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Abstract

In this thesis we study adaptive nonparametric regression with noise misspecifi-

cation and the complexity of approximation of random fields in dependence of the

dimension.

First, we consider the problem of pointwise estimation in nonparametric regression

with heteroscedastic additive Gaussian noise. We use the method of local approxi-

mation applying the Lepski method for selecting one estimate from the set of linear

estimates obtained by the different degrees of localization. This approach is combined

with the “propagation conditions” on the choice of critical values of the procedure,

as suggested recently by Spokoiny and Vial [66]. The “propagation conditions” are

relaxed for the model with misspecified covariance structure. Specifically, the model

with unknown mean and variance is approximated by the one with the parametric

assumption of local linearity of the mean function and with an incorrectly specified

covariance matrix. We show that this procedure allows a misspecification of the co-

variance matrix with a relative error up to o
(

1
logn

)
, where n is the sample size. The

quality of estimation is measured in terms of nonasymptotic “oracle” risk bounds.

We then turn to the ε -approximation of d -parametric random fields of tensor

product-type by means of n -term partial sums of the Karhunen-Loève expansion.

The analysis is restricted to the average case setting. The quantity of interest is

the information complexity n(ε, d) describing the minimal number of terms in the

partial sums, which guarantees an error not exceeding a given level ε . The behavior

of n(ε, d) as d → ∞ is the subject of our study. It was shown by Lifshits and

Tulyakova [44] that this problem inherits the curse of dimensionality (intractabil-

iv



ity) phenomenon. We present the exact asymptotic expression for the information

complexity n(ε, d) .
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Chapter 1

Introduction

1.1 Nonparametric versus parametric methods

In nonparametric estimation the balance between the approximation error (bias) and

the variance of the estimator, the so-called bias-variance trade-off, plays a key role.

The bias part depends on the regularity properties of the unobserved signal. Of-

ten, for example in image denoising, see [32] and the references therein, this signal

has spatially inhomogeneous smoothness. This prompts the idea to adapt statistical

methods to the spatially varying smoothness of the function to be recovered from the

noisy data.

On the other side, there exists the powerful classical theory of parametric esti-

mation, see [26], where the underlying data distribution IP belongs to a parametric

family P = (IPθ, θ ∈ Θ) described by a finite-dimensional parameter θ ∈ Θ ⊂ R
p .

Obviously, the assumption that the parametric model holds globally, i.e., that there

exists a parameter θ0 ∈ Θ such that IP = IPθ0 , is too restrictive. It is hopeless to
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believe that the real data indeed follow some parametric model or even can be well

approximated by it globally.

One way out of this situation is to increase the number of parameters of the

model, increasing the dimension of the parameter set Θ . This increases dramatically

the complexity of the model and may, especially for high-dimensional data, make the

problem computationally unfeasible. See Chapter 3 for an example of a such problem.

One can also approximate a high- or infinite-dimensional parameter set Θ by a dense

sequence of low-dimensional subsets “sieves” {Θp} , p = 1, 2, . . . . See [73] for details.

The simplest example of sieves is given by projection estimators, when the signal f

is considered as a series expansion with respect to some functional basis. One tries to

approximate f by the finite sums of this expansion, that is by its projection on the

linear span of the first N basis functions, see [72]. The crucial problem is to decide

how large N should be in order to provide a satisfactory level of approximation error.

Chapter 3 of this thesis addresses to the problem of approximation of random fields of

specific “tensor-product” type by the finite sums of the Karhunen-Loève expansion.

Another idea to make a parametric model more flexible is to fix a small number

of parameters, that is, the dimension p of the set Θ , but to reduce the amount of

the data. This leads to the local parametric approach dating back to the book by

Katkovnik [31] and papers [29], [30], where he suggested the method of local approxi-

mation. This approach was further developed with application to image denoising, see

[32], [20] and the references therein. For local polynomial fitting see [17]. An interest-

ing development in the direction of local-likelihood estimation, closely connected with

the ideas of [2] and [75], is due to Loader [45], Polzehl and Spokoiny [55], Belomestny

and Spokoiny [6]. A fruitful application of this approach is to change-point detection
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in time series, see [63], [65], [11].

In order to compare the method of local approximation with the projection es-

timation described above, let us consider the following example. Fix a reference

point x ∈ IR . By the Taylor theorem any function which is p times differen-

tiable on the closed interval [x − h, x + h] and p + 1 times differentiable on the

open interval (x − h, x + h) can be expanded with respect to the polynomial basis

f(t) ≈ fp(t) = f(x) + f ′(x)(t− x) + · · ·+ f (p)(t− x)p/p! for any t ∈ (x− h, x+ h) .

Here N = p is fixed; we aim to choose the width of the interval h by the data. If

the bandwidth h is sufficiently small, the class of such functions is large and fp(t)

can serve as a reasonable estimator of the value of the unknown signal f(t) for t

close to x . This idea leads to the method of local approximation, see Section 1.2

for details. Due to the dependence on x this approach is nonparametric or local

parametric.

The most important problem is the detection of the width h of the interval

providing a satisfactory quality of approximation. If the bandwidth is chosen too

large it will result in a large approximation error (bias). Small h will improve the

bias, but because the number of data points falling in this interval will also be small,

the variance of the estimator will be large. In the projection estimation framework

the number of basis functions N plays a similar role. The larger N is the smaller is

the modeling bias, and the larger is the variance. Thus we come back to the trade-off

between bias and variance, that is to the problem of the choice of a “good” bandwidth.

If the function f would be known or its smoothness would be given, then the

bandwidth h would be easy to select. Unfortunately, in most real life problems no

information about the regularity properties of the underlying signal is available. Thus
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we need to construct a data-driven method which would adapt itself automatically

to the properties of the function f and, particularly, to its probably spatially inho-

mogeneous smoothness. One way of doing this is, instead of considering the single

bandwidth h , to take a finite grid (usually of geometric type) of bandwidths {hk}Kk=1

producing a growing sequence of nested neighborhoods of the reference point x . This

pointwise-adaptive bandwidth (scale, localizing scheme) selection is based on the idea

known as Lepski’s method. This approach was proposed in a series of papers [38], [39],

[40]. The idea is as follows: suppose that a point x and some method of localization

(a smoothing kernel) are fixed. One calculates a sequence of estimators corresponding

to different scales, and the procedure searches for the largest local vicinity of the cen-

ter of approximation x , that is for the largest bandwidth, for which the corresponding

estimator is not rejected by the data. The calculated estimators are compared by the

algorithm, and the adaptively selected bandwidth is the largest one such that the

corresponding estimator does not differ significantly from the estimators with smaller

bandwidths. Among other applications, this idea was further applied by Katkovnik

as the intersection of the confidence intervals (ICI) rule (see [32]), by Spokoiny as the

fitted log-likelihood (FLL) technique (see [33]) and as a two sample likelihood ratio

test with application to change-point detection (see [63], [65]). The interesting recent

paper by Reiß, Rozenholc, and Cuenod [58] presents a Lepski-type method based on

the Wald-test statistics for robust and quantile regression estimation.

It is well known from approximation theory that the smoothness of a function

can be expressed via the quality of its approximation by a sufficiently regular kernel

smoother (see [68]). The Taylor theorem can be considered from this point of view

as well. Let the degree p of the Taylor polynomial be fixed. Then the quality of
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approximation of a function f by the finite sum of the Taylor expansion and the width

h of the proper vicinity of approximation also express the smoothness of f . Thus

the procedure described above intrinsically adapts directly to the local smoothness

properties of the unknown function f . One can also select simultaneously a kernel

and a bandwidth, see the second part of [42].

Since the seminal paper by Lepski [38] dating back to 1990, the local pointwise

adaptive methods based on Lepski’s approach have showed their power being applied

to image denoising [55], [20], [32], robust and quantile regression [58], change-point

detection and volatility estimation in time series [63], [48], [65], [11], density esti-

mation [10] and inverse problems, see [47] and the references therein. This list is

not complete and just shows the possible spectrum of application. A new technique

originating from [38] for spatially adaptive local constant approximation employing

local-likelihood methods was suggested in [33]. This approach is based on the as-

sumption that a regression function can be well approximated by a constant in a

vicinity of a given point. The suggested test statistics Tlk , 1 ≤ l < k ≤ K are based

on the fitted local-likelihood (FLL), that is on the difference between the value of the

local log-likelihood corresponding to the smaller scale at the point of its maximum

and the maximum of the local log-likelihood corresponding to the larger scale. These

statistics are used for data-driven detection of the size and shape of the homogeneity

area. Lepski’s selection rule from [38], see also [41], is applied to the FLL-statistics,

whereby chooses an adaptive scale (bandwidth hk̂ ) as the largest for which the values

of Tlm are sufficiently small:

k̂ = max {k ≤ K : Tlm ≤ zl, l < m ≤ k} . (1.1)
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The crucial problem for such adaptive methods is the choice of critical values z1, . . . , zK−1 .

A “propagation approach” for choosing the parameters in the selection rule (3.5) is

advocated in [33] and [66]. The idea is to select the critical values to provide the

prescribed behavior of the procedure in the simplest parametric situation. Then the

procedure should work well even when the parametric assumption is violated.

In [33] and [66] the local constant fit is considered. In Chapter 2 we generalize

the FLL method to the local linear approximation in regression with heteroscedastic

Gaussian noise, and the “propagation approach” is justified for the case of misspecified

covariance structure.

1.2 Local approximation

1.2.1 Local polynomial estimators: basic properties

Let us consider as a motivation for local polynomial fitting the case of a deterministic

design in R . By the Taylor theorem any function f(·) in a Hölder class Σ(β, L) ,

β > 1 can be represented, up to a reminder term, as f(t) ≈ f(x) + f ′(x)(t − x) +

· · · + f (p−1)(t − x)p−1/(p − 1)! for t sufficiently close to x and p − 1 = ⌊β⌋ . This

suggests the use of a local polynomial approximation to f(t) in the form fθ(t) =

Ψ(t − x)⊤θ with Ψ(u) = (1, u, . . . , (u)p−1/(p − 1)!)⊤ and the vector of parameters

θ = θ(x) = (θ(0), θ(1), . . . , θ(p−1))⊤ with θ(j)(x) = f (j)(x) to be estimated. The main

intrinsic issue is to detect an optimal “vicinity” of the point x in order to avoid over-

or undersmoothing.
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Consider a regression model

Yi = f(Xi) + σ εi, i = 1, . . . , n

where εi are independent zero mean random variables with Eε2i = 1 . Given a point

x ∈ R , we aim to recover the value f(x) from the noisy data. Let Y be an n -

dimensional vector of observations such that Y = (Y1, Y2, . . . , Yn)
⊤ . Denote for any

i = 1, . . . , n by Ψi the vector of values of the polynomial basis functions at the design

points centered at the reference point x :

Ψi = Ψ(Xi − x)
def
=
(
1, Xi − x, . . . , (Xi − x)p−1/(p− 1)!

)⊤

and by Ψ the p×n matrix with columns Ψi . Let W (u) be a nonnegative localizing

function (smoothing kernel) having its maximum at zero and being finite or vanishing

at infinity: W (u) → 0 as |u| → ∞ . To shorten the notation denote also by wh,i(x)
def
=

W
(
Xi−x

h

)
. The localizing scheme corresponding to a bandwidth h > 0 then can be

represented as a diagonal matrix of the form:

Wh(x)
def
= diag{wh,1(x), . . . , wh,n(x)}.

The following definition of local polynomial estimators is based on the ones from [72]

page 35 and [31] pages 28–29.

Definition 1.2.1. A vector θ̃h(x) ∈ R
p defined as a minimizer of the weighted sum

of squares

θ̃h(x) = argmin
θ∈Rp

‖Wh(x)
1/2
(
Y −Ψ⊤θ

)
‖2

= argmin
θ∈Rp

n∑

i=1

|Yi −Ψ⊤
i θ|2wh,i(x) (2.1)

7



is called a local polynomial estimator of order p− 1 of θ(x) . The statistic

f̃h(x) = e⊤
1 θ̃h(x) = Ψ(0)⊤θ̃h(x)

is called a local polynomial estimator of order p − 1 of f(x) . Here e1 ∈ R
p is the

first canonical basis vector.

We will refer to the local polynomial estimators of order p − 1 of θ(x) and of

f(x) as the LP (p − 1) estimator of θ(x) or of f(x) respectively. It is easy to see

that for the properly normalized basis functions the LP (p − 1) estimator of θ(x)

provides estimators of all derivatives of the function f of order less or equal p− 1 :

f̃
(j)
h (x) = e⊤

j+1θ̃h(x) , j = 1, . . . , p− 1

with the j th canonical basis vector ej ∈ R
p

The LP (p− 1) estimator θ̃h(x) satisfies the normal equations

B(x)θ̃h(x) = ΨWh(x)Y (2.2)

where the symmetric p× p matrix B(x) is given by

B(x)
def
= ΨWh(x)Ψ

⊤ =

n∑

i=1

ΨiΨ
⊤
i wh,i(x). (2.3)

If the matrix B(x) is positive definite (B(x) ≻ 0 ), the LP (p − 1) estimator is the

unique solution of (2.2) and is given by the following formula:

θ̃h(x) = B(x)−1ΨWh(x)Y = B(x)−1
n∑

i=1

ΨiYiwh,i(x). (2.4)

In this case the LP (p− 1) estimator f̃h(x) is a linear estimator of f(x) :

f̃h(x) =

n∑

i=1

YiW
∗
i (x) (2.5)
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where the weights W ∗
i (x) are given by:

W ∗
i (x) = e⊤

1 B(x)−1Ψiwh,i(x). (2.6)

Recall the important reproducing polynomials property of the local polynomial

estimator (see [72] page 36), and for a more general representation [31] page 85.

Proposition 1.2.2. Let x ∈ R be such that B(x) ≻ 0 and let Pp−1 be a polynomial

of degree less or equal to p− 1 . Then the weights defined by (2.6) satisfy

n∑

i=1

Pp−1(Xi)W
∗
i (x) = Pp−1(x)

for any design points {X1, . . . , Xn} . Particularly,
n∑

i=1

W ∗
i (x) = 1, (2.7)

n∑

i=1

(Xi − x)mW ∗
i (x) = 0 , m = 1, . . . , p− 1.

Proof. By the Taylor expansion

Pp−1(Xi) =

p∑

m=1

P
(m−1)
p−1 (x)

(m− 1)!
(Xi − x)(m−1) = Ψ⊤

i θ

with 0!
def
= 1 and θ(x)

def
= (Pp−1(x), P

′
p−1(x), . . . , P

(p−1)
p−1 (x))⊤ . Then by (2.6) and (2.3)

n∑

i=1

Pp−1(Xi)W
∗
i (x) = e⊤

1 B(x)−1
n∑

i=1

ΨiΨ
⊤
i wh,i(x)θ(x)

= e⊤
1 θ(x) = Pp−1(x).
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1.2.2 Mean squared error of local polynomial estimators

In this section we show a classical method for obtaining upper bounds for the quadratic

risk of the LR(p−1) estimator under the assumption that the underlying function f

belongs to a Hölder class Σ(β, L) with p− 1 = ⌊β⌋ . This analysis will be done via

the traditional bias-variance trade-off. Later on in Section 2.5 it will be shown how

this approach can be adjusted for the purpose of pointwise adaptation. In what fol-

lows we assume a deterministic design with Xi ∈ [0, 1] . Fix a point x ∈ R and the

method of localization Wh(x) . By (2.4) the local polynomial estimator θ̃h(x) can

be easily decomposed into deterministic and stochastic parts:

θ̃h(x) = θ∗
h(x) + ζh(x),

where

θ∗
h(x) = B(x)−1

n∑

i=1

Ψiwh,i(x)f(Xi),

ζh(x) = σB(x)−1

n∑

i=1

Ψiwh,i(x)εi.

Then

f̃h(x) = e⊤
1 θ̃h(x) = e⊤

1 θ
∗
h(x) + e⊤

1 ζh(x) (2.8)

with

e⊤
1 θ

∗
h(x) =

n∑

i=1

W ∗
i (x)f(Xi),

e⊤
1 ζh(x) = σ

n∑

i=1

W ∗
i (x)εi.

10



Denote the variance of the stochastic part e⊤
1 ζh(x) of (2.8) by

σ2
h(x)

def
= Varf [f̃h(x)]

= e⊤
1 E[ζh(x)ζh(x)

⊤]e1

= σ2

n∑

i=1

(W ∗
i (x))

2. (2.9)

Define the bias (the approximation error)

bh(x)
def
= Ef [f̃h(x)− f(x)] = e⊤

1 θ
∗
h(x)− f(x).

Then the bias-variance decomposition for the mean squared error at x is given by

MSE(x)
def
= Ef [|f̃h(x)− f(x)|2] = b2h(x) + σ2

h(x). (2.10)

Using Proposition 1.2.2 the bias can be written as follows:

bh(x) =

n∑

i=1

(f(Xi)− f(x))W ∗
i (x). (2.11)

Following the line of presentation from [72], we impose the following assumptions on

the localizing schemes and the design.

(Lp1) There exists a number λ0 > 0 such that uniformly in x the smallest eigen-

value fulfills λp(B(x)) ≥ nhλ0 for all sufficiently large n .

(Lp2) There exists a real number a0 > 0 such that for any interval A ⊆ [0, 1] and

all n ≥ 1

1

n

n∑

i=1

I{Xi ∈ A} ≤ a0 max
{∫

A

dt,
1

n

}
.

(Lp3) The localizing functions (kernels) wh,i are compactly supported in [0, 1]

with

wh,i(x) = 0 if |Xi − x| > h.
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This immediately implies a similar property for the local polynomial weights:

W ∗
i (x) = 0 if |Xi − x| > h.

(Lp4) There exists a finite number wmax such that

sup
i,x

|wh,i(x)| ≤ wmax.

Lemma 1.2.3. Assume (Lp1)−(Lp4) . Then for n sufficiently large and all h ≥ 1
2n

and x ∈ [0, 1] the local polynomial weights W ∗
i (x) are such that:

sup
i,x

|W ∗
i (x)| ≤ C1

nh
,

n∑

i=1

|W ∗
i (x)| ≤ C2

with C1 = wmax

√
e/λ0 and C2 = 2wmaxa0

√
e/λ0 .

Proof. Recall that B(x) is a symmetric non-degenerate p × p matrix. Then by

the Schur theorem there exist an orthogonal matrix U and a diagonal matrix Λ =

diag{λ−2
1 (B(x)), . . . , λ−2

p (B(x))} such that B(x)−2 = U⊤ΛU . Then by Assump-

tion (Lp1) for any γ ∈ R
p

γ⊤B(x)−2γ = γ⊤U⊤ΛUγ ≤ (nhλ0)
−2‖γ‖2,

implying

‖B(x)−1γ‖ ≤ (nhλ0)
−1‖γ‖.
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By (2.6), Assumptions (Lp3) and (Lp4) and using that h < 1 , we have

|W ∗
i (x)| = |e⊤

1 B(x)−1Ψiwh,i(x)|

≤ wmax‖B(x)−1Ψi‖ ≤ wmax

λ0nh
‖Ψi‖

≤ wmax

λ0nh

(
1 + h2 +

h4

(2!)2
+ · · ·+ h2(p−1)

((p− 1)!)2
)1/2

≤ wmax

λ0nh

(
1 + 1 +

1

2!
+ · · ·+ 1

(p− 1)!

)1/2

<
wmax

√
e

λ0nh
,

where the upper bound wmax

√
e(λ0nh)

−1 does not depend on i and n .

The second assertion of the lemma is obtained similarly. Condition (Lp2) implies

n∑

i=1

|W ∗
i (x)| ≤ wmax

λ0nh

n∑

i=1

‖Ψi‖ I{Xi ∈ [x− h, x+ h]}

≤ wmax

√
e

λ0
a0max{2, 1

nh
}

≤ 2wmax

√
ea0

λ0

for all h ≥ 1
2n

.

Theorem 1.2.4. Let f ∈ Σ(β, L) on [0, 1] and let f̃h(x) be the LP (p − 1) esti-

mator of f(x) with p− 1 = ⌊β⌋ . Then under the conditions of Lemma 1.2.3 for n

sufficiently large and all h ≥ 1
2n

and x ∈ [0, 1] ,

|bh(x)| ≤ C2
Lhβ

(p− 1)!
,

σ2
h(x) ≤ σ2C1C2

nh

with C1 and C2 as in Lemma 1.2.3.

Moreover, the choice of positive bandwidth h = h⋆(n) given by (2.16) such that

h⋆(n) = O
(
n− 1

2β+1
)
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provides the following upper bound for the quadratic risk:

lim
n→∞

sup
f∈Σ(β,L)

sup
x∈[0,1]

Ef [ψ
−2
n |f̃h(x)− f(x)|2] ≤ C, (2.12)

where

ψn = O
(
n− β

2β+1

)
(2.13)

is given by (2.17) and the constant C is finite and depends on β , L , σ2 , p , wmax

and a0 only.

Corollary 1.2.5. Under the conditions of Theorem 1.2.4 we have the same rate for

the MISE (mean integrated square error):

lim
n→∞

sup
f∈Σ(β,L)

Ef [ψ
−2
n

∫ 1

0

|f̃h(x)− f(x)|2dx] ≤ C (2.14)

with the rate ψn given by (2.13) and the finite constant C depending on β , L , σ2 ,

p , wmax and a0 only.

Proof. By (2.11) and the Taylor theorem with τi such that the points τiXi are

between Xi and x , we have

bh(x) =
n∑

i=1

(f(Xi)− f(x))W ∗
i (x)

=

p−2∑

j=1

f (j)(x)

j!

n∑

i=1

(Xi − x)jW ∗
i (x) +

n∑

i=1

f (p−1)(τiXi)

(p− 1)!
(Xi − x)p−1W ∗

i (x).

The first summand is equal to zero by Proposition 1.2.2. By the same argumentation

the second term can be rewritten as follows:

bh(x) =

n∑

i=1

f (p−1)(τiXi)

(p− 1)!
(Xi − x)p−1W ∗

i (x)

=
1

(p− 1)!

n∑

i=1

(
f (p−1)(τiXi)− f (p−1)(x)

)
(Xi − x)p−1W ∗

i (x).
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Then by Lemma 1.2.3

|bh(x)| ≤ L

(p− 1)!

n∑

i=1

|τiXi − x|β−(p−1)|Xi − x|p−1|W ∗
i (x)|

≤ L

(p− 1)!

n∑

i=1

|Xi − x|β|W ∗
i (x)|I{|Xi − x| ≤ h}

≤ C2
Lhβ

(p− 1)!
.

By formula (2.9) and Lemma 1.2.3 the variance is bounded by

σ2
h(x) ≤ σ2 sup

i,x
|W ∗

i (x)|
n∑

i=1

|W ∗
i (x)|

≤ σ2C1C2

nh
.

Then by (2.10)

MSE(x) ≤ C̃2h
2β +

C̃1

nh
(2.15)

with C̃1 = σ2C1C2 and C̃2 = C2
2L

2((p− 1)!)−2 . Then the optimal bandwidth h⋆(n)

minimizing the upper bound for the MSE at x is given by

h⋆(n) =

(
C̃1

2βC̃2

) 1
2β+1

n− 1
2β+1

=

(
σ2((p− 1)!)2

4a0βL2

) 1
2β+1

n− 1
2β+1 . (2.16)

This gives us the rate ψn w.r.t. the squared loss function over a Hölder class Σ(β, L) :

ψn = C̃

(
L

(p− 1)!

) 1
2β+1

(
σ2

n

) β
2β+1

= O
(
n− β

2β+1

)
(2.17)

with C̃ = 2
1

2β+1wmax

√
eλ−1

0 a
β+1
2β+1

0 β− β
2β+1 .
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1.2.3 Method of local approximation: general set-up

In this section, following up to the notation the book [31] and the papers [29], [30]

we will explain the basic idea of the method of local approximation in a more general

set-up than in the previous section. Consider for simplicity the regression model

Yi = f(Xi) + εi , i = 1, . . . , n.

If we want to recover f(x) at the point x , we put the center of localization at x .

Suppose that some basis {ψj(·)} is chosen. Denote by Ψ(u) = (ψ1(u), . . . , ψp(u))
⊤

a vector of the basis function. We believe that for t close to x the values f(t) can

be well approximated by the finite sum

fθ(t)
def
= Ψ(t− x)⊤θ(x) =

p∑

j=1

θ(j)(x)ψj(t− x) (2.18)

where Ψ(t−x) is the vector of values of the basis functions centered at x . Thus, to es-

timate f(x) , we have to estimate the vector of coefficients θ(x) = (θ(1)(x), . . . , θ(p)(x))⊤ .

Let W (u) be a nonnegative localizing function (smoothing kernel) having max-

imum at zero and being finite or vanishing at infinity: W (u) → 0 as ‖u‖ → ∞ .

Denote also wh,i(x)
def
= W

(
Xi−x

h

)
. Let F : R → R≥0 be a convex loss function. Then

the solution (solutions) of the following minimization problem

θ̃h(x) = argmin
θ∈Rp

n∑

i=1

F (Yi −Ψ⊤
i θ)wh,i(x) (2.19)

with Ψi
def
= Ψ(Xi − x) , i = 1, . . . , n is the estimator of the vector θ at the point x

obtained by the method of local approximation. Notice that θ̃h(x) is anM-estimator,

see [25] or [73]. The estimator

f̃h(x)
def
= Ψ(0)⊤θ̃h(x) =

p∑

j=1

θ̃
(j)
h (x)ψj(0) (2.20)
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is an estimator of the function f at the point x by the method of local approximation.

In the case of the polynomial basis 〈1, u, u2, . . .〉 we have Ψ(0) = (1, 0, . . . , 0)⊤ and

f̃h(x) is just the first coordinate of θ̃h(x) .

It was stressed in [31] (see page 29) that the optimal choice of the parameter

of locality (bandwidth h ) is one of the most important issues of the nonparametric

estimation. Katkovnik [31], see page 16, pointed out that the practical use of the

estimators obtained by the method of local approximation, as well as of any estima-

tors, requires to construct them adaptively, that is with a tuning of the parameters in

accordance with the data in hand. This leads essentially to the traditional problem

of testing the hypothesis about the model. The necessity of data-driven treatment

motivates the application of the Lepski-type procedure to the selection of the scale

(of the bandwidth hk̂ ) and the “propagation conditions” approach on the choice of

the critical values of the adaptive procedure (see Section 2.3) suggested in [33] and

in [66] and developed in the present work.

The asymptotic properties of the estimators given by (2.19) and (2.20) were pre-

cisely studied in [69], [70] and [71]. In [71] it was shown that the estimators, con-

structed by (2.19) w.r.t. the convex loss function and the polynomial basis 〈1, . . . , up〉

exhibit the best rate of convergence among all estimators of functions over Hölder

classes Σ(p − 1, L) on some bounded subset of R , as well as among all estimators

of their derivatives. The use of a non-quadratic loss function F (·) is very impor-

tant in the theory of robust estimation and allows to treat the noise with unbounded

variance, see for instance the classical paper of Huber [25].

If the basis {ψj(·)} is an orthonormal basis in L2(X ) for some compact X ⊂ R
d

and the loss function is quadratic, i.e., if F (y) = y2 , then the estimator θ̃h(x)
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defined by (2.19) is the weighted least squares estimator. If the matrix B(x)
def
=

∑n
i=1ΨiΨ

⊤
i wh,i(x) is positive definite then one can write:

θ̃h(x) = B(x)−1
n∑

i=1

ΨiYiwh,i(x)

In this case θ̃h(x) and f̃h(x) are linear estimators. Taking the polynomial basis we

come back to the LP (p− 1) estimator introduced in the previous section.

1.3 Information-based complexity and

approximation in increasing dimension

Computational complexity is a measure of the intrinsic computational resources re-

quired to solve a mathematically formulated problem. It depends on the problem,

but not on the particularly used algorithm. The notion “information” is used in the

theory of complexity in the every-day sense of the word. The information is what

we know about the problem to be solved. It should be stressed that this term used

in Chapter 3 has nothing in common with Shannon’s definition of information, nor

with the Kullback-Leibler information criterion [36] used in Chapter 2. See [67] for an

informal introduction, however containing a comprehensive overview of the literature.

One can distinguish two different types of complexity. In the first case the infor-

mation is complete, exact, and free; an example is provided by the traveling sales-

man problem. This is the so-called combinatorial complexity. The information-based

complexity that we are interested in here, is the computational complexity of (multi-

variate) continuous mathematical models. This branch of computational complexity

deals with the intrinsic difficulty of the approximate solution of a problem for which
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the information is partial, noisy, and priced, see [51]. This is the case when dealing

with continuous problems on infinite dimensional spaces. Only partial information

such as a finite number of functional values is available. In this case the problem

can only be solved approximately implying the presence of error. Usually one re-

quires the problem to be solved with an error not larger than a threshold ε . The

information-based complexity is then defined as the minimal number n(ε, d) of in-

formation operations (functional values, for example), needed to solve the d -variate

problem with an error not exceeding ε . In different settings and for different error

criteria, ε may have different meanings, but always reflects the error tolerance.

As pointed out in [49], a central issue is the study of how the information com-

plexity depends on ε−1 and d . If n(ε, d) depends exponentially on ε−1 and d ,

the problem is called intractable. Many multivariate problems exhibit exponential

dependence on d , called after Bellman [5] the curse of dimensionality. If the infor-

mation complexity depends on ε−1 and d polynomially, the problem is polynomially

tractable.

In spite of the existence of vast literature on the computational complexity of

d -variate problems, most of the papers and books study error bounds without taking

into account the dependence on d . Research on tractability, requiring the knowledge

of dependence on both ε−1 and d , was started in the early nineties by Woźniakowski

[76], [77], [78], who introduced the notion of “tractability” and suggested to consider

the dependence on d as d → ∞ . This is important for numerous applications

including physics, chemistry, finance, economics, and the computational sciences. For

instance, in quantum mechanics, statistical mechanics and mathematical finance, for

path integration the number of variables is infinite; approximations to path integrals
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result in arbitrary large d , see [59] and [49] for details.

In average case settings the cost and the error are defined by their average perfor-

mance. The general theory in the average case settings, among other approaches, was

created by Traub, Wasilkowski, and Woźniakowski in [51]. The future development

is presented by the monographs of Ritter [59] and Novak and Wozniakowski [49].

One of the problems which can be treated in this framework is the approximation

(recovery) of functions. Let T = [0, 1]d and F = Ck(T ) . We identify any f ∈ F

with its embedding id(f) = f in the (weighted) Lp -space over T with 1 ≤ p ≤ ∞ .

Let the data be the functional values f(t1), . . . , f(tn) . Based on the data f(ti) an

approximate solution (function) f̃ is constructed. The average error of f̃ is defined

by (E‖f−f̃‖qp)1/q with some 1 ≤ q <∞ , where ‖·‖p denotes a (weighted) Lp -norm.

Usually, the computational costs are proportional to the total number of functional

values, and therefore to the information complexity. One aims at finding a “good”

method f̃ with average cost not exceeding a given bound and with minimal average

error. Often one considers methods which use only the functional values f(ti) . Then

the key quantity in the average case settings is the n th minimal average error

inf
ti∈T

inf
ai∈Lp(T )

(
E‖f −

n∑

i=1

aif(ti)‖qLp(T )

)1/q
.

This minimal error states how well f can be approximated on average by (affine)

linear methods using n functional values. Chapter 3 is devoted to the approximation

of d -parametric random fields of tensor product-type, which is a particular case of

linear tensor product problems, see Chapter 6 of [49] for a general study.
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Chapter 2

Adaptive estimation under noise

misspecification in regression

We consider the problem of pointwise estimation in nonparametric regression with

heteroscedastic additive Gaussian noise. We use the method of local approximation

applying the Lepski method for selecting one estimator from a set of linear estimators

obtained by different degrees of localization. This approach is combined with the

“propagation conditions” on the choice of critical values of the procedure, as suggested

recently by Spokoiny and Vial [66]. The “propagation conditions” are relaxed for the

model with misspecified covariance structure. Specifically, the model with unknown

mean and variance is approximated by the one with the parametric assumption of local

linearity of the mean function and with an incorrectly specified covariance matrix.

We show that this procedure allows a misspecification of the covariance matrix with

a relative error up to o
(

1
logn

)
, where n is the sample size. The quality of estimation

is measured in terms of nonasymptotic “oracle” risk bounds.
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2.1 Model and set-up

Consider a regression model

Y = f + Σ
1/2
0 ε, ε ∼ N (0, In) (1.1)

with response vector Y ∈ R
n and the covariance matrix Σ0 = diag(σ2

0,1, . . . , σ
2
0,n) .

This model can be written as

Yi = f(Xi) + σ0,i εi, i = 1, . . . , n

with design points Xi ∈ X ⊂ R
d . Given a point x ∈ X , the target of estimation is the

value of the regression function f(x) . We apply the method of local approximation

described in Section 1.2.3. In view of the representation (1.1) this means that we

believe that at a vicinity of some given point x ∈ R
d the unknown vector f can be

well approximated by fθ = Ψ⊤θ , where Ψ is a given p×n matrix whose columns Ψi

consist of the values, at the design points, of basis functions centered at x , that is,

Ψ(u) = (ψ1(u), . . . , ψp(u))
⊤ for some basis {ψj} in L2(X ) and Ψi

def
= Ψ(Xi−x) . The

parameter θ = (θ(0), θ(1), . . . , θ(p−1))⊤ ∈ Θ ⊂ R
p is the target of estimation, and we

will choose the appropriate width of the localization window adaptively by application

of Lepski’s method. The covariance matrix Σ0 is not assumed to be known exactly

and the approximate model used instead of the true one reads as follows:

Y = Ψ⊤θ + Σ1/2ε, (1.2)

where Σ = diag(σ2
1 , . . . , σ

2
n) , min{σ2

i } > 0 . Thus the model is misspecified in two

places: in the form of the regression function and in the error distribution. Following

the abbreviation from Katkovnik [32] we will refer to this model as to “local poly-

nomial approximation” or, more generally, “local parametric approximation” (LPA),
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since it is assumed that the “true” model (1.1) locally can be replaced by the “wrong”

parametric one.

The model constraint on the form of the regression function includes the important

class of polynomial regressions. For example in the univariate case x ∈ IR , due to the

Taylor theorem, the approximation of the unknown function f(t) for t close to x can

be written in the following form: fθ(t) = θ(0)+θ(1)(t−x)+· · ·+θ(p−1)(t−x)p−1/(p−1)! ,

with the parameter θ = (θ(0), θ(1), . . . , θ(p−1))⊤ corresponding to the values of f and

its derivatives at the point x . The p × n matrix Ψ then consists of the columns

Ψi = (1, Xi − x, . . . , (Xi − x)p−1/(p− 1)!)
⊤
, i = 1, . . . , n . If the regression function

is sufficiently smooth then, for any t close to x , up to a reminder term, f(t) ≈ fθ(t)

and the estimator of f(x) at the point x is given by the first coordinate of θ̃ , that

is by f̃(x) = f
θ̃
(x) = θ̃(0) . See for further information on local polynomial regression

Section 1.2, or for more deep insight [17], [32] or [45].

The general approach advocated in here includes also the important case of local

constant approximation at a given point x ∈ IR . In this case the design matrix

Ψ = (1, . . . , 1) and fθ(Xi) = Ψ⊤
i θ = θ(0) = fθ(x), i = 1, . . . , n.

2.2 Quasi-maximum local likelihood estimation

Fix a point x ∈ R
d and an orthogonal basis {ψj} in L2(X ) . Let the localizing

operator be identified by the corresponding matrix. Thus for every x the sequence of

localizing schemes (scales) Wk(x) , k = 1, . . . , K is given by the matrices Wk(x) =

diag(wk,1(x), . . . , wk,n(x)) , where the weights wk,i(x) ∈ [0, 1] can be understood,

for instance, as smoothing kernels wk,i(x) = W ((Xi − x)h−1) . We assume that a
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particular localizing function w(·) is fixed, and we aim to choose the index k of the

optimal bandwidth hk based on the available data. To simplify the notation we

sometimes suppress the dependence on the reference point x . Denote by

Wk
def
= Σ−1/2WkΣ

−1/2 = diag

(
wk,1

σ2
1

, . . . ,
wk,n

σ2
n

)
, k = 1, . . . , K. (2.1)

Let Θ be a compact subset of Rp . The LPA means that there exist non-zero weights

wk,i and a parameter θ ∈ Θ such that f(Xi) ≈ fθ(Xi) = Ψ⊤
i θ for all Xi providing

wk,i > 0 . The notation f(Xi) ≈ Ψ⊤
i θ also has the meaning that the localized data

distribution, obtained by restricting the measures IPf ,Σ0 and IP
Ψ

⊤θ,Σ0
to the σ -field

generated by those data for which wk,i > 0 , are close to each other in a certain sense,

see modeling bias in Section 2.4.3.

Under the LPA the corresponding local quasi-log-likelihood has the following form:

L(Wk, θ) = −1

2

(
Y −Ψ⊤θ

)⊤
Wk

(
Y −Ψ⊤θ

)
+R

= −1

2

n∑

i=1

|Yi −Ψ⊤
i θ|2

wk,i

σ2
i

+R, (2.2)

where R stands for the terms not depending on θ and

Ψi = Ψ(Xi − x) = (ψ1(Xi − x), . . . , ψp(Xi − x))⊤.

Then, due to the assumption of the normality of the errors, for every k the quasi-

maximum likelihood estimator (QMLE) θ̃k = θ̃k(x) = (θ̃
(0)
k (x), θ̃

(1)
k (x), . . . , θ̃

( p−1)
k (x))⊤

coincides with the LSE and is defined as the minimizer of the weighted sum of squares
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from (2.2):

θ̃k
def
= argmax

θ∈Θ
L(Wk, θ)

= argmin
θ∈Θ

‖W1/2
k

(
Y −Ψ⊤θ

)
‖2

= B−1
k ΨWkY = B−1

k

n∑

i=1

ΨiYi
wk,i

σ2
i

, (2.3)

where the p× p matrix Bk = Bk(x) is given by

Bk
def
= ΨWkΨ

⊤ =

n∑

i=1

ΨiΨ
⊤
i

wk,i

σ2
i

. (2.4)

That is, by Definition 1.2.1 in the case of the polynomial basis the estimator θ̃k(x)

is a LPk(p − 1) estimator of θ(x) corresponding to k th scale. In the following we

assume that n > p and detBk > 0 for any k = 1, . . . , K . Because p = rank(Bk) ≤

min{p, rank(Wk(x))} this requires the following conditions on the design matrix Ψ

and the minimal localizing scheme W1(x) :

(D) The p× n design matrix Ψ has full row rank, i.e.,

dim C(Ψ⊤) = dim C(Ψ⊤Ψ) = p.

(Loc) The smallest localizing scheme W1(x) is chosen to contain at least p design

points such that w1,i(x) > 0 , i.e., p ≤ #{i : w1,i(x) > 0} .

The condition (Loc) is automatically fulfilled in practise since, for example, in R
1

it means that for local constant fitting we need at least one observation and so on.

Usually it is intrinsically assumed that, starting from the smallest window, at every

step of the procedure every new window contains at least p new design points.

The formulas (2.3) give a sequence of estimators {θ̃k(x)}Kk=1 . It was noticed in [2]

that in the case of unknown true data distribution the MLE is a natural estimator
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for the parameter maximizing the expected log-likelihood. That is, for every k =

1, . . . , K , the estimator θ̃k(x) can be considered as an estimator of

θ∗
k(x)

def
= argmax

θ∈Θ
EL (Wk, θ) (2.5)

= argmin
θ∈Θ

(f −Ψ⊤θ)⊤Wk(f −Ψ⊤θ)

= B−1
k ΨWkf = B−1

k

n∑

i=1

Ψif(Xi)
wk,i

σ2
i

. (2.6)

Recall that we do not assume that the regression function f even locally satisfies the

LPA. It is known from [75] that in the presence of model misspecification for every k

the QMLE θ̃k is a strongly consistent estimator for θ∗
k(x) , which is the minimizer

of the localized Kullback-Leibler [37] information criterion:

θ∗
k(x) = argmin

θ∈Θ

n∑

i=1

KL
(
N (f(Xi), σi) ,N

(
Ψ⊤

i θ, σi
))
wk,i(x)

= argmin
θ∈Θ

n∑

i=1

|f(Xi)−Ψ⊤
i θ|2

wk,i(x)

σ2
i

with KL(P, Pθ)
def
= EP

[
log
(

dP
dPθ

)]
. For the properties of the Kullback-Leibler diver-

gence see, for example, [72].

It follows from the above definition of θ∗
k(x) and from (2.3) that the QMLE θ̃k

admits a decomposition into deterministic and stochastic parts:

θ̃k = B−1
k ΨWk(f + Σ

1/2
0 ε) = θ∗

k +B−1
k ΨWkΣ

1/2
0 ε (2.7)

Eθ̃k = θ∗
k, (2.8)

where ε ∼ N (0, In) . Notice that if the regression function indeed follows the LPA,

that is if f ≡ Ψ⊤θ , then θ∗
k ≡ θ for any k and the classical parametric set-up is

recovered.
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2.3 Adaptive procedure

Let a point x ∈ X ⊂ R
n , an orthogonal basis {ψj} in L2(X ) and the method of

localization w(·) be fixed. The crucial assumption for the procedure under consid-

eration to work is that the localizing schemes (scales) Wk(x) = diag(wk,1, . . . , wk,n)

are nested. Specifically, we say that the localizing schemes are nested if the following

ordering condition is fulfilled:

(W) For any fixed x and the method of localization w(·) the following relation

holds:

W1(x) ≤ . . . ≤ Wk(x) ≤ . . . ≤ WK(x).

For kernel smoothing this condition means the following. Let the sequence of band-

widths {hk} be ordered by increasing magnitude, i.e., h1 < . . . < hK , and let

Wk(x) = diag(wk,1, . . . , wk,n) be the localizing matrix, corresponding to the band-

width hk . Here the weights wk,i = wk,i(x) = W ((Xi − x)h−1
k ) ∈ [0, 1] are nonnega-

tive functions such that for any 0 < hl < hk < 1 it holds W (uh−1
l ) ≤W (uh−1

k ) and

W (u) → 0 as |u| → ∞ , or even are compactly supported.

Recall that given a center of localization x ∈ X , a basis {ψj} and the method of

localization w(·) , we look for the estimator of f(x) having the form

f̃k(x) =

p∑

j=1

θ̃
(j)
k (x)ψj(0).

The parameters θ̃
(j)
k (x) , j = 1, . . . , p are the components of the QMLE given by (2.3).

The use of the adaptively chosen k̂ gives the adaptive estimator f̃k̂(x) of f(x)

corresponding to the adaptive window choice wk̂,·(x) . In the case of the polynomial

basis ψ1(0) = 1 and ψj(0) = 0 for j = 2, . . . , p . Then the estimator of f(x) is
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just the first coordinate θ̃
(1)

k̂
(x) . In this case we also can get the estimators for the

derivatives of f at the point x .

The index k̂ ∈ {1, . . . , K} corresponds to the adaptive choice of the degree of

localization (of the width of the window), and it will be obtained by application of

Lepski’s method, see below. Then the adaptive estimator of the parameter vector is

θ̂(x)
def
= θ̃k̂(x) = (θ̃

(1)

k̂
(x), . . . , θ̃

(p)

k̂
(x))⊤. (3.1)

In a non-formal way the idea of the adaptive procedure used for selection of k̂ can

be described as follows. Let a point x and the method of localization W be fixed.

For k = 1, . . . , K , let θ̃k = θ̃k(x) = (θ̃
(0)
k (x), θ̃

(1)
k (x), . . . , θ̃

( p−1)
k (x))⊤ be the linear

estimator defined by (2.3). We aim to choose an adaptive estimator θ̂(x) = θ̃k̂(x)

from the set {θ̃1, . . . , θ̃K} , that is to pick the adaptive index k̂ from {1, . . . , K} .

Following the Lepski method (see [38]), we will proceed with the multiple testing of

homogeneity: starting with the smallest scheme W1(x) and enlarging it step by step

so long as the estimators θ̃l(x) do not differ from each other significantly. More

precisely, to describe the test statistic, define for any θ , θ′ ∈ Θ the corresponding

log-likelihood ratio:

L(Wk, θ, θ
′)

def
= L(Wk, θ)− L(Wk, θ

′). (3.2)

Then, using the approach suggested in [33], for every l = 1, . . . , K , the fitted log-

likelihood (FLL) ratio is defined as follows:

L(Wl, θ̃l, θ
′)

def
= max

θ∈Θ
L(Wl, θ, θ

′).

By Theorem 2.4.1, for any l and θ , the FLL is a quadratic form:

2 L(Wl, θ̃l, θ) = (θ̃l − θ)⊤Bl(θ̃l − θ).
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Define the confidence set corresponding to θ̃l as

El(zl) def
=

{
θ : 2 L(Wl, θ̃l, θ) ≤ zl

}

=
{
θ : (θ̃l − θ)⊤Bl(θ̃l − θ) ≤ zl

}
. (3.3)

In terms of this definition “the estimator θ̃k does not differ significantly from θ̃l ”

means that θ̃k ∈ El(zl) . This prompts to use (see [33]) the FLL-statistics :

Tlk
def
= 2L(Wl, θ̃l, θ̃k)

= (θ̃l − θ̃k)
⊤Bl(θ̃l − θ̃k) , l < k. (3.4)

If Tlk is significantly large, say Tlk > zl for some sufficiently big value zl , then the

discrepancy between θ̃l and θ̃k is not negligible and the corresponding hypothesis

of homogeneity should be rejected in favor of the smaller one. Notice that this simple

approach works only due to the condition (W) , because the hypotheses are nested.

A justification of the FLL approach is given by the fact that the fitted log-

likelihood ratio L(Wk, θ̃k, θ
∗
k) can be used to measure the quality of estimation of θ∗

k

by its empirical counterpart θ̃k at each level of localization (see [2] and [75]).

2.3.1 Algorithm

Given the set of linear estimators {θ̃1, . . . , θ̃K} and the set of critical values {z1, . . . , zK−1} ,

see the “propagation conditions” from the next subsection for details, one aims to se-

lect in a data-driven way the estimator θ̂ = θ̃k̂ with k̂ ∈ {1, . . . , K} . The selection

procedure originating from [38] is described as follows:

θ̃1
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...

θ̃k is accepted iff θ̃k−1 was accepted and

θ̃k ∈
⋂

l<k

El(zl) ⇐⇒
⋂

l<k

{Tlk ≤ zl} 6= ∅.

That is, we use Lepski’s selection rule with the FLL test statistics {Tlm} :

k̂ = max {k ≤ K : Tlm ≤ zl, l < m ≤ k} . (3.5)

2.3.2 Choice of the critical values

Let θ̂k denote the last accepted estimator after the first k steps of the procedure:

θ̂k
def
= θ̃min{k,k̂}. (3.6)

Denote for some κ ≤ K the hypothesis Hκ : θ∗
1 = · · · = θ∗

κ = θ , which means that

the LPA is fulfilled up to the step κ . Clearly, by Assumption (W) for any k < κ

the hypothesis Hk is included in Hκ .

Following the idea proposed in [66] we will choose the critical values z1, . . . , zK−1

of the procedure using a kind of “level” conditions under the LPA (homogeneity

hypothesis). In other words, the procedure is optimized to provide the desired error

level in the local parametric situation. As it will be shown later (see Theorem 2.4.9),

if the procedure is tuned well under the LPA, it will perform well even when this

assumption is violated.

The Wilks-type Theorem 2.4.2 below gives the bound for the expected fitted log-

likelihood ratio:

E|2 L(Wk, θ̃k, θ
∗
k)|r ≤ (1 + δ)rC(p, r) (3.7)
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where the constant C(p, r) does not depend on the degree of localization and is given

by:

C(p, r) = E|χ2
p|r = 2r

Γ(r + p
2
)

Γ(p
2
)

, (3.8)

Take some “confidence level” α ∈ (0, 1] . Then the set of K − 1 conditions on

the choice of the critical values z1, . . . , zK−1 can be defined to provide at each step of

the procedure a risk of the adaptive estimators of at most an α -fraction of the best

possible (parametric) risk (3.7). These conditions are given by the following formulas:

Definition 2.3.1. (Propagation conditions (PC))

The critical values z1, . . . , zK−1 satisfy the following set of conditions:

E0,Σ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r ≤ αC(p, r) for all k = 2, . . . , K, (3.9)

where C(p, r) is defined by (3.8), α ∈ (0, 1] and E0,Σ stands for the expectation

w.r.t. the measure N (0,Σ) .

Remark 2.3.1. Lemma 2.6.1 (see Section 2.6) shows that under the LPA the Gaus-

sian distribution provides a nice pivotality property: the actual value of the parameter

θ is not important for the risk of adaptive estimator, so one can put θ = 0 in (3.9).

Remark 2.3.2. Since the procedure is fitted in the parametric situation, ideally

(while the LPA holds) it should not terminate. If it does, then the critical values are

too small. This event will be referred to as a “false alarm”. Therefore by the (PC)

we require that at each level of localization the risk associated with the type I error

is at most an α -fraction of the corresponding risk in the parametric situation.
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2.4 Theoretical study

2.4.1 Local parametric risk bounds

To justify the statistical properties of the considered procedure we need the following

simple observation. Let for any θ , θ′ ∈ Θ the corresponding log-likelihood ratio

L(Wk, θ, θ
′) be defined by (3.2). Then

2 L(Wk, θ, θ
′) =

(
Y −Ψ⊤θ′)⊤ Wk

(
Y −Ψ⊤θ′)−

(
Y −Ψ⊤θ

)⊤
Wk

(
Y −Ψ⊤θ

)
.

Theorem 2.4.1. (Quadratic shape of the fitted log-likelihood)

Let for every k = 1, . . . , K the fitted log likelihood (FLL) be defined as follows:

L(Wk, θ̃k, θ
′)

def
= max

θ
L(Wk, θ, θ

′).

Then

2 L(Wk, θ̃k, θ) = (θ̃k − θ)⊤Bk(θ̃k − θ). (4.1)

Proof. Notice that L(Wk, θ) defined by (2.2) is quadratic in θ . The assertion follows

from the Taylor expansion of the second order at the point θ̃k because it is the point

of maximum and the second derivative is a constant matrix Bk .

In order to control the admissible level of misspecification for the “model” covari-

ance matrix from (1.2) we need to introduce the following condition on the relative

variability in errors:

(S) There exists δ ∈ [0, 1) such that

1− δ ≤ σ2
0,i/σ

2
i ≤ 1 + δ for all i = 1, . . . , n.
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Let the matrix S be defined as follows:

S
def
= Σ

1/2
0 WkΨ

⊤B−1
k ΨWkΣ

1/2
0 . (4.2)

Then for the distribution of L(Wk, θ̃k, θ
∗
k) one observes the so-called “Wilks phe-

nomenon” (see [19] ) described by the following theorem:

Theorem 2.4.2. Let the regression model be given by (1.1) and the parameter maxi-

mizing the expected local log-likelihood θ∗
k = θ∗

k(x) be defined by (2.5). Then for any

k = 1, . . . , K the following equality in distribution takes place:

2 L(Wk, θ̃k, θ
∗
k)

d
= λ1(S)ε

2
1 + · · ·+ λp(S)ε

2
p, (4.3)

where p = rank(Bk) = dimΘ = p , λ1(S), . . . , λp(S) are the non-zero eigenvalues of

the matrix S and εi are independent standard normal random variables.

Moreover, under Assumption (S) it holds that the maximal eigenvalue fulfills

λmax(S) ≤ 1 + δ and for any z > 0

IP
{
2 L(Wk, θ̃k, θ

∗
k) ≥ z

}
≤ IP {η ≥ z/(1 + δ)} , (4.4)

where η is a random variable distributed according to the χ2 law with p degrees of

freedom.

Remark 2.4.1. Generally, if the matrix Bk is degenerated in (4.3) the number of

terms p ≤ dimΘ .

Proof. By Theorem 2.4.1 and the decomposition (2.7) it holds that:

2 L(Wk, θ̃k, θ
∗
k) = (θ̃k − θ∗

k)
⊤Bk(θ̃k − θ∗

k)

= (B−1
k ΨWkΣ

1/2
0 ε)⊤Bk(B

−1
k ΨWkΣ

1/2
0 ε)

= ε⊤Sε,
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where the symmetric matrix S is defined by (4.2). Then by the Schur theorem there

exist an orthogonal matrix M and a diagonal matrix Λ composed of the eigenvalues

of S such that S = M⊤ΛM . For ε ∼ N (0, In) and an orthogonal matrix M it

holds that ε
def
= Mε ∼ N (0, In) . Indeed, EMε = Eε = 0 and

VarMε = EMε(Mε)⊤ = ME(εε⊤)Mε = MM⊤ = In.

Therefore

2 L(Wk, θ̃k, θ
∗
k)

d
= ε⊤Λε , ε ∼ N (0, In) .

On the other hand, the matrix S = Σ
1/2
0 WkΨ

⊤B−1
k ΨWkΣ

1/2
0 can be rewritten as:

S = Σ
1/2
0 W

1/2
k ΠkW

1/2
k Σ

1/2
0 ,

with Πk = W
1/2
k Ψ⊤B−1

k ΨW
1/2
k . Notice that Πk is an orthogonal projector onto

the linear subspace of dimension p = rank(Bk) spanned by the rows of matrix Ψ .

Indeed, Πk is symmetric and idempotent, i.e.,Π2
k = Πk .

Moreover, rank(Πk) = tr(Πk) = tr(W
1/2
k Ψ⊤B−1

k ΨW
1/2
k ) = tr(B−1

k ΨWkΨ
⊤) =

tr(B−1
k Bk) = tr(Ip) = p . Therefore Πk has only p unit eigenvalues and n− p zero

eigenvalues. Notice also that the n×n matrix S has rank(S) = rank(ΠkW
1/2
k Σ

1/2
0 ) =

rank(Πk) = p as well. Thus 2 L(Wk, θ̃k, θ
∗
k)

d
= λ1(S)ε

2
1 + · · · + λp(S)ε

2
p , where

λ1(S), . . . , λp(S) are the non-zero eigenvalues of the matrix S .

Define the L2 -norm of a matrix A via its maximal eigenvalue

‖A‖ def
=
√
λmax(A⊤A). (4.5)

Thus, taking into account Assumption (S) , the induced L2 -norm of the matrix S
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can be estimated as follows:

‖S‖ = ‖Σ1/2
0 W

1/2
k ΠkW

1/2
k Σ

1/2
0 ‖

≤ ‖Σ1/2
0 W

1/2
k ‖‖Πk‖‖W1/2

k Σ
1/2
0 ‖

= λmax(WkΣ0)λmax(Πk)

= max
i

{wk,i

σ2
0,i

σ2
i

}

≤ (1 + δ)max
i

{wk,i} ≤ 1 + δ.

Therefore the largest eigenvalue of the matrix S is bounded: λmax(S) ≤ 1 + δ .

The last assertion of the theorem follows from the simple observation that

IP
{
λ1(S)ε

2
1 + · · ·+ λp(S)ε

2
p ≥ z

}
≤ IP

{
λmax(S)(ε

2
1 + · · ·+ ε2p) ≥ z

}
.

Corollary 2.4.3. (Quasi-parametric risk bounds)

Let the model be given by (1.1) and θ∗
k = θ∗

k(x) be defined by (2.5). Assume (S) .

Then for any µ < 1/(1 + δ)

E exp{µL(Wk, θ̃k, θ
∗
k)} ≤ [1− µ(1 + δ)]−p/2 (4.6)

E|2 L(Wk, θ̃k, θ
∗
k)|r ≤ (1 + δ)rC(p, r) , (4.7)

where

C(p, r) = E|χ2
p|r = 2r

Γ(r + p
2
)

Γ(p
2
)

. (4.8)
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Proof. By (4.3) and independence of εi

E exp{µL(Wk, θ̃k, θ
∗
k)} = E exp

{
µ

2

p∑

i=1

λi(S)ε
2
i

}

=

p∏

i=1

E exp
{µ
2
λi(S)ε

2
i

}

=

p∏

i=1

[1− µλi(S)]
−1/2

≤ [1− µλmax(S)]
−p/2

≤ [1 − µ(1 + δ)]−p/2.

Let η ∼ χ2
p . Integrating by parts yields the second inequality:

E|2 L(Wk, θ̃k, θ
∗
k)|r =

∫ ∞

0

IP
{
2 L(Wk, θ̃k, θ

∗
k) ≥ z

}
rzr−1dz

≤ r

∫ ∞

0

IP {η ≥ z/(1 + δ)} zr−1dz

= (1 + δ)r E|η|r.

2.4.2 Upper bound for the critical values

Let us recall the (partial) Löwner ordering of matrices: for any real symmetric matri-

ces A and B we will write A � B if and only if ϑ⊤Aϑ ≤ ϑ⊤B ϑ for all vectors ϑ ,

or, equivalently if and only if the matrix B −A is nonnegative definite.

Assuming (S) the true covariance matrix fulfills Σ0 � Σ(1+ δ) and the variance
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of the estimator θ̃k is bounded above by B−1
k :

Vk
def
= Var θ̃k = B−1

k ΨWkΣ0WkΨ
⊤B−1

k (4.9)

� (1 + δ)B−1
k ΨWkΣWkΨ

⊤B−1
k

= (1 + δ)B−1
k ΨΣ−1/2W2

kΣ
−1/2Ψ⊤B−1

k

� (1 + δ)B−1
k ΨΣ−1/2WkΣ

−1/2Ψ⊤B−1
k

= (1 + δ)B−1
k ΨWkΨ

⊤B−1
k

= (1 + δ)B−1
k . (4.10)

The last inequality follows from the observation that all the entries of the “weight”

matrix Wk do not exceed one, implying W2
k � Wk . Strict equality occurs if the

{wk,i} are boxcar (rectangular) kernels and the noise is known, i.e., δ = 0 . To

justify the procedure one needs to show that the critical values chosen by the (PC)

are finite. The upper bound for the critical values is obtained under the following

assumption:

(B) Let the matrices Bk satisfy

u0Ip � B
−1/2
k−1 Bk B

−1/2
k−1 � uIp

for some constants u0 and u such that 1 < u0 ≤ u for any 2 ≤ k ≤ K

Remark 2.4.2. In the “one dimensional case” p = 1 , that is for local constant

approximation, the “matrix” Bk =
∑n

i=1wk,iσ
−2
i ≥ Bk−1 is just a weighted “local

design size”. Assume for simplicity that σ2
i ≡ σ2 , the weights are rectangular kernels

wk,i(x) = I{|Xi − x| ≤ hk/2} , and the design is equidistant. Then for n sufficiently

large

1

n
Bk =

1

nσ2

n∑

i=1

I{| i
n
− x| ≤ hk/2} ≈ hk

σ2
,
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and the condition (B) means that the bandwidths grow geometrically: hk = uhk−1 .

Denote for any l < k the variance of the difference θ̃k − θ̃l by Vlk :

Vlk
def
= Var(θ̃k − θ̃l) ≻ 0. (4.11)

Then there exists a unique matrix V
1/2
lk ≻ 0 such that (V

1/2
lk )2 = Vlk .

Lemma 2.4.4. Assume (S) , (W) and (B) . If for some k ≤ K the LPA is fulfilled,

that is if θ∗
1 = · · · = θ∗

k = θ , then for any l < k it holds that:

IP
{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}

≤ IP {η ≥ z/t0}

IP
{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}

≤ IP {η ≥ z/t1} ,

where t0 = 2(1+ δ)(1+ u
−(k−l)
0 ) , t1 = 2(1+ δ)(1+ u(k−l)) and η is a χ2

p -distributed

random variable.

Proof. The LPA and (2.7) imply

θ̃l − θ̃k = B−1
l ΨWlΣ

1/2
0 ε−B−1

k ΨWkΣ
1/2
0 ε

d
= V

1/2
lk ξ,

where ξ is a standard normal vector in IRp . Thus by Theorem 2.4.1 under the LPA

for any l < k

2 L(Wl, θ̃l, θ̃k) = ‖B1/2
l (θ̃l − θ̃k)‖2 d

= ξ⊤V
1/2
lk BlV

1/2
lk ξ.

By the Schur theorem there exists an orthogonal matrix M such that

ξ⊤V
1/2
lk BlV

1/2
lk ξ

d
= ε⊤M⊤ΛlkMε,
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where ε is standard normal vector, Λ = diag(λ1(V
1/2
lk BlV

1/2
lk )), · · · , λp(V 1/2

lk BlV
1/2
lk ))

and p = rank(Bl) . Therefore

2 L(Wl, θ̃l, θ̃k)
d
= λ1(V

1/2
lk BlV

1/2
lk )ε21 + · · ·+ λp(V

1/2
lk BlV

1/2
lk )ε2p,

where λj(V
1/2
lk BlV

1/2
lk ) , j = 1, . . . , p are nonzero eigenvalues of V

1/2
lk BlV

1/2
lk .

By a similar argument:

2 L(Wk, θ̃k, θ̃l)
d
= λ1(V

1/2
lk BkV

1/2
lk )ε21 + · · ·+ λp(V

1/2
lk BkV

1/2
lk )ε2p.

Recalling that η is a χ2
p -distributed random variable, we have

IP
{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}
,

IP
{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}
.

Notice that for any square matrices A and B ,

(A−B)(A⊤ −B⊤) � 2(AA⊤ +BB⊤).

Application of this bound to the variance of the difference of estimators yields

Vlk = (B−1
l ΨWlΣ

1/2
0 −B−1

k ΨWkΣ
1/2
0 )(B−1

l ΨWlΣ
1/2
0 −B−1

k ΨWkΣ
1/2
0 )⊤

� 2(B−1
l ΨWlΣ0WlΨ

⊤B−1
l +B−1

k ΨWkΣ0WkΨ
⊤B−1

k )

= 2Vl + 2Vk,

where Vl = Var θ̃l , l ≤ k . By the upper bound (4.10) for the variance Vl (resp. of

Vk ) and by Assumption (B) :

Vl � (1 + δ)B−1
l ,

Vk � (1 + δ)B−1
k � (1 + δ)u

−(k−l)
0 B−1

l ,

Vlk � 2(1 + δ)(1 + u
−(k−l)
0 )B−1

l .
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Therefore

Bl � 2(1 + δ)(1 + u
−(k−l)
0 )V −1

lk . (4.12)

Thus by (4.12) the upper bound for the induced L2 matrix norm reads as follows:

λmax(V
1/2
lk BlV

1/2
lk ) = ‖B1/2

l V
1/2
lk ‖2

= sup
‖γ‖=1

γ⊤V
1/2
lk BlV

1/2
lk γ

≤ 2(1 + δ)(1 + u
−(k−l)
0 ) sup

‖γ‖=1

γ⊤V
1/2
lk V −1

lk V
1/2
lk γ

≤ 2(1 + δ)(1 + u
−(k−l)
0 ). (4.13)

Similarly:

Vlk � 2(1 + δ)(1 + u(k−l))B−1
k ,

λmax(V
1/2
lk BkV

1/2
lk ) ≤ 2(1 + δ)(1 + u(k−l)). (4.14)

These bounds imply

IP
{
2 L(Wl, θ̃l, θ̃k) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BlV

1/2
lk )

}

≤ IP
{
η ≥ z[2(1 + δ)(1 + u

−(k−l)
0 )]−1

}
,

IP
{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
≤ IP

{
η ≥ z/λmax(V

1/2
lk BkV

1/2
lk )

}

≤ IP
{
η ≥ z[2(1 + δ)(1 + u(k−l))]−1

}
.

Lemma 2.4.5. Under the conditions of the preceding lemma for any µ0 < t−1
0 , or

µ1 < t−1
1 respectively, the exponential moments are bounded:

E exp{µ0 L(Wl, θ̃l, θ̃k)} ≤ [1− µ0t0]
−p/2

E exp{µ1 L(Wk, θ̃k, θ̃l)} ≤ [1− µ1t1]
−p/2,

40



where t0 = 2(1 + δ)(1 + u
−(k−l)
0 ) and t1 = 2(1 + δ)(1 + u(k−l)) .

Proof. The proof of lemma is similar to the proof of Corollary 2.4.3. The bounds

(4.13) and (4.14) imply the following bounds for the corresponding moment generating

functions:

E exp{µL(Wl, θ̃l, θ̃k)} =

p∏

j=1

E exp{µ
2
λj(V

1/2
lk BlV

1/2
lk )ε2j}

=

p∏

j=1

[1− µλj(V
1/2
lk BlV

1/2
lk )]−1/2

≤ [1− µλmax(V
1/2
lk BlV

1/2
lk )]−p/2

≤ [1− 2µ(1 + δ)(1 + u
−(k−l)
0 )]−p/2 ,

E exp{µL(Wk, θ̃k, θ̃l)} ≤ [1− µλmax(V
1/2
lk BkV

1/2
lk )]−p/2

≤ [1− 2µ(1 + δ)(1 + u(k−l))]−p/2.

Lemma 2.4.6. Under the conditions of the preceding lemma it holds that:

E|2 L(Wl, θ̃l, θ̃k)|r ≤ 2rC(p, r)(1 + δ)r(1 + u
−(k−l)
0 )r,

E|2 L(Wk, θ̃k, θ̃l)|r ≤ 2rC(p, r)(1 + δ)r(1 + u(k−l))r,

where

C(p, r) = E|χ2
p|r = 2r

Γ(r + p
2
)

Γ(p
2
)

.

Proof. Integration by parts and Lemma 2.4.4 yield for the second assertion

E|2 L(Wk, θ̃k, θ̃l)|r = r

∫ ∞

0

IP
{
2 L(Wk, θ̃k, θ̃l) ≥ z

}
zr−1dz

≤ r

∫ ∞

0

IP
{
η ≥ z

[
2(1 + δ)(1 + u(k−l))

]−1
}
zr−1dz

= 2r(1 + δ)r(1 + u(k−l))rIE|η|r,
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where η ∼ χ2
p . The first assertion is proved similarly.

Theorem 2.4.7. (The theoretical choice of the critical values)

Assume (D) , (Loc) , (B) and (W) . The adaptive procedure (3.5) in the con-

sidered set-up is well-defined in the sense that the choice of the critical values

zk =
4

µ

{
r(K − k) log u+ log (K/α)− p

4
log(1− 4µ)− log(1− u−r) + C(p, r)

}

(4.15)

provides the conditions (3.9) for all k ≤ K . Here C(p, r) = log
{

22r [Γ(2r+p/2)Γ(p/2)]1/2

Γ(r+p/2)

}

and µ ∈ (0, 1/4) . In particular,

E0,Σ|(θ̃K − θ̂)⊤BK(θ̃K − θ̂)|r ≤ αC(p, r). (4.16)

Proof. The risk corresponding to the adaptive estimator can be represented as a sum

of risks of the false alarms at each step of the procedure:

E0,Σ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r =

k−1∑

m=1

E0,Σ|(θ̃k − θ̃m)
⊤Bk(θ̃k − θ̃m)|rI{θ̂k = θ̃m}.

By the definition of the last accepted estimator θ̂k the event {θ̂k = θ̃m} with

m = 1, . . . , k − 1 occurs if for some l = 1, . . . , m the statistic Tl,m+1 > zl . Thus

{θ̂k = θ̃m} ⊆
m⋃

l=1

{Tl,m+1 > zl}.

It holds also that for any positive µ

I{Tl,m+1 > zl} = I{2 L(Wl, θ̃l, θ̃m+1)− zl > 0}

≤ exp{µ
2
L(Wl, θ̃l, θ̃m+1)−

µ

4
zl}.

Application of this simple fact and the Cauchy-Schwarz inequality implies for m =
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1, . . . , k − 1 the following bound:

E0,Σ|(θ̃k − θ̃m)
⊤Bk(θ̃k − θ̃m)|rI{θ̂k = θ̃m}

= E0,Σ|2 L(Wk, θ̃k, θ̃m)|rI{θ̂k = θ̃m}

≤
m∑

l=1

e−
µ
4
zlE0,Σ

[
|2 L(Wk, θ̃k, θ̃m)|r exp {

µ

2
L(Wl, θ̃l, θ̃m+1)}

]

≤
m∑

l=1

e−
µ
4
zl

{
E0,Σ

[
|2 L(Wk, θ̃k, θ̃m)|2r

]}1/2 {
E0,Σ

[
exp {µL(Wl, θ̃l, θ̃m+1)}

]}1/2

.

By Lemma 2.4.5 with δ = 0

E0,Σ

[
exp {µL(Wl, θ̃l, θ̃m+1)}

]
< (1− 4µ)−p/2.

This together with the bound from Lemma 2.4.6 gives

E0,Σ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r

≤ 2r
√
C(p, 2r)(1− 4µ)−p/4

k−1∑

m=1

m∑

l=1

e−
µ
4
zl(1 + u(k−m))r

= 2r
√
C(p, 2r)(1− 4µ)−p/4

k−1∑

l=1

e−
µ
4
zl

k−1∑

m=l

(1 + u(k−m))r

≤ 22r
√
C(p, 2r)(1− 4µ)−p/4(1− u−r)−1

k−1∑

l=1

e−
µ
4
zlur(k−l),

because −(k − l) < −(m− l) and

k−1∑

m=l

(1 + u(k−m))r = ur(k−l)

k−1∑

m=l

(u−(k−l) + u−(m−l))r

< 2rur(k−l)
k−1∑

m=l

u−r(m−l)

< 2rur(k−l)(1− u−r)−1.

Since ur(k−l) ≤ ur(K−l) for any l < k ≤ K the choice

zl =
4

µ

{
r(K − l) log u+ log (K/α)− p

4
log(1− 4µ)− log(1− u−r) + C(p, r)

}
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with

C(p, r) = log

{
22r[Γ(2r + p/2)Γ(p/2)]1/2

Γ(r + p/2)

}

provides the required bound

E0,Σ|(θ̃l − θ̂l)
⊤Bl(θ̃l − θ̂l)|r ≤ αC(p, r) for all l = 2, . . . , K.

2.4.3 Quality of estimation in the nearly parametric case:

small modeling bias and propagation property

The critical values z1, . . . , zK−1 were selected by the propagation conditions (3.9)

under the hypothesis of homogeneity of the theta’s with a probably misspecified

error distribution, i.e. under the measure N (θ,Σ) . Now θ∗
1 ≈ · · · ≈ θ∗

k ≈ θ

up to some k ≤ K and the covariance matrix is Σ0 . The aim is to formalize the

meaning of “≈ ” and to justify the use of the critical values in this situation. For this

purposes we will take into account the discrepancy between the joint distributions

of the linear estimators θ̃1, . . . , θ̃k for k = 1, . . . , K under the null (homogeneity)

hypothesis corresponding to the distributions with mean θ∗
1 = · · · = θ∗

k = θ and

“wrong” covariance matrix Σ and in the general situation (under the alternative)

with θ∗
1 6= · · · 6= θ∗

k and covariance matrix Σ0 . Denote the expectations w.r.t. these

measures by Eθ,Σ := Ek,θ,Σ and Ef ,Σ0 := Ek,f ,Σ0 respectively. Denote a p×k matrix

of the first k estimators by

Θ̃k
def
= (θ̃1, . . . , θ̃k).
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Its mean under the alternative (the matrix of the parameters minimizing the expected

local log-likelihoods) is given by

Θ∗
k

def
= Ef ,Σ0Θ̃k = (θ∗

1, . . . , θ
∗
k),

and the mean under the null (the “true” parameter in the parametric set-up) is:

Θk
def
= Eθ,ΣΘ̃k = (θ, . . . , θ).

Let A⊗B stands for the Kronecker product of A and B defined as

A⊗ B =




a11B a12B · · · a1nB

a21B a22B · · · a2nB

· · · · · ·

am1B am2B · · · amnB




.

Denote the pk × pk covariance matrices of vec Θ̃⊤
k = (θ̃

⊤
1 , . . . , θ̃

⊤
k ) ∈ R

pk by

Σk
def
= Varθ,Σ[vec Θ̃k] = Dk(Jk ⊗ Σ)D⊤

k , (4.17)

Σk,0
def
= Varf ,Σ0[vec Θ̃k] = Dk(Jk ⊗ Σ0)D

⊤
k , (4.18)

where the matrix Jk is a k × k matrix with all its elements equal to 1 and the

pk × nk matrix Dk is defined as follows:

Dk
def
= D1 ⊕ · · · ⊕Dk = diag(D1, . . . , Dk),

Dl
def
= B−1

l ΨWl, l = 1, . . . , k. (4.19)

By Lemma 2.6.2 from Section 2.6 under Assumption (S) with the same δ , a relation

similar to (S) holds for the covariance matrices Σk and Σk,0 of the linear estimators:

(1− δ)Σk � Σk,0 � (1 + δ)Σk , k ≤ K. (4.20)
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Even though the moment generating function of vec Θ̃K has a form corresponding

to the multivariate normal distribution (see Lemma 2.6.4 in Section 2.6) this repre-

sentation makes sense only if ΣK is nonsingular. Notice that rank(JK ⊗ Σ) = n .

From JK ⊗Σ � 0 it follows only that ΣK � 0 , similarly, ΣK,0 � 0 . However, with-

out any additional assumptions it is easy to show (see Lemma 2.6.3 in Section 2.6)

that for rectangular kernels ΣK ≻ 0 . On the other hand, due to (4.20), it is enough

to require nonsingularity only for the matrix ΣK corresponding to the approximate

model (1.2), and its choice belongs to a statistician. In what follows we assume that

ΣK ≻ 0 .

Denote by IP k
θ,Σ = N (vecΘk,Σk) and by IP k

f ,Σ0
= N (vecΘ∗

k,Σk,0) , k =

1, . . . , K , the distributions of vec Θ̃k under the null and under the alternative. De-

note also the Radon-Nikodym derivative by

Zk
def
=

dIP k
f ,Σ0

dIP k
θ,Σ

. (4.21)

Then by Lemma 2.6.5 from Section 2.6 the Kullback-Leibler divergence between these

measures has the following form:

2KL(IP k
f ,Σ0

, IP k
θ,Σ)

def
= 2Ef ,Σ0 log

(
dIP k

f ,Σ0

dIP k
θ,Σ

)

= ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk, (4.22)

where

b(k)
def
= vecΘ∗

k − vecΘk, (4.23)

∆(k)
def
= b(k)⊤Σ−1

k b(k). (4.24)

If there would be no “noise misspecification”, i.e., if δ ≡ 0 implying Σ = Σ0 , then

∆(k) = b(k)⊤Σ−1
k b(k) = 2KL(IP k

f ,Σ, IP
k
θ,Σ) . Therefore this quantity can be used to
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indicate the deviation between the mean values in the true (1.1) and the approximate

(1.2) models. Clearly, under (W) the quantity ∆(k) grows with k , so following the

terminology suggested in [66], we introduce the small modeling bias condition:

(SMB) Let there exist for some k ≤ K and some θ a constant ∆ ≥ 0 such that

∆(k) ≤ ∆.

Monotonicity of ∆(k) and Assumption (SMB) immediately imply that

∆(k′) ≤ ∆ for all k′ ≤ k.

The conditions (4.20) yield −pkδ ≤ tr(Σ−1
k Σk,0)− pk ≤ pkδ . Thus (6.7) implies the

bound for the Kullback-Leibler divergence in terms of δ :

− pk

2
log(1 + δ) +

∆(k)

2
− pkδ

2
≤ KL(IP k

f ,Σ0
, IP k

θ,Σ) ≤ −pk
2

log(1− δ) +
∆(k)

2
+
pkδ

2
.

(4.25)

Moreover, as δ → 0+

∆(k)− 2pkδ + o(δ) ≤ 2KL(IP k
f ,Σ0

, IP k
θ,Σ) ≤ ∆(k) + 2pkδ + o(δ). (4.26)

This means that if for some k Assumption (SMB) is fulfilled and δ = o
(

1
K

)
, then

the Kullback-Leibler divergence between IP k
θ,Σ and IP k

f ,Σ0
is bounded by a small

constant.

Now one can state the crucial property for obtaining the final oracle result.

Theorem 2.4.8. (Propagation property)

Assume (D) , (Loc) , (S) , (W) , (B) and (PC) . Then for any k ≤ K the
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following upper bounds hold:

E|(θ̃k − θ)⊤Bk(θ̃k − θ)|r/2

≤ (E|χ2
p|r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆(k)

2(1− δ)

}
,

E|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r/2

≤ (αE|χ2
p|r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆(k)

2(1− δ)

}
,

where ϕ(δ)
def
=





1 for homogeneous errors,

2(1+δ)
(1−δ)2

− 1 otherwise.

Here θ̃k = θ̃k(x) is the QMLE defined by (2.3) and θ̂k(x) = θ̃min{k,k̂}(x) is the

adaptive estimator at the k th step of the procedure.

Remark 2.4.3. Bounds (4.30) and (4.29) below give a kind of condition on the

relative error in the noise misspecification. As δ → 0+ it holds for every k ≤ K

ϕ(δ)
∆(k)

1 + δ
− 2pkδ + o(δ) ≤ logEθ,Σ[Z

2
k ] ≤ ϕ(δ)

∆(k)

1− δ
+ 2pkδ + o(δ),

where Zk is defined by (4.21).

This bound implies, up to the additive constant log
(
αE|χ2

p|r
)
/2 , the same asymp-

totic behavior for the logarithm of the risk of adaptive estimator at each step of the

procedure. Because by (SMB) the quantity ∆(k) is bounded by a small constant

and K is of order logn , Eθ,Σ[Z
2
k ] is small if δ = o

(
1

logn

)
. This means that for

the case when Σ is an estimator for Σ0 , only logarithmic in sample size accuracy is

needed. This observation is of particular importance, since it is known from [64] that

the rate n−1/2 of variance estimation is achievable only for dimensions d ≤ 8 over

classes of functions with bounded second derivative.
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Remark 2.4.4. The propagation property guaranties that the adaptive procedure

does not stop with high probability while ∆(k) is small, i.e. under (SMB) , and if

the relative error δ in the noise is sufficiently small.

Proof. Notice that for any nonnegative measurable function g = g(Θ̃k) the Cauchy-

Schwarz inequality implies

Ef ,Σ0[g] = Eθ,Σ[gZk] ≤
(
Eθ,Σ[g

2]
)1/2(

Eθ,Σ[Z
2
k ]
)1/2

(4.27)

with the Radon-Nikodym derivative

Zk =
dIP k

f ,Σ0

dIP k
θ,Σ

.

Taking g = |(θ̃k − θ)⊤Bk(θ̃k − θ)|r/2 one gets the first assertion applying “the

parametric risk bound” with δ = 0 from (4.7):

E[g] ≤
(
Eθ,Σ|(θ̃k − θ)⊤Bk(θ̃k − θ)|r

)1/2(
Eθ,Σ[Z

2
k ]
)1/2

=
(
Eθ,Σ|2 L(Wk, θ̃k, θ)|r

)1/2(
Eθ,Σ[Z

2
k ]
)1/2

≤ (E|χ2
p|r)1/2

(
Eθ,Σ[Z

2
k ]
)1/2

.

The second assertion is treated similarly by applying the pivotality property (Lemma 2.6.1)

and the propagation conditions (3.9).

To calculate Eθ,Σ[Z
2
k ] let us consider logZk given by

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘk)‖2

as a function of vecΘ∗
k . Application of the Taylor expansion at the point vecΘk
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yields

2 logZk = log
detΣk

detΣk,0
− ‖Σ−1/2

k,0 (y − vecΘk)‖2 + ‖Σ−1/2
k (y − vecΘk)‖2

+ 2b(k)⊤Σ−1
k,0(y − vecΘk)− b(k)⊤Σ−1

k,0b(k).

With ξ ∼ N (0, Ipk) the second moment of the Radon-Nikodym derivative under the

null hypothesis reads as follows:

Eθ,Σ[Z
2
k ]

=
detΣk

detΣk,0

exp{−b(k)⊤Σ−1
k,0b(k)}E exp{−‖Σ−1/2

k,0 Σ
1/2
k ξ‖2 + ‖ξ‖2 + 2b(k)⊤Σ−1

k,0Σ
1/2
k ξ}

=
detΣk

detΣk,0

[
det
(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)]−1/2

× exp{2b(k)⊤Σ−1
k,0Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1
Σ

1/2
k Σ−1

k,0b(k)− b(k)⊤Σ−1
k,0b(k)}

=
detΣk

detΣk,0

[ pk∏

j=1

{2λj(Σ1/2
k Σ−1

k,0Σ
1/2
k )− 1}

]−1/2
(4.28)

× exp{b(k)⊤Σ−1/2
k,0

[
2Σ

−1/2
k,0 Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1
Σ

1/2
k Σ

−1/2
k,0 − Ipk

]
Σ

−1/2
k,0 b(k)}.

To estimate the obtained expression in terms of the level of noise misspecification δ

notice that the condition (4.20) implies

(
1

1 + δ

)pk

≤ detΣk

detΣk,0

≤
(

1

1− δ

)pk

,

(
1− δ

1 + δ

) pk
2

≤
[ pk∏

j=1

{2λj(Σ1/2
k Σ−1

k,0Σ
1/2
k )− 1}

]−1/2 ≤
(
1 + δ

1− δ

) pk
2

.

1− δ

1 + δ
Ipk �

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1

� 1 + δ

1− δ
Ipk.

Therefore the quantity in the exponent in (4.28) is bounded by:

(
2

1− δ

(1 + δ)2
− 1

)
b(k)⊤Σ−1

k,0b(k)

≤ b(k)⊤Σ
−1/2
k,0

[
2Σ

−1/2
k,0 Σ

1/2
k

(
2Σ

1/2
k Σ−1

k,0Σ
1/2
k − Ipk

)−1
Σ

1/2
k Σ

−1/2
k,0 − Ipk

]
Σ

−1/2
k,0 b(k)

≤
(
2

1 + δ

(1− δ)2
− 1

)
b(k)⊤Σ−1

k,0b(k).
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Moreover,

∆(k)

1 + δ
=

1

1 + δ
b(k)⊤Σ−1

k b(k)

≤ b(k)⊤Σ−1
k,0b(k)

≤ 1

1− δ
b(k)⊤Σ−1

k b(k) =
∆(k)

1− δ
.

Finally,

(
1− δ

(1 + δ)3

) pk
2

exp

{(
2(1− δ)

(1 + δ)2
− 1

)
∆(k)

1 + δ

}

≤ Eθ,Σ[Z
2
k ] ≤

(
1 + δ

(1− δ)3

) pk
2

exp

{(
2(1 + δ)

(1− δ)2
− 1

)
∆(k)

1− δ

}
. (4.29)

In the case of homogeneous errors the expression for logZk reads as

logZk = pk log
( σ
σ0

)
+

1

2

( 1
σ2

− 1

σ2
0

)
‖V−1/2

k (y − vecΘk)‖2

+
1

σ2
0

b(k)⊤V−1
k (y − vecΘk)−

1

2σ2
0

b(k)⊤V−1
k b(k),

implying

Eθ,σ[Z
2
k ] =

(
σ2

σ2
0

)pk (
σ2
0

2σ2 − σ2
0

) pk
2

exp

{
b(k)⊤V−1

k b(k)

2σ2 − σ2
0

}
.

By the condition (S)

(
1− δ

(1 + δ)3

) pk
2

exp

{
∆1(k)

σ2(1 + δ)

}

≤ Eθ,σ[Z
2
k ] ≤

(
1 + δ

(1− δ)3

) pk
2

exp

{
∆1(k)

σ2(1− δ)

}
, (4.30)

where p is the dimension of the parameter set and k is the degree of the localization.

51



2.4.4 Quality of estimation in the nonparametric case: the

oracle result

Define the oracle index as the largest index k ≤ K such that the small modeling bias

condition (SMB) holds, that is

k∗
def
= max{k ≤ K : ∆(k) ≤ ∆}. (4.31)

Theorem 2.4.9. Let ∆(1) ≤ ∆ , i.e., the first estimator is always accepted by the

testing procedure. Let k∗ be the oracle index. Then under the conditions (D) , (Loc) ,

(S) , (W) , (B) the risk between the adaptive estimator and the oracle is bounded by

the following expression:

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2 (4.32)

≤ z
r/2
k∗ + (αE|χ2

p|r)1/2(1 + δ)pk
∗/4(1− δ)−3pk∗/4 exp

{
ϕ(δ)

∆

2(1− δ)

}
,

where ϕ(δ) is as in Theorem 2.4.8.

Proof. By the definition of the adaptive estimator θ̂ = θ̃k̂ . Because the events

{k̂ ≤ k∗} and {k̂ > k∗} are disjunct one can write

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2

= E|(θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂)|r/2I{k̂ ≤ k∗}

+ E|(θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂)|r/2I{k̂ > k∗}.

If k̂ ≤ k∗ then θ̂k∗
def
= θ̃min{k∗,k̂} = θ̃k̂ . Thus to bound the first summand it is enough

to apply Theorem 2.4.8 with k = k∗ .

To bound the second expectation, i.e. to bound fluctuations of the adaptive

estimator θ̂ at the steps of the procedure for which the SMB condition is not fulfilled
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anymore, just notice that for k̂ > k∗ the quadratic form coincides with the test

statistic Tk∗,k̂

(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)

= (θ̃k∗ − θ̃k̂)
⊤Bk∗(θ̃k∗ − θ̃k̂)

def
= Tk∗,k̂.

But the index k̂ was accepted, this means that Tl,k̂ ≤ zl for all l < k̂ and therefore

for l = k∗ . Thus

E|(θ̃k∗ − θ̂)⊤Bk∗(θ̃k∗ − θ̂)|r/2I{k̂ > k∗} ≤ z
r/2
k∗ .

2.4.5 Oracle risk bounds for estimators of the regression func-

tion and its derivatives

Theorem 2.4.9 provides an oracle risk bound for the adaptive estimator θ̂(x) = θ̃k̂(x)

of the parameter vector θ(x) ∈ R
p of the finite-rank expansion from the method of

local approximation, see Section 1.2.3 for details. This is equivalent to the estimation

of the parameter of the local linear fit of the form Ψ⊤θ at the point x to the

model (1.1) under misspecification together with the adaptive choice of the degree of

localization (of the bandwidth). If the basis is polynomial and the regression function

f(·) is sufficiently smooth in a neighborhood of x , then θ̂(x) is the adaptive local

polynomial estimator LP ad(p−1) of the vector (f (0)(x), . . . , f (p−1)(x))⊤ of the values

of f and its derivatives (if they exist) at the reference point x ∈ R
d under the model

misspecification.
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Now we are going to obtain a similar oracle result for the components of the

vector θ̂(x) , particularly for e⊤
j θ̂(x) , j = 1, . . . , p , where ej = (0, . . . , 1, . . . , 0)⊤ is

the j th canonical basis vector in R
p . As a corollary of this general result in the case

of the polynomial basis we get an oracle risk bound for LP ad(p − 1) estimators of

the function f and its derivatives at the point x .

Denote the LPk(p− 1) estimator of f (j−1)(x) corresponding to the k th scale by

f̃
(j−1)
k (x) = e⊤j θ̃k(x), j = 1, . . . , p, (4.33)

f̃k(x) = f̃
(0)
k (x) = e⊤1 θ̃k(x).

Then the adaptive local polynomial estimators are defined as follows:

f̂ (j−1)(x) = e⊤j θ̂(x), j = 1, . . . , p, (4.34)

f̂(x) = e⊤1 θ̂(x).

Similarly, the adaptive estimators of the function f and its derivatives corresponding

to the k th step of the procedure are given by

f̂
(j−1)
k (x)

def
= e⊤j θ̂k(x), j = 1, . . . , p. (4.35)

Thus, if the basis is polynomial, the estimator f̂(x)
def
= f̂ (0)(x) is the LP ad(p − 1)

estimator of the value f(x) , and f̂ (j−1)(x) with j = 2, . . . , p are, correspondingly,

the LP ad(p−1) estimators of the values of its derivatives. We will use the polynomial

basis to obtain the rate of convergence, but it should be stressed that the results of

Theorems 2.4.9 and 2.4.15 hold for any basis satisfying the conditions of the theorems.

We need the following assumptions:

(S1) There exist 0 < σmin ≤ σmax <∞ such that for any i = 1, . . . , n the variance
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of the errors in the “approximate” model (1.2) is uniformly bounded:

σ2
min ≤ σ2

i ≤ σ2
max.

(Lp1d) Let assumption (S1) be satisfied. There exists a number Λ0 > 0 such that

for any k = 1, . . . , K the smallest eigenvalue fulfills λp(Bk) ≥ nhdkΛ0σ
−2
max for

n sufficiently large.

Then, because Bk ≻ 0 , for any k = 1, . . .K we have

γ⊤B−1
k γ ≤ σ2

max

nhdkΛ0

‖γ‖2 (4.36)

for any γ ∈ R
p , and we obtain the following lemma:

Lemma 2.4.10. Let (S1) and (Lp1d) be satisfied. Then for any j = 1, . . . , p and

k, k′ = 1, . . .K the following upper bound holds:

(
nhdkΛ0

σ2
max

)1/2

|e⊤
j θ̃k − e⊤

j θ̃k′| ≤ ‖B1/2
k (θ̃k − θ̃k′)‖.

Proof. By (4.36) taking γ = B
1/2
k (θ̃k − θ̃k′) we have

|e⊤
j θ̃k − e⊤

j θ̃k′|2 ≤ ‖θ̃k − θ̃k′‖2

= ‖B−1/2
k B

1/2
k (θ̃k − θ̃k′)‖2

≤ σ2
max

nhdkΛ0

‖B1/2
k (θ̃k − θ̃k′)‖2.

To obtain the “componentwise” oracle risk bounds we need to recheck the “propa-

gation property”. First, notice that the “propagation conditions” (3.9) on the choice

the critical values z1, . . . , zK−1 imply the similar bounds for the components e⊤
j θ̂k(x) .

Recall that θ̂k
def
= θ̃min{k,k̂} . Then, by (3.9), Lemma 2.4.10 and the pivotality property

(Lemma 2.6.1) we have the following simple observation:
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Lemma 2.4.11. Let (S1) and (Lp1d) be satisfied. Under the propagation condi-

tions (PC) for any θ ∈ R
p and all k = 2, . . . , K we have:

(
nhdkΛ0

σ2
max

)r

Eθ,Σ|e⊤
j θ̃k(x)− e⊤

j θ̂k(x)|2r ≤ E0,Σ‖B1/2
k (θ̃k − θ̂k)‖2r

≤ αC(p, r).

Here E0,Σ stands for the expectation w.r.t. the measure N (0,Σ) and C(p, r) =

E|χ2
p|r .

As in the first parts of this chapter to make the notation shorter we will suppress

the dependence on x . To get the propagation property we study for k = 1, . . . , K

the joint distributions of e⊤
j θ̃1, . . . , e

⊤
j θ̃k , that is the distribution of e⊤

j Θ̃k , the j th

row of the matrix Θ̃k , under the null and under the alternative. Obviously,

Ef ,Σ0[e
⊤
j Θ̃k] = e⊤

j Θ
∗
k = (e⊤

j θ
∗
1, . . . , e

⊤
j θ

∗
k),

and the mean under the null (the true parameter in the parametric set-up) is:

Eθ,Σ[e
⊤
j Θ̃k] = e⊤

j Θk = (e⊤
j θ, . . . , e

⊤
j θ).

Recall that the matrices Σk,0 and Σk have a block structure. Now, for instance,

to study the estimator of the first coordinate of the “best parametric fit” vector (or

of f(x) in the case of the polynomial basis) we take the first elements of each block

and so on. Denote the k × k covariance matrices of j th elements of the vectors

θ̃1, . . . , θ̃k by

Σk,j
def
=

{
covθ,Σ

[
θ̃
(j)
l , θ̃(j)m

]}
1≤l≤m≤k

= Dk,j(Jk ⊗ Σ)D⊤
k,j under the null, (4.37)

Σk,0,j
def
=

{
covf ,Σ0

[
θ̃
(j)
l , θ̃(j)m

]}
1≤l≤m≤k

= Dk,j(Jk ⊗ Σ0)D
⊤
k,j under the alternative, (4.38)
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where Jk is a k × k matrix with all its elements equal to 1 , and the k × nk block

diagonal matrices Dk,j is defined by

Dk,j
def
= e⊤

j D1 ⊕ · · · ⊕ e⊤
j Dk,=

(
Ik ⊗ e⊤

j

)
Dk

Dl
def
= B−1

l ΨWl, l = 1, . . . , k. (4.39)

Moreover, the following representation holds:

Σk,j =
(
Ik ⊗ e⊤

j

)
Dk

(
Jk ⊗ Σ

)
D⊤

k

(
Ik ⊗ e⊤

j

)⊤

=
(
Ik ⊗ ej

)⊤
Σk

(
Ik ⊗ ej

)
, (4.40)

where Σk is defined by (4.17). Similarly,

Σk,0,j =
(
Ik ⊗ ej

)⊤
Σk,0

(
Ik ⊗ ej

)
. (4.41)

Thus, the important relation (4.20) is preserved for Σk,j and Σk,0,j obtained by

picking the (j, j) th elements of each block of Σk and Σk,0 respectively.

With usual notation γ(j) for the j th component of γ ∈ R
k , denote by

bj(k)
def
= (e⊤

j (θ
∗
1 − θ), . . . , e⊤

j (θ
∗
k − θ))⊤

= ((θ∗
1 − θ)(j), . . . , (θ∗

k − θ)(j))⊤ ∈ R
k, (4.42)

∆j(k)
def
= bj(k)

⊤Σ−1
k,j bj(k). (4.43)

Theorem 2.4.12. (“Componentwise” propagation property)

Under the conditions (D) , (Loc) , (S) , (S1) , (PC) , (B) , (W) and (Lp1d)

for any k ≤ K the following upper bound holds:

(
nhdkΛ0

σ2
max

)r/2

E|e⊤
j θ̃k(x)− e⊤

j θ̂k(x)|r

≤ (αE|χ2
p|r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆j(k)

2(1− δ)

}
,
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where ϕ(δ)
def
=





1 for homogeneous errors,

2(1+δ)
(1−δ)2

− 1 otherwise.

Corollary 2.4.13. Let the basis be polynomial. Then under the conditions of the

preceding theorem the following upper bound holds:

(
nhdkΛ0

σ2
max

)r/2

E|f̃ (j−1)
k (x)− f̂

(j−1)
k (x)|r

≤ (αE|χ2
p|r)1/2(1 + δ)pk/4(1− δ)−3pk/4 exp

{
ϕ(δ)

∆j(k)

2(1− δ)

}
,

with ϕ(δ) as before.

Proof. The proof essentially follows the line of the proof of Theorem 2.4.8. If the

distributions of vec Θ̃k under the null and under the alternative were Gaussian, then

any subvector is also Gaussian. Denote by IP k,j
θ,Σ = N

(
(e⊤

j θ, . . . , e
⊤
j θ)

⊤,Σk,j

)
and

by IP k,j
f ,Σ0

= N
(
(e⊤

j θ
∗
1, . . . , e

⊤
j θ

∗
k)

⊤,Σk,0,j

)
, k = 1, . . . , K , the distributions of e⊤j Θ̃k

under the null and under the alternative.

By the Cauchy-Schwarz inequality and Lemma 2.4.11

(
nhdkΛ0

σ2
max

)r/2

E|e⊤
j θ̃k(x)− e⊤

j θ̂(x)|r ≤ (αE|χ2
p|r)1/2

(
Eθ,Σ[Z

2
k,j]
)1/2

with the Radon-Nikodym derivative given by

Zk,j
def
=

dIP k,j
f ,Σ0

dIP k,j
θ,Σ

. (4.44)

By inequalities (4.40) and (4.41) the analog of Assumption (S) is preserved for Σk,0,j

and Σk,j , that is, there exists δ ∈ [0, 1) such that

(1− δ)Σk,j � Σk,0,j � (1 + δ)Σk,j (4.45)
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for any k ≤ K and j = 1, . . . , p . By the Taylor expansion at the point (e⊤
j θ, . . . , e

⊤
j θ)

⊤

with ξj ∼ N (0, Ik)

Eθ,Σ[Z
2
k,j]

=
detΣk,j

detΣk,0,j
exp{−‖Σ−1/2

k,0,j bj(k)‖2}

× E

[
exp{−‖Σ−1/2

k,0,j Σ
1/2
k,j ξj‖2 + ‖ξj‖2 + 2bj(k)

⊤Σ−1
k,0,jΣ

1/2
k,j ξj}

]

=
detΣk,j

detΣk,0,j

k∏

l=1

[
2λl(Σ

1/2
k,j Σ

−1
k,0,jΣ

1/2
k,j )− 1

]−1/2

× exp
{
bj(k)

⊤Σ
−1/2
k,0,j

[
2Σ

−1/2
k,0,j Σ

1/2
k,j (2Σ

1/2
k,j Σ

−1
k,0,jΣ

1/2
k,j − Ik)

−1Σ
1/2
k,j Σ

−1/2
k,0,j − Ik

]
Σ

−1/2
k,0,j bj(k)

}
.

Now utilizing (4.45) we get

1− δ

1 + δ
Ik �

(
2Σ

1/2
k,j Σ

−1
k,0,jΣ

1/2
k,j − Ik

)−1

� 1 + δ

1− δ
Ik,

2Σ
−1/2
k,0,j Σ

1/2
k,j (2Σ

1/2
k,j Σ

−1
k,0,jΣ

1/2
k,j − Ik)

−1Σ
1/2
k,j Σ

−1/2
k,0,j − Ik

� 2
1 + δ

1− δ
Σ

−1/2
k,0,j Σk,jΣ

−1/2
k,0,j − Ik

�
(
2

1 + δ

(1− δ)2
− 1

)
Ik,

detΣk,j

detΣk,0,j
≤
(

1

1− δ

)k

,

k∏

l=1

[
2λl(Σ

1/2
k,j Σ

−1
k,0,jΣ

1/2
k,j )− 1

]−1/2

≤
(
1 + δ

1− δ

) k
2

.

Finally, because bj(k)
⊤Σ−1

k,0,j bj(k) ≤ ∆j(k)(1 − δ)−1 , we obtain the bound for the

second moment of the Radon-Nikodym derivative:

Eθ,Σ[Z
2
k,j] ≤

(
1 + δ

(1− δ)3

)k
2

exp

{
ϕ(δ)

∆j(k)

1− δ

}

which completes the proof.
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At this point we introduce the following “componentwise” small modeling dias

conditions:

(SMBj) Let there exist for some j = 1, . . . , p , some k(j) ≤ K and some θ(j) =

e⊤j θ a constant ∆j ≥ 0 such that

∆j(k(j)) ≤ ∆j , (4.46)

where ∆j(k) is defined by (4.43).

Definition 2.4.14. For each j = 1, . . . , p the oracle index k∗(j) is defined as the

largest index in the scale for which the (SMBj) condition holds, that is,

k∗(j) = max{k ≤ K : ∆j(k) ≤ ∆j}. (4.47)

Theorem 2.4.15. Let the smallest bandwidth h1 be such that the first estimator

e⊤
j θ̃1(x) be always accepted in the adaptive procedure. Let k∗(j) be the oracle index

defined by (4.47), j = 1, . . . , p . Assume (D) , (Loc) , (S) , (B) , (PC) , (W) ,

(S1) and (Lp1d) . Then the risk between the j th coordinates of the adaptive estima-

tor and the oracle is bounded with the following expression:

(
nhdk∗(j)Λ0

σ2
max

)r/2

E|e⊤
j θ̃k∗(j)(x)− e⊤

j θ̂(x)|r (4.48)

≤ z
r/2
k∗(j) + (αE|χ2

p|r)1/2(1 + δ)pk
∗
j /4(1− δ)−3pk∗j /4 exp

{
ϕ(δ)

∆j

2(1− δ)

}

where ϕ(δ) as in Theorem 2.4.12.

Corollary 2.4.16. Let the basis be polynomial. Under the conditions of the preceding

theorem, the risk between the adaptive estimator LP ad(p− 1) of the value of the j th
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derivative of f at x and the oracle is bounded with the following expression:

(
nhdk∗(j)Λ0

σ2
max

)r/2

E|f̃ (j−1)
k∗(j) (x)− f̂ (j−1)(x)|r

≤ z
r/2
k∗(j) + (αE|χ2

p|r)1/2(1 + δ)pk
∗
j /4(1− δ)−3pk∗j /4 exp

{
ϕ(δ)

∆j

2(1− δ)

}

with ϕ(δ) as before.

Proof. To simplify the notation we suppress the dependence on j in the index k .

Similarly to the proof of Theorem (2.4.9) we consider disjunct events {k̂ ≤ k∗} and

{k̂ > k∗} . Therefore,

E|e⊤
j θ̃k∗(x)− e⊤

j θ̂(x)|r

= E|e⊤
j θ̃k∗(x)− e⊤

j θ̂(x)|r I{k̂ ≤ k∗}

+ E|e⊤
j θ̃k∗(x)− e⊤

j θ̂(x)|r I{k̂ > k∗}.

By Lemma 2.4.10 and the definition of the test statistic Tk∗,k̂ the second summand

can be easily bounded:

(
nhdk∗Λ0

σ2
max

)r/2

E|e⊤
j θ̃k∗(x)− e⊤

j θ̂(x)|r I{k̂ > k∗}

≤ E‖B1/2
k∗ (θ̃k∗(x)− θ̂(x))‖r I{k̂ > k∗}

≤ z
r/2
k∗ .

To bound the first summand we use the “componentwise” analog of Theorem 2.4.8,

particularly Theorem 2.4.12, and this completes the proof.
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2.5 Rates of convergence

2.5.1 Minimax rate of spatially adaptive local polynomial es-

timators

In this section we give some basic information on spatial adaptation and present the

rate of convergence of the adaptive local polynomial estimator LP ad(p− 1) of f(x) .

Let us recall that Donoho and Johnstone in [14] suggested how to measure the quality

of adaptive estimators. The authors called this approach “the ideal spatial adaptation”

and defined it as a level of performance which would be achieved by smoothing with

knowledge of the best “oracle” scheme. The estimator corresponding to this scheme

is called an “oracle”. The adaptive methods try to construct an estimator which

mimics the performance of the oracle in some sense, for example, in terms of the risk

of estimation. Inequalities relating the risk of the adaptive estimator to the risk of

the oracle are usually referred to as “oracle inequalities”. The results obtained in

Section 2.4.4 belong to this family.

To simplify the representation in this section we consider a univariate design

in [0, 1] . The generalization to the multidimensional case is straightforward. Fix a

point x ∈ [0, 1] and a method of localization w(·) . In this section we also assume

that the basis is polynomial and centered at x , that is ψ1 ≡ 1 and ψj(t) = (t −

x)j−1/(j − 1)! with j = 2, . . . , p . As in Section 1.2 we denote for any k = 1, . . . , K

by

f̃k(x)
def
= e⊤

1 θ̃k(x) (5.1)

the local polynomial estimator of order p−1 of f(x) corresponding to the k th scale
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with the bandwidth hk = hk(x) , or just the LPk(p− 1) estimator of f(x) for short.

Here e1 ∈ R
p is the first canonical basis vector (1, 0, . . . , 0)⊤ . As before we assume

that

1

n
< h1 < . . . < hk < . . . hK ≤ 1

and therefore that the ordering condition (W) is satisfied. Denote the adaptive local

polynomial estimator LP ad(p− 1) of f(x) by

f̂(x)
def
= f̃k̂(x) = e⊤

1 θ̂(x). (5.2)

with θ̂(x) defined by (3.1). To obtain bounds for the risk of the adaptive estimator

in [14], [22] and [41] it was suggested to compare the MSE(x) (the Lr -risk in [22])

corresponding to the adaptive estimator f̂(x) with the infimum over all scales of

the mean squared risks (the Lr -risks, respectively) of nonadaptive estimators f̃l(x) ,

l = 1, . . . , K . That is we compare Ef [|f̂(x) − f(x)|2] with the “best” risk of the

form Ef [|f̃l(x)− f(x)|2] . Clearly, for any l by the bias-variance decomposition and

by (2.8) we have

Ef [|f̃l(x)− f(x)|2] = b2l,f (x) + σ2
l (x),

where the variance term is defined by

σ2
l (x)

def
= Ef [|e⊤

1 θ̃l(x)− e⊤
1 θ

∗
l (x)|2]

and the bias is given by

bl,f (x)
def
= e⊤

1 θ
∗
l (x)− f(x).

Here

e⊤
1 θ

∗
l (x) = Ef [f̃l(x)] =

n∑

i=1

W ∗
l, i(x)f(Xi)
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is a local linear smoother of the function f at the point x corresponding to the l th

scale, see Section 1.2 for details. The polynomial weights W ∗
l, i now are defined by

W ∗
l, i(x) = e⊤

1 B
−1
l Ψi

wl,i(x)

σ2
i

(5.3)

with Bl defined by (2.4). The columns of the “design” matrix Ψ are given by:

Ψi = Ψ(Xi − x) =
(
1, Xi − x, . . . , (Xi − x)p−1/(p− 1)!

)⊤
.

With this notation the ideal spatial adaptation can be expressed as follows (see [41]):

MSEid(x) = inf
1≤k≤K

{b2k,f(x) + σ2
k(x)} (5.4)

where for any k the first summand

bk,f(x)
def
= sup

1≤l≤k
|bl,f(x)| = sup

1≤l≤k
|e⊤

1 θ
∗
l (x)− f(x)| (5.5)

reflects the local smoothness of f within the largest interval [x−hk, x+hk] , contain-

ing intervals [x−hl, x+hl] with 1 ≤ l < k . Indeed, the smoothness of a function can

be defined via the quality of its approximation by polynomials, see [17] for example.

The bandwidth h⋆ = h⋆(x, w(·), f(·)) providing a trade-off between b
2

k,f(x) and the

variance term could be called an “ideal” or “oracle” bandwidth. Unfortunately, as it

is generally in nonparametric estimation, we cannot minimize the right-hand side of

(5.4) directly because it depends on the unknown function f . The lack of information

about f can be compensated by the assumption that f belongs to some smooth-

ness class, see [26]. This technique in the nonadaptive set-up under the assumption

that f ∈ Σ(β, L) on [0, 1] is demonstrated in Section 1.2.2 for the local polynomial

approximation of order p− 1 = ⌊β⌋ . Here the use of (5.5) or of the SMB conditions
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allows to adapt not to the functional class but to the smoothness properties of the

function f itself.

In the pointwise adaptation framework due to Lepski [38], see also [8], it was

discovered that the relation (5.4) “does not work”. This means that an adaptive

estimator satisfying (5.4) does not exist. In pointwise estimation one has to pay an

additional logarithmic factor d(n) for proceeding without knowledge of the regularity

properties of f . It was proved in [38] and [40] that this factor d(n) is unavoidable

and is of order logn , where n is the sample size. In [42] for kernel smoothing in the

Gaussian white noise model (in our set-up under regularity assumptions on the design

this is the case of p = 1 , δ = 0 and σi ≡ σ ), it was shown that d(n) depends on the

range of adaptation, that is on the ratio of the largest bandwidth to the smallest one

and that d(n) is not larger in order than logn . This phenomenon can be expressed

as an increase of the noise level leading to the adaptive upper bound for the squared

risk (see [41]) in the following form:

MSEad(x) = inf
1≤k≤K

{b2k,f(x) + σ2
k(x)d(n)}. (5.6)

This relationship (see [42]) can be written in the form of a “balance equation”:

bk,f(x) = C(w)σk(x)
√
d(n) (5.7)

with

d(n) = log

(
hK
h1

)
. (5.8)

The optimal selection of the constant C(w) provides sharp oracle results. The band-

width h⋆ = hk⋆ such that

k⋆ = max{k ≤ K : bk,f(x) ≤ C(w)σk(x)
√
d(n)} (5.9)
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is called the “ideal adaptive bandwidth” or just the “oracle bandwidth”.

Before the proceeding with the analysis of the convergence rate, let us point

out that the weights W ∗
l, i(x) defined by (5.3) preserve the reproducing polynomials

property:

Proposition 2.5.1. Let x ∈ R be such that B1 =
∑n

i=1ΨiΨ
⊤
i w1,i(x)σ

−2
i ≻ 0 . Then

the weights defined by (5.3) satisfy

n∑

i=1

W ∗
l, i(x) = 1, (5.10)

n∑

i=1

(Xi − x)mW ∗
l, i(x) = 0 , m = 1, . . . , p− 1,

for all l = 1, . . . , K and design points {X1, . . . , Xn} .

Proof. By Assumption (W) , if B1 ≻ 0 at some point x , then Bl = Bl(x) ≻ 0 for

all l = 1, . . . , K , and the assertion follows from the proof of Proposition 1.2.2.

To simplify the study of (5.6) we need to introduce the following assumptions:

(Lp1′) Assume (S1) . There exists a number λ0 > 0 such that for any k =

1, . . . , K the smallest eigenvalue fulfills λp(Bk) ≥ nhkλ0σ
−2
max for sufficiently

large n .

(Lp2′) There exists a real number a0 > 0 such that for any interval A ⊆ [0, 1] and

all n ≥ 1

1

n

n∑

i=1

I{Xi ∈ A} ≤ a0 max
{∫

A

dt,
1

n

}
.

(Lp3′) The localizing functions (kernels) wk,i are compactly supported in [0, 1]

with

wk,i(x) = 0 if |Xi − x| > hk.
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This immediately implies the similar property for the local polynomial weights:

W ∗
k,i(x) = 0 if |Xi − x| > hk.

(Lp4′) There exists a finite number wmax such that

sup
k,i

|wk,i(x)| ≤ wmax.

Remark 2.5.1. Assumption (Lp1′) is weaker than (Lp1) because it does not require

the uniformity in x .

Remark 2.5.2. Assumption (S1) implies that the conditional number

κ(Σ)
def
=
σ2
max

σ2
min

(5.11)

of the covariance matrix in the known “wrong” model (1.2) is finite.

Theorem 2.5.2. Assume (W) , (S) , (S1) , (Lp1′) – (Lp4′) and that the smallest

bandwidth h1 ≥ 1
2n

. Let f ∈ Σ(β, L) on [0, 1] and let {f̃k(x)}Kk=1 be the LPk(p−1)

estimators of f(x) with p − 1 = ⌊β⌋ . Then for sufficiently large n and any hk

satisfying hK > . . . > hk > . . . > h1 , k = 1, . . . , K , the following upper bounds hold:

|bk,f(x)| ≤ C2κ(Σ)
Lhβk

(p− 1)!
,

σ2
k(x) ≤ (1 + δ)

σ2
max

nhkλ0
,

with C2 = 2wmaxa0
√
e/λ0 and δ ∈ [0, 1) .

Moreover, the choice of a positive bandwidth h = h⋆(n) (see (5.15) for the precise

formula) in the form:

h⋆(n) = O
((

d(n)

n

) 1
2β+1

)
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provides the following upper bound for the risk of adaptive estimator:

lim
n→∞

sup
f∈Σ(β,L)

Ef [ψ
−2
n |f̂(x)− f(x)|2] ≤ C, (5.12)

where

ψn = O
((

d(n)

n

) β
2β+1

)
(5.13)

is given by (5.16) and the constant C is finite and depends on β , L , σ2
min , σ

2
max ,

p , wmax and a0 only.

Remark 2.5.3. The bound for σ2
k(x) is simple than the corresponding one from The-

orem 1.2.4 due to the assumption of normality of the vector of errors ( ε ∼ N (0, In) )

in the models (1.1)–(1.2).

Remark 2.5.4. Recall that in [42] it was shown that the “adaptive factor” d(n)

cannot be less in order than log
(
hKh

−1
1

)
.

Proof. The bound for |bl,f(x)| at the point x is obtained as in the proof of The-

orem 1.2.4 by application of the second assertion of Lemma 1.2.3, so we skip some

details. By Proposition 2.5.1 and the Taylor theorem with τi such that the points

τiXi are between Xi and x , and utilizing Assumption (Lp3) we have:

|bl,f(x)| ≤ 1

(p− 1)!

n∑

i=1

|f (p−1)(τiXi)− f (p−1)(x)||Xi − x|p−1|W ∗
l, i(x)|

≤ L

(p− 1)!

n∑

i=1

|τiXi − x|β−(p−1)|Xi − x|p−1|W ∗
l, i(x)|

≤ Lhβl
(p− 1)!

n∑

i=1

|W ∗
l, i(x)|.

Under the assumptions of the theorem the sum of the polynomial weights can be
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bounded as follows:

n∑

i=1

|W ∗
l, i(x)| ≤ wmax

n∑

i=1

σ−2
i ‖B−1

l Ψi‖

≤ κ(Σ)
wmax

λ0nhl

n∑

i=1

‖Ψi‖ I{Xi ∈ [x− hl, x+ hl]}

≤ κ(Σ)
wmax

√
e

λ0
a0max{2, 1

nhl
}

≤ κ(Σ)
2a0wmax

√
e

λ0
,

and the first assertion is justified in view of

bk,f(x)
def
= sup

1≤l≤k
|bl,f(x)| ≤ κ(Σ)

2a0wmax

√
ea0

λ0

Lhβk
(p− 1)!

. (5.14)

To bound the variance just notice that, because Bk is symmetric and non-degenerate,

by (Lp1′) for any γ ∈ R
p it holds:

γ⊤B−1
k γ ≤ σ2

max

nhkλ0
‖γ‖2.

Then under Assumption (S) by (4.10) for the variance term we have:

σ2
k(x) = e⊤

1 Var θ̃k e1

≤ (1 + δ)e⊤
1 B

−1
k e1

≤ (1 + δ)
σ2
max

nhkλ0
.

By (5.6),

MSEad(x) ≤ inf
1≤k≤K

{
C̃2h

2β
k +

C̃1d(n)

nhk

}

with C̃2 = (C2Lκ(Σ)/(p−1)!)2 and C̃1 = (1+δ)σ2
maxλ

−1
0 . The choice of a bandwidth

of the form:

h⋆(n) = C̃

(
(p− 1)!

Lκ(Σ)

) 2
2β+1

(
(1 + δ)σ2

max

d(n)

n

) 1
2β+1

(5.15)
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minimizes the upper bound for the MSEad(x) and provides the rate ψn w.r.t. the

square loss function and over a Hölder class Σ(β, L) :

ψn = C

(
Lκ(Σ)

(p− 1)!

) 1
2β+1

(
(1 + δ)σ2

max

d(n)

n

) β
2β+1

. (5.16)

Here C̃ and C depend only on wmax , a0 , λ0 and β .

2.5.2 SMB, the bias-variance trade-off and the rate of con-

vergence

The choice of the “ideal adaptive bandwidth” usually can be done by (5.9). In [66] it

was shown that the small modeling bias (SMB1) condition (4.46) can be obtained

from the “bias-variance trade-off” relations. Unfortunately, to have the “modeling

bias” ∆(k) = O(1) (this is ∆1(k) in the present framework) one should apply the

balance equation (5.7) or (5.9) without the “adaptive factor” d(n) , see equation (3.5)

in [66]. In the Gaussian regression set-up (example 1.1 in [66] ) under smoothness

assumptions on the regression function f ∈ Σ(β, L) this results in a suboptimal rate

in the upper bound for the MSE(x) :

ψn = O
(
L

1
2β+1n− β

2β+1

√
logn

)

= O
(
L

1
2β+1

(
logγ n

n

) β
2β+1

)
(5.17)

with γ = 2β+1
2β

> 1 . Notice that, due to the normalization by

√
Var[θ̃l] , the adaptive

procedure used in [66] coincides with Lepski’s selection rule from [38] and [42]. Be-

cause local constant Gaussian regression under a regularity assumption on the design

is equivalent to the Gaussian white noise model, it is known from these papers that
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this procedure is rate optimal with the minimax rate ψn = O
(
L

1
2β+1

(
logn
n

) β
2β+1

)
,

that is, γ should be equal to 1 . This shows that the method of obtaining the upper

bounds from [66] and generalized in the present work should be refined. This lack of

optimality was also independently noticed in [58].

Now we will demonstrate that: (1) the definition of the “ideal adaptive band-

width” (5.9) with d(n) = 1 implies the (SMBj) conditions; (2) for Lepski’s selection

rule in our framework we have the same rate for the upper bound of the risk as in

equation (5.17).

Notice that for the method of local approximation using of the polynomial basis

centered at x the definition of the “ideal adaptive bandwidth” (5.9) can be easily

generalized for the estimators of the derivatives of f defined by (4.33). Then, given

a point x and the method of localization w(·) , for any j = 1, . . . , p the formula (5.9)

reads as follows:

k⋆(j) = max{k ≤ K : bk,f(j−1)(x) ≤ Cj(w)σk(x)
√
d(n)}, (5.18)

where Cj(w) is a constant depending on the choice of the smoother w(·) ,

bk,f(j−1)(x) = sup
1≤l≤k

|e⊤
j θ

∗
l (x)− f (j−1)(x)|,

σ2
k(x) = Varf ,Σ0[e

⊤
j θ̃k(x)],

and f (0) stands for the function f itself. To bound the “modeling bias” ∆j(k) we

need the following assumption:

(Skj) There exists a constant sj > 0 such that for all k ≤ K

Σ−1
k,j � sjΣ

−1
k,j,diag, (5.19)
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where Σk,j,diag = diag
(
Varθ,Σ[e

⊤
j θ̃1(x)], . . . ,Varθ,Σ[e

⊤
j θ̃k(x)]

)
is a diagonal matrix

composed of the diagonal elements of Σk,j . Thus we have the following result:

Theorem 2.5.3. Assume (B) , (S) and (Skj) . Let the weights {wk,i(x)} sat-

isfy (6.3). Then for any given point x , smoothing function w(·) and j = 1, . . . , p

the choice of k(j) = k⋆(j) defined by the relation (5.18) with d(n) = 1 implies the

(SMBj) condition ∆j(k(j)) ≤ ∆j with the constant ∆j = sjC
2
j (w)(1+δ)(1−u−1

0 )−1 .

Proof. Consider the quantity bj(k)
⊤Σ−1

k,j,diagbj(k) . Suppose that e⊤
j θ(x) = f (j−1)(x) .

In view of relation (6.3) for the weights {wl,i(x)} the form of the matrix Σk,j,diag is

particularly simple:

Σk,j,diag = diag(e⊤
j B

−1
1 ej, . . . , e

⊤
j B

−1
k ej).

Then by (B) and (4.10)

bj(k)
⊤Σ−1

k,j,diagbj(k) =
k∑

l=1

|e⊤
j (θ

∗
l − θ)|2

e⊤
j B

−1
l ej

≤
(
bk,f(j−1)(x)

)2 k∑

l=1

1

e⊤
j B

−1
l ej

≤
(
bk,f(j−1)(x)

)2

e⊤
j B

−1
k ej

k∑

l=1

u
−(k−l)
0

≤
(
bk,f(j−1)(x)

)2
(1 + δ)

σ2
k(x)(1− u−1

0 )
.

By (5.18) with d(n) = 1 the choice of k = k⋆(j) implies
(
bk,f(j−1)(x)

)2 ≤ C2
j (w)σ

2
k(x) .

Thus

bj(k)
⊤Σ−1

k,j,diagbj(k) ≤ (1 + δ)C2
j (w)(1− u−1

0 )−1

and

∆j(k) = bj(k)
⊤Σ−1

k,jbj(k) ≤ sjC
2
j (w)(1 + δ)(1− u−1

0 )−1.
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Now we will show that the “oracle” risk bound from Corollary 2.4.16 delivers

at least the suboptimal (5.17) rate of convergence for the upper bound of the risk

w.r.t. the polynomial loss function and over a Hölder class Σ(β, L) . For simplicity

we restrict ourselves to the case of the univariate design. We study the quality of

the LP ad(p − 1) estimator f̂(x) of f(x) under the assumption that f ∈ Σ(β, L)

on [0, 1] with ⌊β⌋ = p− 1 .

Denote by k⋆ the index k⋆(j) with j = 1 from Theorem 2.5.3 and the corre-

sponding bandwidth hk⋆ by h⋆ . Then the following asymptotic result holds:

Theorem 2.5.4. Assume (B) , (D) , (Loc) , (PC) , (S) , (S1) , (Sk⋆1) , (Lp1′) –

(Lp4′) , (W) , and that the smallest bandwidth fulfills h1 ≥ 1
2n

and is such that the

first estimator f̃1(x) = e⊤
1 θ̃1(x) is always accepted by the adaptive procedure. Let the

weights {wk,i(x)}Kk=1 satisfy (6.3). Assume that for x ∈ (0, 1) there exists θ(x) ∈ R
p

such that f(x) = e⊤
1 θ(x) . Let f ∈ Σ(β, L) on [0, 1] with p−1 = ⌊β⌋ . Then for the

risk of the adaptive LP ad(p − 1) estimator f̂(x) of the function f(x) at the point

x ∈ (0, 1) the following upper bound holds:

E|f(x)− f̂(x)|r ≤ CL
r

2β+1

(
logγ n

n

) rβ
2β+1

(1 + o(1)), n→ ∞

with γ = 2β+1
2β

and the constant C depending on β , σ2
min , σ

2
max , p , wmax , λ0 and

a0 only.

Proof. By the triangle inequality and the inequality (a + b)r ≤ Cr(a
r + br) with

Cr = 2r−1 , r ≥ 1 and Cr = 1 for r ∈ (0, 1) , for any k = 1, . . . , K we have

|f(x)− f̂(x)|r ≤ Cr

[
|f(x)− f̃k(x)|r + |f̃k(x)− f̂(x)|r

]
.
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Let θ(x) ∈ R
p be such that f(x) = e⊤

1 θ(x) . Then, because α ∈ (0, 1] , by Theo-

rem 2.4.8 and Corollaries 2.4.13 and 2.4.16 we have

(
nh⋆λ0
σ2
max

) r
2

E|f(x)−f̂(x)|r ≤ Cr


zr/2k⋆ + 2(E|χ2

p|r)1/2
(

1 + δ

(1− δ)3

) pk⋆

4

exp

{
ϕ(δ)∆1

2(1− δ)

}
 .

By Theorem 2.4.7 zk⋆ is not larger in order than K ≍ log n . Then for δ = o
(

1
K

)
=

o
(

1
logn

)

E|f(x)− f̂(x)|r ≤ C

(
log n

nh⋆

)r/2

(1 + o(1)), n→ ∞.

The precise constant can be extracted easily, but because we anyway will get only a

suboptimal upper bound, in the following we will not care about the constants. The

balance equation (5.18) with j = 1 and d(n) = O(1) and the bounds for the bias

and variance from Theorem 2.5.2 suggest the choice of bandwidths in the form:

h⋆ ≥ C(L2n)−
1

2β+1

leading to the following bound for the risk:

E|f(x)− f̂(x)|r ≤ CL
r

2β+1

(
(log n)

2β+1
2β

n

) rβ
2β+1

(1 + o(1)).

2.6 Auxiliary results

Lemma 2.6.1. Pivotality property

Let (W) hold. Under Hκ for any k ≤ κ the risk associated with the adaptive

estimator at every step of the procedure does not depend on the parameter θ :

Eθ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r = E0|(θ̃k − θ̂k)

⊤Bk(θ̃k − θ̂k)|r,

where E0 denotes the expectation w.r.t. the centered measure N (0,Σ) or N (0,Σ0) .
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Proof. After the first k steps θ̂k coincides with one of θ̃m , m ≤ k , and this event

takes place if for some l ≤ m the statistic Tl,m+1 > zl . Because the hypothesis Hκ

implies Hm+1 for all m < κ and in view of the decomposition (2.7) it holds

{Tl,m+1 > zl for some l = 1, . . . , m |Hm+1}

=
{
(θ̃l − θ̃m+1)

⊤Bl(θ̃l − θ̃m+1) > zl for some l = 1, . . . , m |Hm+1

}

=

{∥∥∥B1/2
l

(
B−1

l ΨWlΣ
1/2
0 ε−B−1

m+1ΨWm+1Σ
1/2
0 ε

)∥∥∥
2

> zl , l ≤ m

}

with ε ∼ N (0, In) . The probability of this event does not depend on the shift θ ,

so without loss of generality θ can be taken equal to zero. The risk associated with

the estimator θ̂k admits the following decomposition:

Eθ|(θ̃k − θ̂k)
⊤Bk(θ̃k − θ̂k)|r =

k−1∑

m=1

Eθ|(θ̃k − θ̃m)
⊤Bk(θ̃k − θ̃m)|rI{θ̂k = θ̃m}.

Under Hk for all m < k the joint distribution of (θ̃k − θ̃m)
⊤Bk(θ̃k − θ̃m) does not

depend on θ by the same argumentation.

Lemma 2.6.2. The matrices Jk ⊗ Σ and Jk ⊗ Σ0 are positive semidefinite for any

k = 2, . . . , K .

Moreover, under the condition (S) with the same δ the following relation similar

to (S) holds for the covariance matrices Σk and Σk,0 of the linear estimators:

(1− δ)Σk � Σk,0 � (1 + δ)Σk , k ≤ K.

Proof. Symmetry of Jk and Σ , (respectively, Σ0 ) implies symmetry of Jk ⊗ Σ ,

(respectively, Jk ⊗ Σ0 ). Notice that any vector γnk ∈ IRnk can be represented as a

partitioned vector γ⊤nk = ((γ
(1)
nk )

⊤, (γ
(2)
nk )

⊤, . . . , (γ
(k)
nk )

⊤) , with γ
(l)
nk ∈ IRn , l = 1, . . . , k .
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Then

γ⊤nk(Jk ⊗ Σ)γnk =
( k∑

l=1

γ
(l)
nk

)⊤
Σ
( k∑

l=1

γ
(l)
nk

)
= γ̃⊤n Σ γ̃n, (6.1)

where γ̃n
def
=
∑k

l=1 γ
(l)
nk ∈ IRn . Because Σ ≻ 0 , this implies γ̃⊤n Σ γ̃n > 0 for all

γ̃n 6= 0 . But even for γnk 6= 0 , if its subvectors {γ(l)nl } are linearly dependent, γ̃n

can be zero. Thus there exists a nonzero vector γ such that γ⊤(Jk ⊗Σ)γ = 0 . This

means positive semidefiniteness.

The second assertion follows from the observation that the condition (S) due to

the equality (6.1) also holds for the Kronecker product

(1− δ)Jk ⊗ Σ � Jk ⊗ Σ0 � (1 + δ)Jk ⊗ Σ. (6.2)

Therefore

(1− δ)Dk(Jk ⊗ Σ)D⊤
k � Dk(Jk ⊗ Σ0)D

⊤
k � (1 + δ)Dk(Jk ⊗ Σ)D⊤

k .

Lemma 2.6.3. Suppose that the weights {wl, i(x)} for every fixed x ∈ IRd satisfy

wl, i(x)wm, i(x) = wl, i(x) , l ≤ m. (6.3)

Then under the conditions (D) , (Loc) , (B) the covariance matrix Σk defined by

(4.17) is nonsingular with

detΣk = detB−1
k

k∏

l=2

det(B−1
l−1 −B−1

l ) > 0 , k = 2, . . . , K. (6.4)

Remark 2.6.1. The condition (6.3) holds for rectangular kernels with nested sup-

ports.
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Proof. The condition (6.3) implies WlΣWm = diag(wl,1wm,1σ
−2
1 , . . . , wl,nwm,nσ

−2
n ) =

Wl for any l ≤ m . Thus, the blocks of Σk simplify to DlΣD
⊤
m = B−1

l ΨWlΣWmΨ
⊤B−1

m =

B−1
l ΨWlΨ

⊤B−1
m , and Σk has a simple structure:

Σk =




B−1
1 B−1

2 B−1
3 . . . B−1

k

B−1
2 B−1

2 B−1
3 . . . B−1

k

...
...

...
...

...

B−1
k B−1

k B−1
k . . . B−1

k




.

Then the determinant of Σk coincides with the determinant of the following irre-

ducible block triangular matrix:

detΣk =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

B−1
1 −B−1

2 B−1
2 −B−1

3 . . . B−1
k−1 −B−1

k B−1
k

0 B−1
2 −B−1

3 . . . B−1
k−1 −B−1

k B−1
k

...
...

...
...

...

0 0 . . . B−1
k−1 −B−1

k B−1
k

0 0 0 0 B−1
k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

implying

detΣk = det(B−1
1 −B−1

2 ) det(B−1
2 −B−1

3 ) · . . . · det(B−1
k−1 −B−1

k ) detB−1
k .

Clearly the matrix Σk is nonsingular if all the matrices B−1
l−1−B−1

l are nonsingular.

By (D) and (Loc) Bl ≻ 0 for any l . By (B) there exists u0 > 1 such that

Bl � u0Bl−1 therefore B−1
l−1 −B−1

l � (1− 1/u0)B
−1
l−1 ≻ B−1

l−1 ≻ 0 .

Lemma 2.6.4. Under the alternative the moment generation function (mgf) of the

joint distribution of θ̃1, . . . , θ̃K is

E exp
{
γ⊤(vec Θ̃K − vecΘ∗

K)
}
= exp

{
1

2
γ⊤ΣK,0 γ

}
. (6.5)
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Thus, provided that ΣK,0 ≻ 0 , it holds vec Θ̃K ∼ N (vecΘ∗
K ,ΣK,0) .

Similarly, under the null, if ΣK ≻ 0 , the joint distribution of vec Θ̃K is N (vecΘK ,ΣK)

with mgf

E exp
{
γ⊤(vec Θ̃K − vecΘK)

}
= exp

{
1

2
γ⊤ΣK γ

}
. (6.6)

Proof. Let γ ∈ IRpK be written in a partitioned form γ⊤ = (γ⊤1 , . . . , γ
⊤
K) with

subvectors γl ∈ IRp , l = 1, . . . , K . Then the mgf for the centered random vector

vec Θ̃K − vecΘ∗
K ∈ IRpK due to the decomposition (2.7) θ̃l = θ∗

l + DlΣ
1/2
0 ε with

Dl = B−1
l ΨWl can be represented as follows:

E exp
{
γ⊤(vec Θ̃K − vecΘ∗

K)
}
= E exp

{ K∑

l=1

γ⊤l (θ̃l − θ∗
l )
}

= E exp
{ K∑

l=1

γ⊤l DlΣ
1/2
0 ε

}
= E exp

{( K∑

l=1

D⊤
l γl
)⊤

Σ
1/2
0 ε

}
.

A trivial observation that
∑K

l=1D
⊤
l γl is a vector in IRn and Σ

1/2
0 ε ∼ N (0,Σ0) by

(1.1) implies by definition of ΣK,0 the first assertion of the lemma, because

E exp
{( K∑

l=1

D⊤
l γl
)⊤

Σ
1/2
0 ε

}
= exp

{
1

2

( K∑

l=1

D⊤
l γl
)⊤

Σ0

( K∑

l=1

D⊤
l γl
)}

= exp

{
1

2

(
D⊤

Kγ
)⊤

(JK ⊗ Σ0)D
⊤
Kγ

}
= exp

{
1

2
γ⊤ΣK,0 γ

}
,

where DK is defined by (4.39).

Lemma 2.6.5. The Kullback-Leibler divergence between the distributions of vec Θ̃k

under the alternative and under the null has the following form:

2KL(IP k
f ,Σ0

, IP k
θ,Σ)

def
= 2Ef ,Σ0 log

(dIP k
f ,Σ0

dIP k
θ,Σ

)

= ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk, (6.7)
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where

b(k)
def
= vecΘ∗

k − vecΘk, (6.8)

∆(k)
def
= b(k)⊤Σ−1

k b(k). (6.9)

Proof. Denote the Radon-Nikodym derivative by Zk
def
= dIP k

f ,Σ0
/dIP k

θ,Σ . Then

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘk)‖2 (6.10)

can be considered as a quadratic function of vecΘk . By the Taylor expansion at the

point vecΘ∗
k the last expression reads as follows:

log
(
Zk(y)

)
=

1

2
log

(
detΣk

detΣk,0

)
− 1

2
‖Σ−1/2

k,0 (y − vecΘ∗
k)‖2

+
1

2
‖Σ−1/2

k (y − vecΘ∗
k)‖2 + b(k)⊤Σ−1

k (y − vecΘ∗
k) +

1

2
∆(k).

Then the expression for the Kullback-Leibler divergence can be written in the follow-

ing way:

KL(IP k
f ,Σ0

, IP k
θ,Σ)

def
= Ef ,Σ0 log

(
Zk

)

=
1

2
log

(
detΣk

detΣk,0

)
+

1

2
∆(k) +

1

2
E
{
‖Σ−1/2

k Σ
1/2
k,0 ξ‖2 − ‖ξ‖2 + 2b(k)⊤Σ−1

k Σ
1/2
k,0 ξ
}
,

where ξ ∼ N (0, Ipk) . This implies

2KL(IP k
f ,Σ0

, IP k
θ,Σ) = ∆(k) + log

(
detΣk

detΣk,0

)
+ tr(Σ−1

k Σk,0)− pk. (6.11)

In the case of homogeneous errors with σ0,i = σ0 and σi = σ, i = 1, . . . , n , the

calculations simplify a lot. Now

Σk = σ2Vk, Σk,0 = σ2
0Vk
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with a pk × pk matrix Vk defined as

Vk =
(
D1 ⊕ · · · ⊕Dk

)(
Jk ⊗ In

)(
D1 ⊕ · · · ⊕Dk

)⊤
,

where Dl = (ΨWlΨ
⊤)−1ΨWl , l = 1, . . . , k , does not depend on σ . Then ∆(k) =

σ−2∆1(k) , with ∆1(k)
def
= b(k)⊤V−1

k b(k) , detΣk/ detΣk,0 = (σ2/σ2
0)

pk and the ex-

pression for the Kullback-Leibler divergence reads as follows:

KL(IP k
f ,Σ0

, IP k
θ,Σ) = pk log

( σ
σ0

)
+

1

2
∆(k) +

pk

2

(σ2
0

σ2
− 1
)

= pk log
( σ
σ0

)
+

1

2σ2
b(k)⊤V−1

k b(k) +
pk

2

(σ2
0

σ2
− 1
)
, (6.12)

implying the same asymptotic behavior as in (4.25).
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Chapter 3

Dependence on the dimension for

complexity of approximation

of random fields

In this chapter we consider the ε -approximation by n-term partial sums of the

Karhunen-Loève expansion of d-parametric random fields of tensor product-type in

the average case setting. We investigate the behavior as d → ∞ of the information

complexity n(ε, d) of approximation with error not exceeding a given level ε. It was

recently shown by Lifshits and Tulyakova [44] that for this problem one observes the

curse of dimensionality (intractability) phenomenon. We present the exact asymp-

totic expression for the information complexity n(ε, d) .
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3.1 Introduction and set-up

Suppose we have a random function X(t), with t in a compact parameter set T ,

admitting a series representation via random variables ξk and the deterministic real

functions ϕk, namely,

X(t) =
∞∑

k=1

ξkϕk(t),

where the series converges in the mean and a.s. for each t ∈ T . A more precise

description will be given later. For any finite set of positive integers K ⊂ N let

XK(t) =
∑

k∈K ξkϕk(t). In many problems one needs to approximate X , for instance

under the L2-norm with a finite-rank process XK . Natural questions arise: How large

should K be in order to yield a given small approximation error? Given the size of

K, which K provides the smallest error?

In this chapter we address the first of these questions for a specific class of random

functions, namely tensor product-type random fields with high-dimensional parameter

sets. The tensor product-type field is a separable zero-mean random function X =

{X(t)}t∈T , with a rectangular parameter set T ⊂ R
d and covariance function K(d)

which can be decomposed into a product of equal “marginal” covariances depending

on different arguments. Namely, let T = [0, 1]d and

K(d)(s, t) =

d∏

l=1

Kl(sl, tl) (1.1)

for all sl, tl ∈ [0, 1], s = (s1, ..., sd), t = (t1, ..., td). Obviously, the integral operator

with the kernel (1.1) is the tensor product of the integral operators with the kernels

Kl(sl, tl).

82



Let {λi}i≥1 be a nonnegative sequence satisfying

∞∑

i=1

λ2i <∞ (1.2)

and let {ϕi}i>0 be an orthonormal basis in L2[0, 1]. Consider a family of tensor

product-type random fields

X =
{
X(d)(t), t ∈ [0, 1]d

}
, d = 1, 2, . . . . (1.3)

According to the multiparametric Karhunen-Loève expansion (see [1] for details),

the family (1.3) can be given by

X(d)(t) =
∑

k∈Nd

ξk

d∏

l=1

λkl

d∏

l=1

ϕkl(tl) (1.4)

=

∞∑

k1=1

· · ·
∞∑

kd=1

ξk1,...,kdλk1 · · ·λkdϕk1(t1) · · ·ϕkd(td),

where the series converges a.s. for every t = (t1, . . . , td) ∈ [0, 1]d. The collection

{ξk} is an array of noncorrelated random variables with zero mean and unit variance,

and λ2kl and ϕkl are, respectively, the eigenvalues and eigenfunctions of the family of

integral equations

λ2klϕkl(tl) =

∫ 1

0

Kl(sl, tl)ϕkl(sl)dsl , tl ∈ [0, 1] , l = 1, ..., d,

corresponding to the “marginal” covariance operators. Clearly, under assumption (1.2)

the sample paths of X(d) belong to L2([0, 1]
d) almost surely and the covariance oper-

ator of X(d) has the system of eigenvalues

λ2
k
=

d∏

l=1

λ2kl , k ∈ N
d. (1.5)

As was mentioned in [60], the Karhunen-Loève expansion or the proper orthog-

onal decomposition of random functions was introduced independently and almost
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simultaneously by Kosambi [35], Loève [46], Karhunen [27], [28], Obukhov [50], and

Pougachev [56].

In what follows we suppress the index d and write X(t) instead of X(d)(t). For

any n > 0, let Xn be the partial sum of (1.4) corresponding to n maximal eigenvalues.

We study the average case error of approximation to X by Xn

e(X,Xn; d) =
(
E||X −Xn||22

)1/2
,

as d→ ∞.

It is well known (see, for example, [9], [36] or [59]) that Xn provides the minimal

average quadratic error among all linear approximations to X having rank n. Because

we are going to explore a family of random functions, it is more natural to investigate

relative errors, that is, to compare the error size with the size of the function itself.

Denote the “marginal” trace by

Λ
def
=

∞∑

i=1

λ2i .

Then

E‖X‖22 =
∑

k∈Nd

λ2
k
= Λd.

The average case information complexity for the normalized error criterion reads

as the minimal number of terms in Xn (or, equivalently, of maximal eigenvalues, if

they would be ordered) needed to approximate X with the error not exceeding a given

level ε:

n(ε, d)
def
= min

{
n :

e(X,Xn; d)

(E‖X‖22)1/2
≤ ε
}
= min{n : E‖X −Xn‖22 ≤ ε2Λd}.

The study of n(ε, d) we are interested in here belongs to the class of problems

dealing with the dependence of the information complexity for linear multivariate
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problems on the dimension, see the papers of Woźniakovski [76], [77], [78], [79] and

the references therein.

Generally, the linear tensor problems with λ2 > 0 for the normalized error crite-

rion are intractable, since

n(ε, d) ≥ (1− ε2)
(
1 +

λ2
λ1

)d
for all ε ∈ [0, 1)

is exponential in d and the curse of dimensionality takes place, see Theorem 6.6

of [49]. However, it is interesting to know the exact behavior of the information

complexity n(ε, d) even in this case, because this kind of negative result can help in

lifting the curse of dimensionality.

It was suggested in [44] to use an auxiliary probabilistic construction for studying

the properties of the deterministic array of eigenvalues (1.5). We follow this approach.

Consider a sequence of independent identically distributed random variables {Ul} , l =

1, 2, ... with the common distribution given by

P(Ul = − log λi) =
λ2i
Λ
, i = 1, 2, ... (1.6)

Under the assumption
∞∑

i=1

| log λi|3λ2i < ∞, (1.7)

the condition E|Ul|3 <∞ is obviously satisfied.

Let M and σ2 denote, respectively, the mean and the variance of Ul. Clearly,

M = −
∞∑

i=1

log λi
λ2i
Λ
,

σ2 =

∞∑

i=1

| log λi|2
λ2i
Λ

− M2.

85



Then the third central moment of Ul is given by

α3 def
= E(Ul −M)3 = −

∞∑

i=1

(log λi)
3 λ

2
i

Λ
− 3Mσ2 − M3.

If (1.7) is verified, we have |M | <∞, 0 ≤ σ2 <∞, and |α| <∞.

In what follows the explosion coefficient

E def
= Λe2M (1.8)

will play a significant role, because its contribution into the “curse of dimensionality”

is the largest. It was shown in [44] that by concavity of the logarithmic function

E > 1, except for the totally degenerate case when the number of strictly positive

eigenvalues is zero or one. In other words, E = 1 if and only if σ = 0. Henceforth, we

will exclude this degenerate case.

The following result was obtained in [44], Theorem 3.2.

Theorem 3.1.1. Assume that the sequence {λi} , i = 1, 2, . . . , satisfies the condition

∞∑

i=1

| log λi|2 λ2i <∞.

Then for every ε ∈ (0, 1) we have

lim
d→∞

log n(ε, d)− d log E√
d

= 2q,

where the quantile q = q(ε) is chosen from the equation

1− Φ
( q
σ

)
= ε2 (1.9)

with Φ(·) denoting the standard normal distribution function.
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The authors of [44] conjectured that under further assumptions on the sequence

{λi} one can prove that

n(ε, d) ≈ C(ε)Ede2q
√
d

√
d

, d → ∞.

We will show that even a stronger statement holds.

3.2 Main result: the exact intractability rate in

increasing dimension

It turns out that two different cases depending on the nature of the distribution of

Ul should be distinguished. The proof and the final result depend on whether this

distribution is a lattice distribution or not.

Recall that one calls a discrete distribution of a random variable U a lattice

distribution, if there exist numbers a and h > 0 such that every possible value of

U can be represented in the form a + νh, where ν is an integer. The number h is

called the span of the distribution. In the following, when studying the lattice case,

we assume that h is the maximal span of the distribution; i.e., one cannot represent

all possible values of Ul in the form b+ νh1 for some b and h1 > h.

Definition (1.6) yields that the variables Ul have a common lattice distribution if

and only if λi = Ce−nih for some positive C, h and ni ∈ N. We call this situation the

lattice case and will assume that h is chosen as large as possible. Otherwise we say

that the nonlattice case holds.

By f(d) = o(g(d)) we mean that limd→∞
f(d)
g(d)

= 0. In particular, f(d) = g(d) (1 + o(1))

means that limd→∞
f(d)
g(d)

= 1.
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Theorem 3.2.1. Let the sequence {λi} , i = 1, 2, . . . , satisfy (1.7).

Then for every ε ∈ (0, 1) it holds

n(ε, d) = K φ(
q

σ
) Ede2q

√
d d−1/2 (1 + o(1)) , d → ∞,

where

φ(x) =
1√
2π

e−x2/2,

K =





h
σ(1−e−2h)

in the lattice case,

1
2σ

otherwise,

and the quantile q = q(ε) is defined in (1.9).

Remark 3.2.1. One can see that the complexity of approximation increases expo-

nentially as d → ∞. This phenomenon is referred to as the curse of dimensionality

or intractability; see, e.g., [59] and [77]. The notion of the “curse of dimensionality”

dates back at least to Bellman [5].

Remark 3.2.2. By l’Hôpital’s rule,

lim
h→0

h

σ (1− e−2h)
=

1

2σ
,

and thus the relations for K are in accordance as h→ 0 .

3.3 Proof of the main result

This section presents a proof of Theorem 3.2.1.
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Proof. Let ζ = ζ(ε, d) be the maximal positive number such that the sum of eigen-

values satisfies
∑

k∈Nd:λk<ζ

λ2
k
≤ ε2Λd.

Define a lattice set in N
d in the following way:

A = A(ε, d)
def
=

{
k ∈ N

d : λk ≥ ζ
}

=
{
k ∈ N

d :
d∏

l=1

λkl ≥ ζ
}
.

Since λk > 0 for any k ∈ A, one can write

n(ε, d) = #A =
∑

k∈A

λ2
k

λ2
k

=
∑

k∈Nd:−
∑

log λkl
≤− log ζ

Λd exp
{
− 2

d∑

l=1

log λkl

} d∏

l=1

P(Ul = − log λkl)

= Λd
E exp

{
2

d∑

l=1

Ul

}
I

{ d∑

l=1

Ul ≤ − log ζ
}
.

For centered and normalized sums

Zd =

∑d
l=1Ul − dM

σ
√
d

we have
{ d∑

l=1

Ul ≤ − log ζ
}
= {Zd ≤ θ} ,

where

θ = θ(ε, d) = − log ζ + dM

σ
√
d

. (3.1)

We show now that θ has a useful probabilistic meaning in terms of {Ul} and of
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their sums. Applying Lemma 3.1 of [44] we have for any d ∈ N and z ∈ R
1

∑

k∈Nd:λk<z

λ2
k

= Λd
P

(
d∑

l=1

Ul > − log z

)

= Λd
P

(
Zd > − log z + dM

σ
√
d

)

= Λd
P (Zd > θz) ,

where

θz = − log z + dM

σ
√
d

.

Fix ε ∈ (0, 1). Observe that

∑

k∈Nd:λk<z

λ2
k

≤ ε2Λd

if and only if

P (Zd > θz) ≤ ε2.

Therefore, θ = θ(ε, d) defined by (3.1) is the (1 − ε2)-quantile of the distribution of

Zd, namely,

θ(ε, d) = min{θ : P (Zd > θ) ≤ ε2}

= min{θ : P (Zd ≤ θ) > 1− ε2}.

Let q = q(ε) be the quantile of the normal distribution function chosen from (1.9).

Then in view of the central limit theorem

θ(ε, d) → q(ε)

σ
, d→ ∞, (3.2)

for any fixed ε ∈ (0, 1).
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Now let us return to the information complexity. We obtain

n(ε, d) = Ed
E exp{2σ

√
dZd}I{Zd ≤ θ}

= Ed exp{2σ
√
dθ}

∫ θ

−∞
exp{2σ

√
d(z − θ)} dFd(z),

where Fd(z) = P(Zd < z) and E is defined as in (1.8).

Denote

Ψd(z)
def
= exp{2σ

√
d(z − θ)}

and integrate by parts the integral

∫ θ

−∞
Ψd(z) d[Fd(z)− Fd(θ)] =

∫ θ

−∞
[−Fd(z) + Fd(θ)] dΨd(z).

From now on we have to distinguish the lattice and nonlattice cases.

3.3.1 Nonlattice case

In the following part of the proof we will assume that the distribution of {Ul} is not

lattice. This is true in the most interesting cases, such as the Brownian sheet (the

Wiener-Chentsov random field), the completely tucked Brownian sheet (the Brown-

ian pillow), and the d-variate Hoeffding, Blum, Kiefer and Rosenblatt process (see

Appendix 3.4 for details).

In view of (1.7) we are able to apply the Cramér-Esseen Theorem (cf. [21], sec-

tion 42, Theorem 2; [54], Chap. V, section 5.7, Theorem 5.21; [53], Chap. VI,
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section 3, Theorem 4). It leads to

∫ θ

−∞
[−Fd(z) + Fd(θ)] dΨd(z)

=

∫ θ

−∞
[−Φ(z) + Φ(θ)] dΨd(z) (3.3)

+
α3

6σ3
√
2πd

∫ θ

−∞
[(z2 − 1)e−z2/2 − ((θ2 − 1)e−θ2/2] dΨd(z) + o

(
1√
d

)

= I1 + I2 − I3 − I4 + o

(
1√
d

)
,

where Φ(·) is the standard normal distribution function and

I1 =

∫ θ

−∞
[−Φ(z) + Φ(θ)] dΨd(z),

I2 =
α3

6σ3
√
2πd

∫ θ

−∞
z2e−z2/2 dΨd(z),

I3 =
α3

6σ3
√
2πd

∫ θ

−∞
e−z2/2 dΨd(z),

I4 =
α3

6σ3
√
2πd

(
θ2 − 1

)
e−θ2/2

=
α3

6σ3
√
2πd

(( q
σ

)2
− 1

)
exp

{
− q2

2σ2

}
(1 + o(1)) .

(the last equivalence is provided by (3.2)).

Since dΨd(z) = 2σ
√
dΨd(z)dz, the integral I2 is given, after a change of variable,

by the following expression:

I2 = I2(d, θ)

=
α3

3σ2
√
2πd

∫ ∞

0

(θ − y√
d
)2 exp

{
− 1

2

(
θ − y√

d

)2}
exp{−2σy} dy

with y = −
√
d(z − θ).

For any d = 1, 2, ...,

0 ≤
(
θ − y√

d

)2
exp

{
− 1

2

(
θ − y√

d

)2}
≤ (|θ|+ y)2.
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This estimate gives us the majorant required in the Lebesgue dominated convergence

theorem. Using (3.2) and passing to the limit in the integral, we obtain, as d → ∞,

I2(d, θ) =
α3

6σ3
√
2πd

( q
σ

)2
exp

{
− q2

2σ2

}
(1 + o(1)) .

Similarly,

I3(d, θ) =
α3

6σ3
√
2πd

exp

{
− q2

2σ2

}
(1 + o(1)) .

Thus we obtain that
√
dI4 =

√
d(I2− I3) (1 + o(1)), and hence, I2− I3− I4 = o

(
1√
d

)
.

Consider the main integral I1:

I1 = I1(d, θ) =

∫ θ

−∞
[−Φ(z) + Φ(θ)] dΨd(z)

=
1√
2π

∫ θ

−∞
exp{2σ

√
d(z − θ)} exp{−z2/2} dz

=
1√
2πd

∫ ∞

0

exp
{
− 1

2

(
θ − y√

d

)2}
exp{−2σy} dy

=
1

2σ
√
2πd

exp

{
− q2

2σ2

}
(1 + o(1)) , d→ ∞. (3.4)

Then

n(ε, d) =
Ed exp{2q

√
d}

2σ
√
d

1√
2π

exp

{
− q2

2σ2

}
(1 + o(1))

as asserted.

3.3.2 Lattice case

Now we will proceed under the assumption that the random variables Ul have a

lattice distribution. Let possible values of the random variable Ul be ã + νh, ν =

93



0,±1,±2, ..., where ã =M+a is a shift and h is the maximal span of the distribution.

Therefore, all possible values of Zd have the form

da+ νh

σ
√
d

, ν = 0,±1,±2, ....

Introduce the function

S(x) = [x]− x+
1

2
,

where [x] denotes, as usual, the integer part of x, and consider

Sd(x) =
h

σ
S

(
xσ

√
d− da

h

)
.

Let Fd(z) be as above. Then under assumption (1.7) Esseen’s result (see Theo-

rem 1 page 43 in [21]) yields

Fd(z)− Φ(z) =
e−z2/2

√
2π

(
Sd(z)√

d
− α3(z2 − 1)

6σ3
√
d

)
+ o

(
1√
d

)

uniformly in z.

Comparing with (3.3), we observe that one needs only to evaluate the additional

term

J =
1√
2πd

∫ θ

−∞
[−Sd(z)e

−z2/2 + Sd(θ)e
−θ2/2]dΨd(z)

=
1√
2πd

∫ θ

−∞
Ψd(z)d

(
Sd(z)e

−z2/2
)
= J1 − J2 + J3,

where

J1 =
1√
2πd

∫ θ

−∞
Ψd(z)S

′
d(z)e

−z2/2dz,

J2 =
1√
2πd

∫ θ

−∞
Ψd(z)Sd(z)ze

−z2/2dz,

and J3 is a “discrete part”, which is defined in the following way. Notice that S(x) is

a periodic function with period one; therefore Sd(x) possesses the period h/σ
√
d and
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has jumps at points {kh+da
σ
√
d
, k ∈ Z}. If the point θ belongs to this lattice, then there

exists an integer k′ such that θ = k′h+da
σ
√
d
. Hence, one can integrate the discontinuous

part of the integral J with respect to the measure h
σ
δkh+da

σ
√
d

and obtain

J3 =
1√
2πd

h

σ

k′∑

k=−∞
Ψd

(kh + da

σ
√
d

)
exp

{
− 1

2

(kh + da

σ
√
d

)2}
.

We start by estimating J1. At the points where the derivative S ′
d(z) exists, one

can easily calculate that

S ′
d(z) =

h

σ
S
(zσ

√
d− da

h

)
= −

√
d.

Therefore, as in the nonlattice case, by the Lebesgue dominated convergence theorem

we have

J1 =
−
√
d√

2πd

∫ θ

−∞
exp{2σ

√
d(z − θ)} exp{−z2/2}dz

=
−1√
2πd

∫ ∞

0

exp
{
− 1

2

(
θ − y√

d

)2}
exp{−2σy}dy

=
−1

2σ
√
2πd

exp
{
− q2

2σ2

}
(1 + o(1)) , d→ ∞, (3.5)

which yields
√
dJ1 = −

√
dI1 (1 + o(1)).

As for the integral J2, this one, for sufficiently large d, becomes negligible. Indeed,

J2 =
1√
2πd

∫ θ

−∞
exp{2σ

√
d(z − θ)}Sd(z)z exp{−z2/2}dz

=
1√
2πd

1√
d

∫ ∞

0

exp
{
− 1

2

(
θ − y√

d

)2}
(θ − y√

d
)Sd

(
θ − y√

d

)
exp{−2σy}dy

≤ 3h

2σd
√
2π

∫ ∞

0

exp
{
− 1

2

(
θ − y√

d

)2}(
θ − y√

d

)
exp{−2σy}dy

=
3h

4σ2d
√
2π

( q
σ

)2
exp

{
− q2

2σ2

}
(1 + o(1)) , d → ∞.
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And, of course, J2 = o
(

1√
d

)
.

Now we consider the essential summand

J3 =
1√
2πd

h

σ

k′∑

k=−∞
exp

{
2σ

√
d
(kh + da

σ
√
d

− θ
)}

exp
{
− 1

2

(kh + da

σ
√
d

)2}

=
1√
2πd

h

σ

k′∑

k=−∞
exp{2h(k − k′)} exp

{
− 1

2

(kh+ da

σ
√
d

)2}

=
1√
2πd

h

σ

∞∑

l=0

exp{−2hl} exp
{
− 1

2

((k′ − l)h + da

σ
√
d

)2}

=
1√
2πd

h

σ

∞∑

l=0

exp{−2hl} exp
{
− 1

2

(
θ − lh

σ
√
d

)2}

=
1

σ
√
d

h

(1− e−2h)

1√
2π

exp

{
− q2

2σ2

}
(1 + o(1)) , d→ ∞. (3.6)

We obtained

√
dJ3 =

√
d

2h

(1− e−2h)
I1 (1 + o(1)) .

Putting together (3.4), (3.5), and (3.6), we get

n(ε, d) =
Ed e2q

√
d

σ
√
d

h

(1− e−2h)

1√
2π

exp

{
− q2

2σ2

}
(1 + o(1)) , d → ∞.

3.4 Appendix. Examples of tensor product-type

random fields

This section contains some examples of random fields to which the above general

result can be applied.
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3.4.1 Wiener-Chentsov random field

The Wiener-Chentsov field or the Brownian sheet (see [43]) is a zero-mean Gaussian

random function W (d) with covariance function equal to a product of the covariance

functions corresponding to the Wiener process W :

KW (d)(s, t) =
d∏

l=1

min{sl, tl}, s = (s1, ..., sd), t = (t1, ..., td) ∈ T.

Therefore the marginal eigenvalues have the following form:

λ2W ;i = (π(i− 1/2))−2, i = 1, 2, . . . .

3.4.2 Completely tucked Brownian sheet

The completely tucked Brownian sheet (the Brownian pillow) is a zero-mean Gaussian

random function B(2) with covariance function equal to a product of the covariance

functions corresponding to the standard Brownian bridge B(t) = W (t) − tW (1),

namely

KB(2)(s, t) =

2∏

l=1

(min{sl, tl} − sltl) , s, t ∈ [0, 1]2.

Respectively, the marginal eigenvalues (see [3]) are equal to

λ2B; i = (πi)−2, i = 1, 2, . . . .

In the literature different terms are in use for this random field. In [73] the term

“completely tucked Brownian sheet” is used; in [12] “tied-down Kiefer process” is

used; in [34] this field is called “the Brownian pillow”.

The notion of “completely tucked Brownian sheet” and its generalization for the

case d > 2 was introduced by Blum, Kiefer, and Rosenblatt [7] as the limit distri-

bution for a functional of an empirical process occurring in nonparametric testing of
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independency, the so-called “independence empirical process” (see [73]). Therefore,

the d-parametric generalization of the completely tucked Brownian sheet is often re-

ferred to as the “d-variate Hoeffding, Blum, Kiefer, and Rosenblatt process” (see, for

example, [34]). The mention of Hoeffding’s name in the term is motivated by the

fact that the test studied in [7] is equivalent to the one suggested earlier by Hoeffding

in [24]. However, the limiting distribution, the covariance function, the eigenval-

ues and the eigenfunctions of the respective integral equation were obtained in [7].

Higher-dimensional generalizations were later treated in [15] and [13].

3.4.3 Centered Gaussian processes

In some statistical problems it is convenient to use centered empirical processes and

corresponding limiting Gaussian processes.

For any Gaussian process X = {X(t)}, t ∈ [0, 1] we define the centered process

X̊(t)
def
= X(t)−

∫ 1

0

X(u)du.

The centered Brownian bridge B̊, also referred to in the literature as the Watson

process, was introduced in [74] for nonparametric goodness-of-fit testing on a circle.

Watson showed that the covariance function is given by

KB̊(s, t) = min{s, t} − st +
1

2
(s2 + t2 − s− t) +

1

12
, s, t ∈ [0, 1],

and the covariance operator with this kernel has a double spectrum, i.e.,

λ2
B̊;2i

= λ2
B̊;(2i−1)

= (2πi)−2, i = 1, 2, . . . .

The covariance function of the centered Wiener process W̊ has the form

KW̊ (s, t) = min{s, t}+ 1

2
(s2 + t2)− s− t+

1

3
, s, t ∈ [0, 1],
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and the corresponding eigenvalues coincide with those of the standard Brownian

bridge, i.e.,

λ2
W̊ ; i

= λ2B; i = (πi)−2, i = 1, 2, . . . .

This is in accordance with the well-known equality in distribution for the L2-norms

of the Brownian bridge and the centered Wiener process; see [4].

The centered integrated Brownian bridge

B̆(t) = B(t)−
∫ 1

0

B(u)du,

where

B(t) =

∫ t

0

B(u)du, t ∈ [0, 1]

was considered in a framework of goodness-of-fit testing and small deviation proba-

bilities under the L2-norm in [23] and [4], where its covariance function

KB̆(s, t) =
stmin{s, t}

2
− min{s, t}3

6
− (st)2

4
− s2 + t2

6
− s4 + t4

24
+
s3 + t3

6
+

1

45
,

s, t ∈ [0, 1], and eigenvalues

λ2
B̆; i

= (πi)−4, i = 1, 2, . . . ,

were obtained.

3.4.4 Multivariate Anderson-Darling processes

The tensor product of Anderson-Darling processes A(d)(t), t ∈ [0, 1]d, is a zero-mean

Gaussian random function A(d)(t), t ∈ [0, 1]d with covariance function

KA(d)(s, t) =
d∏

l=1

min{sl, tl} − sltl√
sl(1− sl)

√
tl(1− tl)

, sl, tl ∈ [0, 1].
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The eigenvalues of the corresponding covariance operator are given by

λ2
k
=

d∏

l=1

1

kl(kl + 1)
, k = (k1, . . . , kd) ∈ N

d.

In the one-dimensional case the Anderson-Darling process coincides in distribution

with B(t)√
t(1−t)

, t ∈ [0, 1], and was introduced in [3] in the context of goodness-of-

fit testing. Anderson and Darling obtained its covariance function and the exact

spectrum.

In [57] another multivariate extension of the Anderson-Darling process, defined as

a zero-mean Gaussian process with the covariance function

Kµ
A(s, t) =

(
min{s, t} − st√
s(1− s)

√
t(1− t)

)µ

, s, t ∈ [0, 1], µ > 0,

is given.

The eigenvalues of its covariance operator are of the form

λ2µ,j =
µ

(µ+ j − 1)(µ+ j)
, j = 1, 2, . . . .

When the parameter µ is positive integer, the random field, defined in such a way

(more precisely, the square of its L2-norm), is the limit distribution for Cramér–von

Mises-type statistics.
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Index of notation
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⌊x⌋ greatest integer strictly less than the real number x

[x] integer part of x

log natural logarithm

def
= equals by definition

w.r.t. with respect to

Σ(β, L) Hölder class of functions

Sets

∅ the empty set

#{·} cardinality of the set {·}

A ∩ B intersection, {x : x ∈ A and x ∈ B}

Special functions

Γ(·) the Γ -function

Φ(·) the standard normal distribution function

Landau notation

f(x) = o(g(x)), x→ x0 means that lim
x→x0

f(x)/g(x) = 0

f(x) = O(g(x)), x→ x0 means that |f(x)| ≤ C|g(x)| , as x→ x0
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Linear algebra

γ⊤ , A⊤ transpose of the vector γ or of the matrix A

λj(A) j th eigenvalue of A

λ1(A) , λmax(A) largest eigenvalue of the symmetric matrix A

tr(A) trace of A , the sum of the diagonal elements of square matrix A

rank(A) rank of A

dimU dimension of the vector space U

C(A) column space of A , the space spanned by the columns of A

‖γ‖ L2 vector norm, Euclidean norm

‖A‖ induced matrix norm based on L2 vector norm (p. 31)

A � B B − A � 0 , Löwner partial ordering (p. 32)

A ≻ 0 A is positive definite, γ⊤Aγ > 0 for x 6= 0

A � 0 A is nonnegative definite, γ⊤Aγ ≥ 0

A−1 inverse of A when A is nonsingular

detA determinant of a square matrix A

A⊗ B Kronecker product of A and B (p. 40)

diag(x1, . . . , xn) n× n matrix with diagonal elements x1, . . . , xn

and zeros elsewhere

vecA, if A is an m× n matrix, then vecA is an mn× 1 vector

formed by writing the columns of A one below the other

κ(A) κ2(A) conditional number of the positive definite matrix A ,

κ(A)
def
= λmax(A)/λmin(A)
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Probability and statistics

δx Dirac measure on x

d
= equality in distribution

a.s. almost surely

I{·} indicator of the set {·}

N (0, 1) the standard normal distribution

φ(·) density of the distribution N (0, 1)

N (0, In) standard normal distribution in R
n

N (θ,Σ) normal distribution with mean θ and covariance matrix Σ

θ̃ = argmax
θ∈Θ

L(θ) means that L(θ̃) = max
θ∈Θ

L(θ)

MSE mean squared risk at a point

KL(P, Pθ) Kullback-Leibler divergence between the measures P and Pθ (p. 23)
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Assumptions

(Lp1)− (Lp4) p. 10

(D) p. 22

(Loc) p. 23

(W) p. 24

Propagation conditions(PC) p. 28

(S) p. 29

(S1) p. 49

(SMB) p. 42

(SMBj) p. 54

(Lp1′)− (Lp4′) p. 59–60

(Lp1d) p. 49
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