kmax(&,ng,¢)%4. The sec-
ond condition holds becausé; < %4 by Jensen’s Inequality (Lin and Bai, 2010,
8.4.b). Thus, in the two-stage algorithm we have

Remark 1As pointed out earlier, the guarantees in this theorem reghat the
modified kurtosis o¥ not exceed the specified upper bowkigx As it is presented,
Algorithm 1 takes as inputs,, €, anda, and uses these to computgaxaccording

to (13). The reason for doing so is that one might have a biettigition for ng, €,
anda. Alternatively, one may specifyi; andKmax and use (13) to comput& or
specify¢ andkmaxand use (13) to computg. The issue of how one should choose
ng, €, andkmayx in practice is discussed further in Section 5.

Remark 2In this algorithm it is possible to choosg much smaller thang if the
sample variance is small. As a practical matter we suggasiftbne is willing to
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investns samples to estimate the variance then one should be willingvest at
least that many additional samples to estimate the meamefine, in the numerical
examples of Section 4 we use

Nyu(g,0,a,M) := max(ng, min(Nchew(€,0,a),Nse(g,0,a,M)))  (20)

instead of (18) to determine the sample size for the sampénizecause the vari-
ance is typically harder to estimate accurately than thenmeae may wonder
whetherngs should be chosen greater thap However, for Monte Carlo simula-
tion we only need the variance to one or two digits accurabgreas we typically
want to know the mean to a much higher accuracy. By the errontbdollowing
from Chebychev’s inequality (Theorem 1), the definition\pf in (20) means that
the fixed width confidence interval constructed by Algoritlhralso holds for any
random variablesy, with small variance, namelg? < e2ang, even if its kurtosis
is arbitrarily large.

As mentioned in the introduction, one frequently encowsderase occurs when
Y is ad-variate function of a random vect®. Thenu corresponds to the multi-
variate integral in (6) and Theorem 5 may be interpreted ksbe

Corollary 1. Suppose thap : RY — R is a probability density function, the inte-
grand f: RY — R has finite %, norm as defined i(i7), and furthermore f lies in the
CONe%x,., defined in(8), wherekmax = Kmax(@,Ng, €). It follows that Algorithm
1 yields an estimateg, of the multidimensional integrgl defined in(6), which
satisfies the fixed width confidence interval condition

Pri—p[<e)>1-a.

3.4 Cost of the Algorithm

The number of function values required by the two-stage Allgm 1 isng + ng,
the sum of the initial sample size used to estimate the vegianY and the sample
size used to estimate the meanYofAlthoughng is deterministicny, is a random
variable, and so the cost of this algorithm might be best ddfiorobabilistically.
Moreover, the only random quantity in the formula fgr in (17) is 62, the upper
bound on variance. Clearly this depends on the unknown ptipalvarianceg?,
and we expecti? not to overestimater? by much. Thus, the algorithm cost is
defined below in terms of? and the error tolerance (interval half-width) An
upper bound on the cost is then derived in Theorem 6.

Let A be any random algorithm that takes as its input, a method ¢oegt-
ing random sample¥y,Y,, ... with common distribution functiof having vari-
anceo? and modified kurtosi&. Additional algorithm inputs are an error tolerance,
€, an uncertaintyg, and a maximum modified kurtosignax. The algorithm then
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computest = A(F, €, a, Kmax), an approximation ta = E(Y), based on a total of
Nwot(€, o, Kmax, F ) Samples. The probabilistic cost of the algorithm, with uteiaty
B, for integrands of variance no greater thaf,, and modified kurtosis no greater
thankmax is defined as

Niot(€, @, B, Kmax, Omax) ‘= _SuUp min{N : Pr{Niot(€, @, Kmax, F) <N] > 1—}.

K <Kmax
0<0Omax
Note thatkmax is an input to the algorithm, butax is not. The cost of an arbitrary
algorithm,A may also depend on other parameters, sualyaand¢ in our Algo-
rithm 1, which are related t&max. However, this dependence is not shown explicitly
to keep the notation simple.
The cost of the particular two-stage Monte Carlo algorittefirced in Algorithm
lis
sup min{N : Pr(no+N“(£,6,&,k,?q/£<) <N)> 1—[3}.
K <Kmax
0<0Omax
Sinceny is fixed, bounding this cost depends on boundinge, &, @, R,?@), which
depends o as given by Algorithm 1. Moreoved can be bounded above using
(12a) in Lemma 1. FokK < Kmax,

1—B§Pr[§0 <02{1+\/(R_ :Zj) (E‘f)H
<Pr [62: 2 < ¢202{1+\/<RmaX(n°”a’¢)_ Ez:i) (13_”5) H

= Pr[6?

A
Q
N
s
Q2
:m
£

where

a(1-p)
1-a)B

Noting thatN, (¢, -, a, k%/;x) is a non-decreasing function allows one to derive the

following upper bound on the cost of the adaptive Monte Caldmrithm.

> 1.

Theorem 6. The two-stage Monte Carlo algorithm for fixed width confideire
tervals based on IID sampling described in Algorithm 1 hasr@bpbilistic cost
bounded above by

Neot(€, o, B, Kmax, Omax)
~ ~ ~ ~3/4
< Nyp(&,a, B, Kmax, Omax) = Ng + Nu(&UmaxV(a,B,¢)7a7Km/ax)-

Note that the Chebychev sample sikgnep defined in (14), the Berry-Esseen
sample sizeNgg, defined in (16), and thubsl, all depend ono and ¢ through
their ratio, o/e. Thus, ignoring the initial sample used to estimate theavene,
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Niot(€, o, B, Kmax, Omax) iS roughly proportional tCD'nzqax/Sz, even thoughomax is
not a parameter of the algorithm. Algorithmatlaptivelydetermines the sample
size, and thus the cost, to fit the unknown variancé.dkandom variable%;, with
small variances will require a lower cost to estimataith a given error tolerance
than random variables with large variances.

1.7 10

10

Cost Ratios

(b)

Fig. 1 (a) The cost ratios dfl,p(€,0.01,0.01, Kmax, ) /Nci7 (€, 0,0.01) for Kmax= 2,10, and 100,
with ng = 4000k max (dashed) and, optimized (solid); (b) the optimal values o§ (solid) and¢
(dashed).

Figure 1a shows the ratio of the upper bound of the &@gte, 0.01,0.01, Kmax, 0),
to the ideal CLT costNc 1(&,0,0.01) = [(2.580/¢)?], for a range ofo /¢ ratios
and forkmax = 2,10, and 100. In these graphs the formula defilygin Theorem
6 uses the alternative and somewhat costlier formulaNfptin (20). The dashed
curves in Figure 1a show these cost ratios wigh= 4000kmax Which corresponds
to ¢ ~ 1.1. The solid curves denote the case wherand¢ vary with g /¢ to min-
imize Nyp. Figure 1b displays the optimal valuesmf (solid) and¢ (dashed). In
both figures, higher curves correspond to higher valuésgf.

Here ,NcLt denotes the ideal cost if one knew the variancé afpriori and knew
that the distribution of the sample mean was close to Gausblee cost ratio is the
penalty for having a guaranteed fixed width confidence iaeirvthe absence of
this knowledge about the distribution ¥6f For smaller values dfic_ T, equivalently
smallero /e, this cost ratio can be rather large. However the absolteetssf this
large penalty is mitigated by the fact that the total numbeiamples needed is not
much. For largeNcT, equivalently largeo /€, the cost ratio approaches somewhat
less than 4 in the case of optimal, and €, and somewhat less than 2 fogy =
100K max-

The discontinuous derivatives in the curves in Figure ledrism the minimum
and maximum values arising in formulas (16) and (20Ng¢ andN,,, respectively.
Taking the upper dashed curve in Figure 1a as an examplicferless than about
3.5x10% Ny = ng. ForNct from about 35 x 10% to about 6x 10°, N, corresponds
to the second term in the minimum in the Berry-Esseen inégu@l6), i.e., the non-
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uniform term. FoNc_ T greater than 6 10°, Ny corresponds to the first term in the
minimum in the Berry-Esseen inequality, (16), i.e., thefomrm term.

The ideal case of optimizing; and¢ with respect tao /¢ is impractical, since
o is not known in advance. Our suggestion is to choésaound 11, and then
chooseng as large as needed to ensure Halx is as large as desired. For example
with ¢ = 1.1 andKmax = 2,10, and 100 we gets = 6593, 59311and 652417
respectively.

4 Numerical Examples

4.1 Univariate Fooling Functions for Deterministic Algorithms

Several commonly used software packages have automadigthalgs for integrat-
ing functions of a single variable. These include

e quad in MATLAB (The MathWorks, Inc., 2012), adaptive Simpsonge based
onadapt si mby Gander and Gautschi (2000),

e quadgk in MATLAB (The MathWorks, Inc., 2012), adaptive Gauss-Krod
quadrature based @juadva by Shampine (2008), and

e thechebf un (Hale et al, 2012) toolbox for MATLAB (The MathWorks, Inc.,
2012), which approximates integrals by integrating intéaipry Chebychev
polynomial approximations to the integrands.

For these three automatic algorithms one can easily protezentmey sample
the integrand, feed the algorithms zero values, and thestieart fooling functions
for which the automatic algorithms will return a zero valoe the integral. Figure
2 displays these fooling functions for the problem= fol f(x) dx for these three
algorithms. Each of these algorithms is asked to providenawar with an absolute
error no greater than 1d*, but in fact the absolute error is 1 for these fooling
functions. The algorithmguad andchebf un sample only about a dozen points
before concluding that the function is zero, whereas therdlgnquadgk samples
a much larger number of points (only those between 0 a@dl 8re shown in the

plot).

4.2 Integrating a Single Hump

Accuracy and timing results have been recorded for the iatem problemy =
Jio.qye f(x) dx for a single hump test integrand

1+b; exp(—i(xj ;Zhj)zﬂ . (21)

i

d

f(x) =ao+bo ]
=1
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Fig. 2 Plots of fooling functions,f, with u = jbl f(x) dx = 1, but for which the corresponding
algorithms return values gf = 0.

Herex is ad dimensional vector, anab, by, . ..,bq,C1,...,Cq,h1,...,hq are param-
eters. Figure 3 shows the results of different algorithmsdased to integrate 500
different instances of. For each instance df, the parameters are chosen as fol-
lows:

e by,...,by €[0.1,10 with log(b;) being i.i.d. uniform,

e Ci,...,Cq € [107% 1] with log(cj) being i.i.d. uniform,

e hy,...,hg €[0,1] with h; being i.i.d. uniform,

e bgchosenintermsofthey, ... by,cy,...,¢q,hy,...,hg to makeo? = || f — uH% €
[102,107], with log(o) being i.i.d. uniform for each instance, and

e apchoseninterms of thiey, ... ,by,C1,...,Cq,h1,...,hg to makeu = 1.

These ranges of parameters are chosen so that the algohi#intgstested fail to
meet the error tolerance a significant number of times.

These 500 random constructions biwith d = 1 are integrated usinguad,
quadgk, chebf un, Algorithm 1, and an automatic quasi-Monte Carlo algorithm
that uses scrambled Sobol’ sampling (Owen, 1995, 1997akmhdek, 1998; Hong
and Hickernell, 2003; Dick and Pillichshammer, 2010). Far $obol’ sampling al-
gorithm the error is estimated by an inflation factor df imes the sample standard
deviation of 8 internal replicates of one scrambled Sobaiuence (Owen, 2006).
The sample size is increased until this error estimate dseseto no more than the
tolerance. We have not yet found simple conditions on ireds for which this
procedure is guaranteed to produce an estimate satisfyengrtor tolerance, and
so we do not discuss it in detail. We are however, intriguethleyfact that it does
seem to perform rather well in practice.

For all butchebf un, the specified absolute error tolerance is- 0.001. The
algorithmchebf un attempts to do all calculations to near machine precisibe. T
observed error and execution times are plotted in Figuret®&rdas hebf un uses
a minimum of 2 + 1 = 9 function values, the figure labeledtebf un (heavy
duty)” displays the results of requiringhebf un to use at least®+ 1 = 257 func-
tion values. Algorithm 1 takesr = 0.01, and¢ = 1.1. For the plot on the left,
ng = 213 = 8192, which corresponds ®max = 2.24. For the heavy duty plot on
the right,n, = 218 = 262144, which corresponds &max = 40.1. The same initial
sample sizes are used for the Sobol’ sampling algorithm.
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Fig. 3 Execution times and errors for test function (21) b= 1 and error tolerance = 103,
and a variety of parameters giving a rangeoadindk. Those points to the left/right of the dashed
vertical line represent successes/failures of the auioratgorithms. The solid line shows that
cumulative distribution of actual errors, and the dot-@aklne shows the cumulative distribution
of execution times. For the Algorithm 1 the points labeledé¢ those for which the Corollary 1

guarantees the error tolerance.
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Figure 3 shows thajuad andquadgk are quite fast, nearly always providing
an answer in less than@l seconds. Unfortunately, they successfully meet the er-
ror tolerance only about 30% of the time fquad and 50-60% of the time for
quadgk. The difficult cases are those whexeis quite small, and these algorithms
miss the sharp peak. The performancebébf un is similar to that ofquad and
quadgk. The heavy duty version afhebf un fares somewhat better. For both of
thechebf un plots there are a significant proportion of the data that dappear
because their errors are smaller than10

In the plots for Algorithm 1 the alternative and somewhatl@sformula forN,
in (20) is employed. An asterisk is used to label those paiatsfyingk < Kmax,
wherek is defined in (7). All such points fall within the prescribedar toler-
ance, which is even better than the guaranteed confiden@&fBor Algorithm 1
(heavy duty)Kmax is larger, so there are more points for which the guarant&tsho
Those points labeled with a dot, are those for which- Kmax, and so no guar-
antee holds. The points labeled with a diamond are those fiachnAlgorithm 1
attempts to exceed the cost budget that we set, i.e., it watsoosen,, such that
Ng + Ny > Nmax := 10°. In these cases, is chosen a$10° — ng |, which often is
still large enough to get an answer that satisfies the erteratoce. Algorithm 1
performs somewhat more robustly thgmad, quadgk, andchebf un, because it
requires only a low degree of smoothness and takes a faigg lminimum sample.
Algorithm 1 is generally much slower than the other algangtbecause it does not
assume any smoothness of the integrand. The more impowarttip that Algo-
rithm 1 has a guarantee, whereas to our knowledge, the ah@nes do not.

From Figure 3, the Sobol’ sampling algorithm is more rekabhd takes less
time than Algorithm 1. This is due primarily to the fact that dimension one,
Sobol’ sampling is equivalent to stratified sampling, whtre points are more
evenly spread than I[ID sampling.

Figure 4 repeats the simulation shown in Figure 3 for the dastdunction (21),
but now withd = 2, ..., 8 chosen randomly and uniformly. For this case the univari-
ate integration algorithms are inapplicable, but the rdirtiensional routines can
be used. There are more cases where the Algorithm 1 triectedxhe maximum
sample size allowed, i.6ng + Ny )d > Nmax:= 10°, but the behavior seen for= 1
still generally applies.

4.3 Asian Geometric Mean Call Option Pricing

The next example involves pricing an Asian geometric mediropgion. Suppose
that the price of a stocls at timet follows a geometric Brownian motion with
constant interest rate, and constant volatilityy. One may express the stock price
in terms of the initial condition$(0), as

S(t) = S(0)exg(r —V?/2)t+VB(t)], t>0,
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Fig. 4 Execution times and errors for test function (21)dox 2,...,8 ands = 103, with the rest
of the parameters as in Figure 3.

whereB is a standard Brownian motion. The discounted payoff of te@ geo-
metric mean call option with an expiry afyears, a strike price df, and assuming
a discretization adl times is

Y= max([\/S(O)S(T/d)S(ZT/d) - S(T(d—1)/d)\/S(T)V9 ~ K70) e’

(22)
The fair price of this option isu = E(Y). One of our chief reasons for choosing
this option for numerical experiments is that its price carcbmputed analytically,
while the numerical computation is non-trivial.

In our numerical experiments, the values of the Brownianiomoat different
times required for evaluating the stock pri&€T /d),B(2T /d),...,B(T), are com-
puted via a Brownian bridge construction. This means thatofte instance of
the Brownian motion we first comput®(T), thenB(T/2), etc., using indepen-
dent Gaussian random variablgsg ..., Xy, suitably scaled. The Brownian bridge
accounts for more of the low frequency motion of the stockeiy theX; with
smallerj, which allows the Sobol’ sampling algorithm to do a bettér. jo

The option priceyu = E(Y), is approximated by Algorithm 1 and the Sobol’
sampling algorithm using an error tolerancesof 0.05, and compared to the an-
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alytic value ofu. The result of 500 replications is given in Figure 5. Somehef t
parameters are set to be fixed values, namely,

S0)=K=100, T=1, r=003

The volatility,v, is drawn uniformly between.@ and 07. The number of time steps,
d, is chosen to be uniform ovel,2,4,8,16,32}. The true value ofu for these
parameters is between abou 2and 14.
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Fig. 5 Execution times and errors for the Asian geometric mearogaibn ford = 1,2,4,8,16,32
ande = 0.05.

For this example the true kurtosis ¥fis unknown. Both Algorithm 1 and the
Sobol’ sampling algorithm compute the option price to thsiiel error tolerance
with high reliability. For the IID sampling Algorithm 1 andhé¢ ordinary Sobol’
sampling algorithm it can be seen that some of the errorsaedybunder the error
tolerance, meaning that the sample size is not chosen toseoatively. For the
heavy duty Sobol’ algorithm, the high initial sample sizermss to lead to smaller
than expected errors and larger than necessary computiaties
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5 Discussion

Practitioners often construct CLT-based confidence iaterwith the true variance
estimated by the sample variance, perhaps multiplied byedaoftation factor. Of-
ten, this approach works, but it has no guarantee of sucEleeswo-stage algorithm
presented here is similar to the approach just describedt barries guarantees.
These are derived by employing Cantelli's inequality tougasa reliable variance
upper bound, and by employing a Berry-Esseen inequalitpsoe a large enough
sample for the sample mean.

In certain cases our procedure multiplies the computaltwost by a large factor
such as 2 or 10 or even 100 compared to what one might spend basbe CLT
with a known value ofo (see Figure 1). While this seems inefficient, one should
remember that the total elapsed time may still be well belevesl seconds. Fur-
thermore, one typically does not knawvin advance, and our adaptive algorithm
estimatesr and then an appropriate sample sigefrom the data. Our algorithmic
cost will be low when the unknowa is small and large whea is large.

Like any algorithm with guarantees, our algorithm does neethake assump-
tions about the random variabfe We assume a known bound on the kurtosi¥ of
either specified directly or implied by the user’s choiceld sample size for esti-
mating the variancey,, and the variance inflation facta?. This is a philosophical
choice. We prefer not to construct an algorithm that asswartesund on the vari-
ance ofY, because such an algorithm would not be guaranteediferith |c| large
enough. If our algorithm works fo¥, it will also work for cY, no matter how large
] is.

In practice the user may not know a priorikf < Kmax since it is even more
difficult to estimateX from a sample than it is to estimate. Thus, the choice of
Kmax relies on the user’s best judgement. Here are a few thoulghtsrtight help.
One might try a sample of typical problems for which one knéimesanswers and
use these problems to suggest an appropkiaie Alternatively, one may think of
Kmax NOt as a parameter to be prescribed, but as a reflection obthestness of
one’s Monte Carlo algorithm having chosenns and¢. The discussion at the end
of Section 3.4 provides guidance on how to chonseand ¢ to achieve a given
Kmax In @ manner that minimizes total computational cost. Brjeflye should not
skimp onng, but choosa, to be several thousand tim&sax and employ & that
is relatively close to unity. Another way to look at the Thewr5 is that, like a
pathologist, it tells you what went wrong if the two-stagaptive algorithm fails:
the kurtosis of the random variable must have been too langany case, as one
can see in Figure 1, in the limit of vanishirg o, i.e., Nc.1 — o, the choice of
Kmax makes a negligible contribution to the total cost of the dthm. The main
determinant of computational costdgo.

Bahadur and Savage (1956) prove in Corollary 2 thatimhjsossibleio construct
exact confidence intervals for the mean of random variablesedistribution lies
in a set satisfying a few assumptions. One of these assumspahat the set of
distributions is convex. This assumption is violated by assumption of bounded
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kurtosis in Theorem 5. Thus, we are able to construct gueeantonfidence inter-
vals.

Our algorithm is adaptive becausg is determined from the sample variance.
Information-based complexity theory tells us that adagitiformation does not help
for the integration problem for symmetric, convex sets tégmnandsf, in the worst
case and probabilistic settings (Traub et al, 1988, ChdpiEneorem 5.2.1; Chapter
8, Corollary 5.3.1). Here, in Corollary 1 the cor,,,,, although symmetric, is not
a convex set, so it is possible for adaption to help.

There are a couple of areas that suggest themselves foefumttestigation. One
is relative error, i.e., a fixed width confidence intervallué form

Pilu—p| <elpl] >1-a.

Here the challenge is that the right hand side of the firstuaéty includes the
unknown mean.

Another area for further work is to provide guarantees foomatic quasi-Monte
Carlo algorithms. Here the challenge is finding reliablenfolas for error estima-
tion. Typical error bounds involve a semi-norm of the inteyt that is harder to
compute than the original integral. For randomized quasiid Carlo an estimate
of the variance of the sample mean usingamples does not tell you much about
the variance of the sample mean using a different numbemoples.
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