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Abstract

This paper addresses the prediction of functional time series. Existing contributions to this

problem have largely focused on the special case of first-order functional autoregressive processes

because of their technical tractability and the current lack of advanced functional time series

methodology. While the linear prediction equations for any stationary functional time series can be

stated explicitly, it seems in most situations infeasible to solve them in practice. Using functional

principal components analysis, it is shown here how standard multivariate prediction techniques

can be utilized instead. The connection between functional and multivariate predictions is made

precise for the important case of vector and functional autoregressions. The proposed method is

easy to implement, making use of existing statistical software packages, and may therefore be at-

tractive to a broader, possibly non-academic, audience. Its practical applicability is demonstrated

in a simulation study and an application to environmental data, namely the prediction of daily

pollution curves describing the concentration of particulate matter in ambient air. It is found

that the proposed prediction method, if based on the multivariate innovations algorithm, often

outperforms the standard functional prediction technique.

Keywords: Dimension reduction; Forecasting, Functional autoregressions; Functional principal

components, Functional time series; Particulate matter, Vector autoregressions
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1 Introduction

Functional data are often collected in sequential form. The common situation is a continuous-time

record that can be separated into natural consecutive time intervals, such as days, for which a
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reasonably similar behavior is expected. Typical examples include the daily price and return curves

of financial transactions data and the daily patterns of geophysical, meteorological and environmental

data. The resulting functions may be described by a time series (Yk : k ∈ Z), each term in the sequence

being a (random) function Yk(t) defined for t taking values in some interval [a, b]. Here, Z denotes the

set of integers. The object (Yk : k ∈ Z) will be referred to as a functional time series (see Hörmann

and Kokoszka [19] for a recent survey on time series aspects, and Ferraty and Vieu [14] and Ramsay

and Silverman [23] for general introductions to functional data analysis). Interest for this paper is

in the functional modeling of concentration of particulate matter with an aerodynamic diameter of

less than 10µm in ambient air, measured half-hourly in Graz, Austria. It is widely accepted that

exposure to high concentrations can cause respiratory and related health problems. Local policy

makers therefore monitor these pollutants closely. The prediction of concentration levels is then a

particularly important tool for judging whether measures, such as partial traffic regulation, have to

be implemented in order to meet standards set by the European Union.

Providing reliable guesses for future realizations is in fact one of the most important goals of any

time series analysis. In the univariate and multivariate framework, this is often achieved by setting up

general prediction equations that can be solved recursively by methods such as the Durbin-Levinson

and innovations algorithms (see, for example, [10, 24]). Prediction equations may be derived explicitly

also for general stationary functional time series (see Section 1.6 of the monograph Bosq [9]) but they

seem difficult to solve and implement. As a consequence, much of the research in the area has focused

on the first-order functional autoregressive model, shortly FAR(1). Bosq [9] has derived one-step

ahead predictors that are based on a functional form of the Yule-Walker equations. Besse et al. [8]

have proposed nonparametric kernel predictors and illustrated their methodology by forecasting

climatological cycles caused by the El Niño phenomenon. While this paper, and also Besse and

Cardot [7], have adapted classical spline smoothing techniques, Antoniadis and Sapatinas [6], see also

Antoniadis et al. [4, 5], have studied FAR(1) curve prediction based on linear wavelet methods. Kargin

and Onatski [20] have introduced the predictive factor method, which seeks to replace functional

principal components with directions most relevant for predictions. Diderickson et al. [13] have

evaluated several competing prediction models in a comparative simulation study, finding Bosq’s [9]

method to have the best overall performance. Other contributions to the area are Aneiros-Pérez et

al. [2], and Aneiros-Pérez and Vieu [3].
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In spite of its statistical relevance and its mathematical appeal, functional time series modeling

has still some unpleasant limitations for the practitioner. First, to date there are not many “ready

to use” statistical software packages that can be utilized directly for estimation and prediction pur-

poses. The only available packages that the authors are aware of are the far package of Damon

and Guillas [12] and the ftsa package of Hyndman and Shang [18], both implemented for the sta-

tistical software R . The lack of tailor-made procedures often requires manual implementation. This

may be challenging and therefore restrict use of the methodology to an academic audience. Second,

the methodology developed for the FAR(1) case is difficult to generalize. What can be done if an

FAR(1) approach is infeasible? In addition, how can exogenous predictors and further lags beyond

the first be incorporated? For these cases functional theory and estimation becomes even more com-

plex. Research addressing these questions is scarce, Damon and Guillas [11] being an exception.

These authors include exogenous covariates into an autoregressive framework for functional ozone

predictions.

The goal of this paper is then to fill in this gap by promoting a simple alternative prediction

algorithm which consists of three basic steps, all of which are easy to implement by means of existing

software. First, use functional principal components analysis, FPCA, to transform the functional time

series observations Y1, . . . , Yn into a vector time series of FPCA scores Y 1, . . . ,Y n of low dimension

p, where p is typically no more than 4. Second, fit a vector time series to the FPCA scores and

obtain the predictor Ŷ n+1 for Y n+1. Third, utilize the Karhunen-Loève expansion to re-transform

Ŷ n+1 into a curve predictor Ŷn+1. The first and the third step are simple and can be performed,

for example, with the fda package in R. The second step may be tackled with standard multivariate

time series methodology. This approach is developed in detail in Section 2.

It should be noted that, in this article, the data Yk is assumed to be given in functional form. In

practice one observes only vectors Yk(t1), . . . , Yk(tm), with spacings, ti−ti−1, and number of intraday

sampling points, m, potentially varying from day to day. The problem of transforming the vector

observations into (smooth) functions has been treated in many articles and will not be detailed here.

As an excellent starting point for reading in this direction we refer to Chapters 3–7 of Ramsay and

Silverman [23].

Functional principal components have been employed in other approaches to functional prediction,

for example in Bosq’s [9] FAR(1) prediction method or in Aguilera et al. [1]. These, and many other
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existing approaches have in common that, roughly speaking, the lagged observation Yk−1 is regressed

onto Yk, by minimizing E
∫

[Yk(t)−Ψ(Yk−1)(t)]
2dt with respect to a linear operator Ψ. The solution

of this problem involves an infinite series representation of Ψ along FPCs. (More details will be given

in Section 3.1.) In contrast, the proposed approach first uses dimension reduction via FPCA and

then fits a model to the reduced data. No a priori knowledge of the functional model is needed and

instead of a single estimator, a variety of existing tools for vector processes can be entertained. In

particular, further lags or exogenous covariates are easily included into the prediction algorithm (see

Section 4).

Hyndman and Ullah [16] and Hyndman and Shang [17] have suggested a curve prediction approach

based on modeling FPC scores by scalar time series. They argue that scores are uncorrelated and

that hence individual time series can be fit. Depending on the structure of the data, this can be

quick and efficient in some cases but less accurate in other cases. The fact that FPC scores have

no instantaneous correlation, does, in the time series context, not imply that the ith and jth score

are uncorrelated at lags different from zero. Hence univariate modeling may invoke loss of valuable

information hidden in the dependence of the data. This will be demonstrated in Section 5 as part of

a simulation study.

Although the focus of this paper is on the practical side, some theoretical justification of the

proposed approach is given. More specifically, a comparison to Bosq’s [9] classical benchmark FAR(1)

prediction is made. It is shown that if in the second step of the proposed algorithm a first-order vector

autoregression, VAR(1), is fit to the FPCs, then the two forecasts are asymptotically equivalent. Such

a type of relationship does not appear evident and will be worked out as part of Section 3.

The remainder of the paper contains a supporting simulation study in Section 5 and an application

of the new prediction methodology to the forecasting of intraday patterns of particulate matter

concentrations in Section 6. Section 7 concludes and technical proofs are given in Appendix A.

2 Methodology

In what follows, let (Yk : k ∈ Z) be an arbitrary stationary functional time series. It is assumed

that the observations Yk are elements of the Hilbert space H = L2([0, 1]) equipped with the inner

product 〈x, y〉 =
∫ 1
0 x(t)y(t)dt. Each Yk is therefore a square integrable function satisfying ‖Yk‖2 =∫ 1

0 Y
2
k (t)dt < ∞. All random functions are defined on some common probability space (Ω,A, P ).
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The notation Y ∈ LpH = LpH(Ω,A, P ) is used to indicate that, for some p > 0, E[‖Y ‖p] < ∞. Any

Y ∈ L1
H possesses then a mean curve µ = (E[Y (t)] : t ∈ [0, 1]), and any Y ∈ L2

H a covariance operator

C, defined by C(x) = E[〈Y − µ, x〉(Y − µ)]. The operator C is a kernel operator given by

C(x)(t) =

∫ 1

0
c(t, s)x(s)ds, c(t, s) = Cov(X(t), X(s)).

As in the multivariate case, C admits the spectral decomposition

C(x) =
∞∑
`=1

λ`〈v`, x〉v`,

where (λ` : ` ∈ N) are the eigenvalues (in strictly descending order) and (v` : ` ∈ N) the corresponding

normalized eigenfunctions, so that C(v`) = λ`v` and ‖v`‖ = 1. Here, N is the set of positive integers.

The (v` : ` ∈ N) form an orthonormal basis, ONB, of L2([0, 1]). Hence Y allows for the Karhunen-

Loéve representation Y =
∑∞

`=1〈Y, v`〉v`. The coefficients 〈Y, v`〉 in this expansion are called the

functional principal components, FPCs, of Y .

Suppose now that we have observed Y1, . . . , Yn. In practice µ as well as C and its spectral

decomposition will be unknown and need to be estimated from the sample. To estimate µ, let

µ̂n(t) =
1

n

n∑
k=1

Yk(t), t ∈ [0, 1],

be the sample mean function. Theorem 4.1 of Hörmann and Kokoszka [15] implies that for a large

class of stationary sequences E[‖µ̂n − µ‖2] = O(n−1), thereby showing that µ̂n is
√
n-consistent for

µ. For this reason estimation of the mean curve can be done in a separate step, and henceforth the

more convenient assumption E[Yk] = 0, the zero function, is adopted. The covariance operator and

its eigenvalues and eigenfunctions can be estimated using the sample covariance estimator

Ĉn(x) =
1

n

n∑
k=1

〈Yk − µ̂n, x〉(Yk − µ̂n),

respectively. An application of Theorem 2.1 in Hörmann and Kokoszka [15] yields that this estimator

is
√
n-consistent for C. More precisely, E[‖Ĉn − C‖2L] = O(n−1), where the operator norm ‖ · ‖L is,

for any operator A, defined by

‖A‖L = sup
‖x‖≤1

‖A(x)‖.

From Ĉn, estimated eigenvalues λ̂1,n, . . . , λ̂p,n and estimated eigenfunctions v̂1,n, . . . , v̂p,n can be com-

puted for an arbitrary fixed, but typically small, p < n. These estimators inherit
√
n-consistency

from Ĉn. For notational convenience, λ̂` and v̂` will often be used in place of λ̂`,n and v̂`,n.
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Functional linear prediction equations for the general case have been derived in Section 1.6 of

the monograph Bosq [9]. They appear to be infeasible in most situations. As pointed out in the

introduction, the notable exception is the FAR(1) process defined by the stochastic recursion

Yk − µ = Ψ(Yk−1 − µ) + εk, k ∈ Z, (2.1)

where (εk : k ∈ Z) are centered, independent and identically distributed innovations in L2
H and Ψ

a bounded linear operator satisfying ‖Ψ‖L < 1. The latter condition ensures that the recurrence

equations (2.1) have a strictly stationary and causal solution. Bosq [9] has in the FAR(1) case used

the prediction equations to devise what is now often referred to as the common predictor. This

one-step ahead prediction is based on an estimator Ψ̃n of Ψ and then given by Ỹn+1 = Ψ̃nYn. Details

of this method are given in Section 3, where it will be used as a benchmark to compare with the

novel methodology to be introduced in the following. The new prediction technique avoids estimating

operators directly and instead utilizes existing multivariate prediction methods.

The proposed prediction algorithm proceeds in three steps. First, select p, the number of principal

components to be included in the analysis, for example by ensuring that a certain fraction of the

data variation is explained. With the sample eigenfunctions, empirical FPC scores yek,` = 〈Yk, v̂`〉 can

now be computed for each combination of observations Yk, k = 1, . . . , n, and sample eigenfunction

v̂`, ` = 1, . . . , p. The superscript e emphasizes that empirical versions are considered. Create from

the FPC scores the vectors

Y e
k = (yek,1, . . . , y

e
k,p)
′,

where ′ signifies transposition. By nature of FPCA, the vector Y e
k contains most of the information

on the curve Yk. In the second step, fix the prediction lag h. Then, use multivariate prediction

techniques to produce the h-step ahead prediction

Ŷ
e
n+h = (ŷen+h,1, . . . , ŷ

e
n+h,p)

′

given the vectors Y e
1, . . . ,Y

e
n. Standard methods such as the Durbin-Levinson and innovations

algorithm can be readily applied, but other options such as exponential smoothing and nonparametric

prediction algorithms are available as well. In the third and last step, the multivariate predictions

are re-transformed to functional objects. This conversion is achieved by defining the truncated

Karhunen-Loéve representation

Ŷn+h = ŷen+h,1 v̂1 + · · ·+ ŷen+h,pv̂p (2.2)
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based on the predicted FPC scores ŷek,` and the estimated eigenfunctions v̂`. The resulting Ŷn+h

is then used as the h-step ahead functional prediction of Yn+h. The three prediction steps are

summarized in Algorithm 1.

Algorithm 1 Functional Prediction

1. Fix p. For k = 1, . . . , n, use the data Y1, . . . , Yn to compute the vectors

Y e
k = (yek,1, . . . , y

e
k,p)
′,

containing the first p empirical FPC scores yek,` = 〈Yk, v̂`〉.

2. Fix h. Use Y e
1, . . . ,Y

e
n to determine the h-step ahead prediction

Ŷ
e
n+h = (ŷen+h,1, . . . , ŷ

e
n+h,p)

′

for Y e
n+h with an appropriate multivariate algorithm.

3. Use the functional object
Ŷn+h = ŷen+h,1 v̂1 + . . .+ ŷen+h,pv̂p

as h-step ahead prediction for Yn+h.

Several remarks are in order. The proposed algorithm is conceptually simple and allows for several

immediate extensions and improvements as it is not bound by an assumed FAR(1) structure and,

in fact, any other particular functional time series specification. This is important because there

is no well developed theory for functional versions of the the well-known linear ARMA time series

models ubiquitous in univariate and multivariate settings. Moreover, if an FAR(1) structure is indeed

imposed on (Yk : k ∈ Z), then it appears plausible that Y e
1, . . . ,Y

e
n should approximately follow an

VAR(1) model. This statement will be made precise in Section 3.

The FAR(1) model should in practice be employed only if it provides a reasonable approximation

to the unknown underlying dynamics. To allow for more flexible predictions, higher-order FAR

processes could be studied. There is, however, until now no method available in the literature that

would aid practitioners in determining the appropriate order of a functional autoregressive process

and their application for prediction purposes appears therefore to be of little practical use. The

proposed methodology avoids these difficulties. It can, in fact, be applied to any stationary functional

time series. For example, by utilizing the multivariate innovations algorithm (see Section 11.4 in [10])

in the second step of Algorithm 1. How this is done in the present prediction setting is outlined in
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Algorithm 2 for the case h = 1.

Algorithm 2 The Innovations Algorithm for Step 2 in Algorithm 1

1. Fix m ∈ {1, . . . , n}. The last m observations will be used to compute the predictor.

2. For k = 0, 1, . . . ,m, compute

Γ̂(k) =
1

k

k∑
j=1

(Ŷ
e
j − Ȳ

e
)(Ŷ

e
j − Ȳ

e
)′,

where Ȳ
e

= 1
n

∑n
k=1 Ŷ

e
k.

3. Set

Ŷ
e
n+1 =

m∑
j=1

Θmj(Y
e
n+1−j − Ŷ

e
n+1−j),

where

Θ00 = Γ̂(0),

Θm,m−k =

Γ̂(n− k)−
k−1∑
j=0

Θm,m−jΘj0Θ
′
k,k−j

Θ−1k0 , k = 0, . . . ,m− 1,

Θm0 = Γ̂(0)−
m−1∑
j=0

Θm,m−jΘj0Θ
′
m,m−j .

The recursion is solved in the order Θ00; Θ11,Θ10; Θ22,Θ21,Θ20; . . .

Instead of the innovations algorithm, standard linear prediction equations can be employed. This

is detailed in a more general setting allowing for the inclusion of covariates in Section 4. The

advantage of the innovations algorithm is that it can be updated quickly when new observations

arrive. Note, however, that updating usually means including further lags into prediction algorithm:

Xn−m+1, . . . , Xn+1 are used to predict Xn+2, then Xn−m+1, . . . , Xn+2 are used to predict Xn+3, and

so on. In order to apply Algorithm 2 this in turn requires estimation of covariances Γ(k) for increasing

lag k. Such estimates are less reliable the smaller n and the larger k. Therefore including too many

lag values has a negative effect in estimation. The simulation study in Section 5 considers cases for

which m ≤ 4.

If estimated eigenfunctions and the covariance matrices Γ̂(k) are replaced by population analogues,

then this algorithm gives the best linear prediction (in mean square sense) of the population FPC
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scores based on the last m observations. It will be demonstrated in Sections 5 and 6 that the

innovations algorithm based predictions are best among a number of competitors when the true

model deviates from an FAR(1).

It should be emphasized that the numerical implementation of the new prediction methodology

is convenient in R. For the first step, FPC score matrix (Y e
1 : . . . : Y e

n) and corresponding empirical

eigenfunctions can be readily obtained with the fda package. For the second step, forecasting for

the FPC scores can be done in another routine step using the vars package in case VAR models are

employed. The obtained quantities can be easily combined for obtaining (2.2).

To assess the forecast accuracy, a method for computing uniform prediction bands is provided

next. The target is to find parameters ξ
(u)
α , ξ

(`)
α ≥ 0, such that for a given α ∈ (0, 1) and γ : [a, b]→

[0,∞) we have

P

(
Ŷn+1(t)− ξ(`)α γ(t) ≤ Yn+1(t) ≤ Ŷn+1(t) + ξ(u)α γ(t) for all t ∈ [a, b]

)
= α.

There is no a priori restriction on the function γ, but clearly it should account for the structure and

variation of the data. Although this problem is very interesting from a theoretical standpoint, only

a practical approach for the determination of ξ
(u)
α , ξ

(`)
α and γ is proposed here.

Algorithm 3 Algorithm for determining prediction bands

1. Use the entire sample to compute the p-variate score vectors Y e
1, . . . ,Y

e
n and the sample FPCs

v̂1, . . . , v̂p.

2. Fix 0 < L ≤ i ≤ n− 1 and compute

Ŷi+1 = ŷei+1,1 v̂1 + · · ·+ ŷei+1,pv̂p

where ŷei+1,` (1 ≤ ` ≤ p) are components of the one-step ahead prediction obtained from
Y e

1, . . . ,Y
e
i by means of some multivariate algorithm.

3. Define the residuals ε̂i = Yi+L − Ŷi+L, 1 ≤ i ≤M := n− L.

4. Define γ(t) = sd(ε̂i(t) : 1 ≤ i ≤M), t ∈ [a, b].

5. Determine ξ
(u)
α , ξ

(`)
α such that α× 100% of the residuals satisfy

−ξ(`)α γ(t) ≤ ε̂i(t) ≤ ξ(u)α γ(t) for all t ∈ [a, b].

The purpose of the parameter L is to ensure a reasonable sample size for the predictions in Step 2

of Algorithm 3. The sequence of residuals (ε̂i) is then expected to be approximately stationary and,

9



by a law of large numbers effect, to satisfy

1

M

M∑
i=1

I

(
− ξ(`)α γ(t) ≤ ε̂i(t) ≤ ξ(u)α γ(t) for all t ∈ [a, b]

)
≈ P

(
− ξ(`)α γ(t) ≤ Yn+1(t)− Ŷn+1(t) ≤ ξ(u)α γ(t) for all t ∈ [a, b]

)
.

Note that, in Step 2, the principal components v̂` (1 ≤ ` ≤ p) have been obtained from the entire

sample Y1, . . . , Yn and not just from the first i observations. The choice of γ in Step 4 clearly accounts

for the variation of the data. For an intraday time exhibiting a higher volatility there should also be

a broader prediction interval. Typically the constants ξ
(`)
α and ξ

(u)
α are chosen equal, but there may

be situations when this is not desired.

One advantage of this method is that it does not require particular model assumptions. If two two

competing prediction methods exist, then the one which is performing better on the sample will lead

to narrower prediction bands. The simulation results reported in Section 5 indicate that Algorithm

3 performs well in finite samples even for moderate sample sizes.

3 Predicting first-order functional autoregression

3.1 The standard predictor

The FAR(1) is the most often applied functional time series model. It will be used here as a benchmark

to compare the proposed methodology to. In order to obtain Bosq’s [9] predictor, estimation of the

autoregressive operator Ψ is briefly discussed. The approach is based on a functional version of the

Yule-Walker equations. Let then (Yk : k ∈ Z) be an FAR(1) time series for which µ = 0 without loss

of generality. Applying E[〈·, x〉Yk−1] to (2.1) for any x ∈ H, leads to the relations

E[〈Yk, x〉Yk−1] = E[〈Ψ(Yk−1), x〉Yk−1] + E[〈εk, x〉Yk−1]

= E[〈Ψ(Yk−1), x〉Yk−1].

Let again C(x) = E[〈Y1, x〉Y1] be the covariance operator of Y1 and also let D(x) = E[〈Y1, x〉Y0]

be the cross-covariance operator of Y0 and Y1. If Ψ′ denotes the adjoint operator of Ψ, given by

the requirement 〈Ψ(x), y〉 = 〈x,Ψ′(y)〉, the operator equation D(x) = C(Ψ′(x)) is obtained. This

formally gives Ψ(x) = D′C−1(x), where D′(x) = E[〈Y0, x〉Y1]. The operator D′ can be estimated

by D̂′(x) = 1
n−1

∑n
k=2〈Yk−1, x〉Yk. A more complicated object is the unbounded operator C−1.

Using the spectral decomposition of Ĉn, it can be estimated by Ĉ−1n (x) =
∑p

`=1 λ̂
−1
` 〈v̂`, x〉v̂` for
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an appropriately chosen p. Combining these results with an additional smoothing step, using the

approximation Yk ≈
∑p

`=1〈Yk, v̂`〉v̂`, gives the estimator

Ψ̃n(x) =
1

n− 1

n∑
k=2

p∑
`=1

p∑
`′=1

λ̂−1` 〈x, v̂`〉〈Yk−1, v̂`〉〈Yk, v̂`′〉v̂`′ . (3.1)

for Ψ(x). The foregoing gives rise to the functional predictor

Ỹn+1 = Ψ̃n(Yn) (3.2)

for Yn+1. This is the estimator of Bosq [9]. In the next section, the predictor (3.2) is compared to

the proposed predictor.

3.2 Fitting vector autoregression to FPC scores

The main goals of this section are to show that the one-step predictors Ŷn+1 in (2.2), based on

fitting VAR(1) models in Step 2 of Algorithm 1, and Ỹn+1 in (3.2) are asymptotically equivalent for

FAR(1) processes, and that the FPC score vectors Y e
1, . . . ,Y

e
n follow indeed a VAR(1) model, albeit

a non-standard one. The first statement is justified in the next theorem.

Theorem 3.1. Assume that a VAR(1) model is fit to Y e
1, . . . ,Y

e
n by means of ordinary least squares.

The resulting predictor (2.2) is asymptotically equivalent to (3.2). More specifically,

‖Ŷn+1 − Ỹn+1‖ = OP

(
1√
n

)
(n→∞).

The proof of Theorem 3.1 is given in the Section A.1, where moreover the exact difference between

the two predictors is detailed. The finite sample performance of Ŷn+1 and Ỹn+1 were compared in a

simulation study whose results are reported in Section 5.

In case of a VAR(1), Step 2. of Algorithm 1 can be performed with least squares. To explicitly

calculate Ŷ
e
n+1, apply 〈·, v̂`〉 to both sides of Yk = Ψ(Yk−1) + εk to obtain

〈Yk, v̂`〉 = 〈Ψ(Yk−1), v̂`〉+ 〈εk, v̂`〉

=
∞∑
`′=1

〈Yk−1, v`′〉〈Ψ(v`′), v̂`〉+ 〈εk, v̂`〉

=

p∑
`′=1

〈Yk−1, v̂`′〉〈Ψ(v̂`′), v̂`〉+ δk,`, (3.3)

with remainder terms

δk,` = d
(1)
k,` + d

(2)
k,` + d

(3)
k,` + 〈εk, v̂`〉

11



given by

d
(1)
k,` =

p∑
`′=1

〈Yk−1, v̂`′〉
(
〈Ψ(v`′), v̂`〉 − 〈Ψ(v̂`′ , v̂`〉

)
,

d
(2)
k,` =

p∑
`′=1

(
〈Yk−1, v`′〉 − 〈Yk−1, v̂`′〉

)
〈Ψ(v`′), v̂`〉,

d
(3)
k,` =

∞∑
`′=p+1

〈Yk−1, v`′〉〈Ψ(v`′), v̂`〉.

Some notation is needed. Set ek = (〈εk, v1〉, . . . , 〈εk, vp〉)′ and uk = (uk,1, . . . , uk,p)
′ where uk,` =∑

`′>p〈Yk−1, v`′〉〈Ψ(v`′), v`〉, and let Bp ∈ Rp×p be the matrix with entry 〈Ψ(v`), v`′〉 in the `th row and

the `′th column, `, `′ = 1, . . . , p. Let moreover β = vec(B′p), Z = (Y ′2, . . . ,Y
′
n)′, E = (e′2, . . . , e

′
n)′,

U = (u′2, . . . ,u
′
n)′, Xk = Ip ⊗ Y ′k and X = (X ′1 : . . . : X ′n−1)

′. Replacing the eigenfunctions v` by

their sample counterparts v̂`, empirical versions of the above variables are denoted by Y e
k, Z

e, Xe
k,

Xe, Be
p and βep. For a vector x ∈ Rp2 , the operation mat(x) creates a p×p matrix, whose `-th column

contains the elements v(1−`)p+1, . . . , v`p. Define now δk = (δk,1, . . . , δk,p)
′ to arrive at the equations

Y e
k = Be

p Y
e
k−1 + δk, k = 2, . . . , n. (3.4)

The equations in (3.4) formally resemble VAR(1) equations. Notice, however, that it is a nonstandard

formulation, since the errors δk are generally not centered and dependent. Furthermore, δk depends

in a complex way on Y e
k−1, so that the errors are not uncorrelated with past observations. The

coefficient matrix Be
p is also random, but fixed for fixed sample size n. In the sequel these effects are

ignored. Utilizing some matrix algebra, (3.4) can be written as the linear regression

Ze = Xeβep + ∆, (3.5)

where ∆ = (δ′2, . . . , δ
′
n)′. The ordinary least squares estimator is then β̂

e

p = (Xe′Xe)−1Xe′Ze, and

the prediction equation

Ŷ
e
n+1 = B̂e

pY
e
n = (ŷen+1,1, . . . , ŷ

e
n+1,p)

′, (3.6)

follows directly, defining B̂e
p = mat

(
β̂
e

p

)′
.

3.3 Estimation by GLS

If the functional sequence (Yk : k ∈ Z) follows an FAR(1) process, then the errors δk in the VAR(1)

model (3.4) are correlated. This could be taken into account by applying generalized least squares
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(GLS) estimation instead of ordinary least squares. The GLS estimator is

β̂
e

p(GLS) = (Xe′Ωe−1Xe)−1Xe′Ωe−1Ze, (3.7)

where Ωe = Cov(∆). The prediction procedure leading to (2.2) can then be modified accordingly. In

view of the Gauss-Markov theorem, GLS outperforms OLS in the given setting. The main difficulty

in the implementation of (3.7) is to obtain an adequate estimator for Ωe. To achieve this goal,

information on the errors δk of model (3.4) needs to be extracted. Since they cannot be directly

observed, a two-step procedure is proposed. In the first step, the model is estimated by OLS. We

denote the resulting residuals by

δ̂k = Y e
k − B̂e

pY
e
k−1.

In the second step, the residuals δ̂k are used to obtain an estimator for Ωe, which can then be plugged

into (3.7). The estimator we propose then is obtained as follows. Let O be the zero matrix in Rp×p.

For b ∈ {1, . . . , n− 1}, define V
(b)
h = O if h > b and

V
(b)
h =

1

n

n−h∑
k=1

(δ̂k+h − δ̄n)(δ̂k − δ̄n)′ h = 0, 1, . . . , b,

where δ̄n = 1
n

∑n
k=1 δ̂k. Set then

Ω̂e
b =


V

(b)
0 V

(b)
1 · · · V (b)

n−1
V

(b)
−1 V

(b)
0 · · · V (b)

n−2
...

...
. . .

...

V
(b)
−n+1 V

(b)
−n+2 · · · V

(b)
0

 .

The parameter b determines the number of lags which are taken into account for the estimation

of the cross-covariances. Choosing b small has the advantage that the resulting banded matrix Ω̂e
b

is easier to invert. Note that inversion can be a difficult problem as Ω̂e
b has np rows. It will be

shown in Appendix A.2 that the correlation of the model errors δ̂k decays exponentially fast, thereby

justifying the choice of small b in the estimation. Furthermore, it is evident that the estimator for the

cross-covariances at higher lags are more volatile, as the number of observations which are far enough

apart becomes small. On the other hand, if b is chosen too small, much of the dependence could

potentially be ignored. A discussion on related issues may be found, for example, in Section 3.2.1 of

Lütkepohl [22].

The simulations reported below indicate that the gains in efficiency for GLS are negligible in the

settings considered. This is arguably due to the fact that possible improvements may be significant

13



only for small sample sizes. In this case, however, estimation of Ωe
b is almost infeasible. GLS maybe

applied if there is some preliminary estimate for Ωe
b, for example obtained from historical data.

4 Prediction with covariates

In many practical problems, such as in the particulate matter example presented in Section 6, pre-

dictions could not only contain lagged values of the functional time series of interest, but also other

exogenous covariates. These covariates might be scalar, vector-valued and functional. Formally the

goal is then to obtain a predictor Ŷn+h given observations of the curves Y1, . . . , Yn and a number of

covariates X
(1)
n , . . . , X

(r)
n . The exogenous variables need not be defined on the same space. (X

(1)
n

could be scalar, X
(2)
n a function and X

(3)
n could contain lagged values of X

(2)
n ). The following adap-

tation of the methodology given in Algorithm 1 is derived under the assumption that (Yk : k ∈ Z) as

well as the covariates (X
(i)
n : n ∈ N) are stationary processes in their respective spaces. The modified

procedure is summarized in Algorithm 4.

Algorithm 4 Functional Prediction with Exogenous Covariates

1. (a) Fix p. For k = 1, . . . , n, use the data Y1, . . . , Yn to compute the vectors

Y e
k = (yek,1, . . . , y

e
k,p)
′,

containing the first p empirical FPC scores yek,` = 〈Yk, v̂`〉.
(b) For a functional covariate, fix q. For k = 1, . . . , n, use the data X1, . . . , Xn to compute the
vectors

Xe
k = (xek,1, . . . , x

e
k,p)
′,

containing the first q empirical FPC scores xek,` = 〈Xk, ŵ`〉. Repeat this step for each functional
covariate.

(c) Combine all covariate vectors into one vector Re
n = (Ren1, . . . , R

e
nr)
′.

2. Fix h. Use Y e
1, . . . ,Y

e
n and Re

n to determine the h-step ahead prediction

Ŷ
e
n+h = (ŷen+h,1, . . . , ŷ

e
n+h,p)

′

for Y e
n+h with an appropriate multivariate algorithm.

3. Use the functional object
Ŷn+h = ŷen+h,1 v̂1 + · · ·+ ŷen+h,pv̂p

as h-step ahead prediction for Yn+h.
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The first step of Algorithm 4 is expanded compared to Algorithm 1. Step 1(a) performs FPCA on

the response time series curves Y1, . . . , Yn. In Step 1(b), all functional covariates are first transformed

via FPCA into empirical FPC score vectors. For each functional covariate, a different number of

principal components can be selected. Vector-valued and scalar covariates can be used directly. All

exogenous covariates are finally combined into one vector Re
n in Step 1(c).

Details for Step 2 and the one-step ahead prediction case h = 1 could be as follows. Since

stationarity is assumed for all involved processes, the resulting FPC scores form stationary time

series. Define hence

ΓY Y (i) = Cov(Y e
k,Y

e
k−i), ΓY R(i) = Cov(Y e

k,R
e
k−i), ΓRR = Cov(Re

k,R
e
k)

and notice that these matrices are independent of k. Fix again m ∈ {1, . . . , n}. The best linear pre-

dictor Ŷ
e
n+1 of Y e

n+1 given the vector variables Y e
n, . . . ,Y

e
n−m+1,R

e
n can be obtained by projecting

each component yen+1,` of Y e
n+1 onto sp{yek,i, Renj | 1 ≤ i ≤ p, 1 ≤ j ≤ r, n −m + 1 ≤ k ≤ n}. Then

there exist p× p matrices Φi and a p× r matrix Θ, such that

Ŷ
e
n+1 = Φ1Y

e
n + Φ2Y

e
n−1 + · · ·+ ΦmY

e
n−m+1 + ΘRe

n.

Using the projection theorem, it can be easily shown that the matrices Φ1, . . . ,Φm,Θ are characterized

by the equations

ΓY Y (i+ 1) = Φ1ΓY Y (i) + · · ·+ ΦmΓY Y (i+ 1−m) + ΘΓRY (i), i = 0, . . . ,m− 1;

ΓY R(1) = Φ1ΓY R(0) + · · ·+ ΦmΓY R(1−m) + ΘΓRR.

Let

Γ =


ΓY Y (0) ΓY Y (1) · · · ΓY Y (m− 1) ΓY R(0)

ΓY Y (−1) ΓY Y (0) · · · ΓY Y (m− 2) ΓY R(−1)
...

...
. . .

...
...

ΓY Y (1−m) ΓY Y (2−m) · · · ΓY Y (0) ΓY R(1−m)
ΓRY (0) ΓRY (1) · · · ΓRY (m− 1) ΓRR(0)

 .

Assuming that Γ has full rank, it follows that

(Φ1,Φ2, . . . ,Φm,Θ) = (ΓY Y (1), . . . ,ΓY Y (m),ΓY R(1))Γ−1.

The matrices ΓY Y (i), ΓY R(i) and ΓRR have to be replaced in practice by the corresponding sample

versions. This explains why predictions should not be made conditional on all data Y 1, . . . ,Y n. It

would involve the matrices ΓY Y (n),ΓY Y (n− 1), . . . which cannot be reasonably estimated from the

sample.
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5 Simulations

To analyze the finite sample properties of the various prediction methods, a comparative simulation

study was conducted and the results are reported in this section. The set-up consisted of fifteen

cubic B-spline functions v1, . . . , v15 on the unit interval [0, 1], which together determine the (finite-

dimensional) space H = sp{v1, . . . , v15}. Innovations were defined by setting

εk(t) =
15∑
`=1

Ak,`v`(t), (5.1)

where (Ak,1, . . . , Ak,15)
′ were i.i.d. random vectors with mean zero and independent t4-distributed

components. The four degrees of freedom were selected in order to keep the simulations relevant

for the application to pollution concentrations in Section 6 for which underlying Gaussianity is an

unrealistic assumption. However, simulations using normal instead of t4 distributed errors have lead

to very similar conclusions and are thus not reported here. The prediction methods were tested on

on three functional time series, namely

(a) FAR(1): Xk = Ψ(Xk−1) + εk,

(b) FAR(2): Xk = Ψ1(Xk−1) + Ψ2(Xk−2) + εk,

(c) FMA(1): Xk = Θ(εk−1) + εk.

To generate the functional autoregressive time series in (a) the starting value X−9 =
∑10

`=1N`v`, with

a normal random vector (N1, . . . , N10)
′ ∼ N (0, I10), was utilized. For (b), X−10 =

∑10
`=1 Ñ`v`, with

(Ñ1, . . . , Ñ10)
′ ∼ N (0, I10), was constructed in a similar fashion. The first ten elements X−9, . . . , X0

were used for a burn-in in both cases.

Note that an arbitrary element in H has the representation x(t) =
∑15

`=1 c`v`(t) with coefficients

c = (c1, . . . , c15)
′. If Ψ: H → H is a linear operator, then

Ψ(x) =

15∑
`=1

c`Ψ(v`)

=
15∑
`=1

15∑
`′=1

c`〈Ψ(v`), v`′〉v`′

= (Ψc)′v,

where, by a slight abuse of notation, Ψ is also the matrix whose `′-th row and `-th column is

〈Ψ(v`), v`′〉 and v = (v1, . . . , v15)
′ is the vector of basis functions. The linear operator can thus be
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represented by a 15× 15 matrix that operates on the coefficients in the basis function representation

of the curves. For the FAR(1) process (a), Ψ was chosen to take the value 1/8 in the diagonal, 1/2

in first lower off-diagonal, and 1/8 in the second lower off-diagonal, and zero else. For the FAR(2)

process (b), Ψ1 = diag(1/4, . . . , 1/4), Ψ2 was chosen to take the value 1/3 in the diagonal, 1/8 in the

first and second lower off-diagonals, and zero else. For the FMA(1) process (c), Θ = diag(1, . . . , 1).

The simulation results are shown in Tables 2–4. They are based on 5,000 repetitions for each

setting. For each of the processes in (a), (b) and (c) the sample size n and number of FPC scores p

considered for the prediction were varied. In practice one could employ cross-validation to obtain the

optimal choice of p for each setting under consideration. Since the focus of this simulation study is on

a comparison of different predictors rather than their calibration, the same values of p were used across

all methods. For all combinations, median (MEDPr), mean (MSEPr) and standard deviation (SDPr) of

the squared prediction errors
∫ 1
0 [Pr(Xn+1)(t)−Xn+1(t)]

2dt for the 5,000 repetitions were computed.

Here Pr stands for any of the prediction methods considered. For the FAR setting, Tables 2–4 display

MEDFAR, MSEFAR and SDFAR. For ease of comparison, results for all other methods are reported

relative to the forecasts obtained from the benchmark prediction method (3.2), that is

RMEDPr =
MEDPr

MEDFAR
, RMSEPr =

MSEPr

MSEFAR
, RSDPr =

SDPr

SDFAR
.

It should be noted that an approximate 95% confidence interval for the expected squared prediction

error E
∫ 1
0 [Pr(Xn+1)(t)−Xn+1(t)]

2dt is

MSEPr ±
1.96√
5000

SDPr. (5.2)

Specifically, one-step predictions Pr(Xn+1) were obtained from Algorithm 1 based on the sample

X1, . . . , Xn, in Step 2 using

• VAR.ls: fitting a VAR(1) to FPC scores by OLS;

• VAR.gls: fitting a VAR(1) to FPC scores by GLS and banding parameter b = 1, and

• Inno: employing the innovations algorithm (i.e. linear prediction) with different values of m.

Reported are also predictions Mean (Pr(Xn+1) = 0) and Naive (Pr(Xn+1) = Xn) which were clearly

outperformed by the other methods. The procedures based on VAR.ls and VAR.gls performed

almost identical. The latter method performed poorly for small sample sizes and p = 3, in which

case estimation of Ωe can be problematic, but shows a slight advantage for all sample sizes when
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p = 2. Setting aside prediction of the FAR(1) time series, for which all methods gave roughly

the same results, the application of the innovations algorithm led to improvements for virtually all

constellations of n and p under consideration.

A special case of the method proposed in this paper has been pursued by Hyndman and Ullah [16]

and Hyndman and Shang [17]. Motivated by the fact that PCA score vectors have uncorrelated

components, these authors have proposed predicting the scores individually as univariate time series.

This will be referred to as the scalar method, in contrast to the vector method promoted in this

paper. The scalar method is fast and works well as long as the cross-spectra related to the score

vectors are close to zero. However, in general the score vectors have non-diagonal autocorrelations.

Then, scalar models are not theoretically justified. To explore the effect of neglecting cross-sectional

dependence, functional time series of intermediate sample size n = 200 were generated as described

above, focusing on the FAR(1) process described in (a). Two choices for Ψ were considered. For

the first, the corresponding matrix Ψa = diag(0.8, . . . , 0.8), while the corresponding matrix Ψb of the

second operator is chosen to have i.i.d. standard normal entries. To ensure stationary solutions, the

normalization ‖Ψb‖ = 0.8 was applied. For each of the 5,000 repetitions, the log differences of the

squared prediction errors obtained from the vector method and the scalar method were compared,

see Figure 1. A value larger (smaller) than 0 indicates that the scalar method (vector method)

performed better. For the vector method predictions, p = 3 was fixed and the innovations algorithm

employed, while for the scalar method predictions were obtained by fitting AR(1) models to each

score sequence. Of course, in practice one would use more sophisticated model selection procedures

for both approaches, but this analysis showed that the improvement is marginal and the conclusion

remains unchanged. While both methods perform almost identical in the case of the simple operator

Ψa, a clear skewness to the left emerges in the ratios for the non-structured operator Ψb. It can

be concluded that, depending on the complexity of the underlying functional time series, univariate

modeling of FPC scores may be quite efficient, but can also lead to less accurate forecasts.

The final simulation experiment is related to Algorithm 3. Functional time series of size n = 200

were generated as before, using the operator Ψb. This time, p = 2 and p = 3 were chosen. Algorithm 3

was applied with L = 60 on the first 199 observations. Then observation 200 was predicted and it

was checked if it is covered by the functional prediction band obtained from the algorithm. This

experiment was repeated 1,000 times. Table 1 shows the comparison between the desired coverage
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Figure 1: Log differences of squared prediction errors for operator Ψa (left panel) and Ψb (right
panel).

rate α and the empirical coverage probabilities CP. The performance is excellent when p = 2 and still

very good when p = 3. Obviously, larger p will necessitate larger sample sizes.

α 0.8 0.9 0.95

CP (p = 2) 0.791 0.895 0.951
CP (p = 3) 0.784 0.881 0.928

Table 1: Coverage rate α compared to the empirical coverage probabilities CP.

6 Predicting particulate matter concentrations

In order to demonstrate its practical usefulness, the new methodology has been applied to envi-

ronmental data on pollution concentrations. The observations are half-hourly measurements of the

concentration (measured in µgm−3) of particulate matter with an aerodynamic diameter of less than

10µm, abbreviated PM10, in ambient air taken in Graz, Austria from October 1, 2010 until March

31, 2011. Since epidemiological and toxicological studies have pointed to negative health effects,

European Union (EU) regulation sets pollution standards for the level of the concentration. Policy

makers have to ensure compliance with these EU rules and need reliable statistical tools to determine,

and justify to the public, appropriate measures such as partial traffic regulation (see Stadlober et
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al. [25]). Accurate predictions are therefore paramount for well informed decision making.

Functional data were obtained as follows. In a first step, very few missing intra-day data points

were replaced through linear interpolation. A square-root transformation was then applied to the

data in order to stabilize the variance. A visual inspection of the data revealed several extreme

outliers around New Years Eve known to be caused by firework activities. The corresponding week

was removed from the sample. The data was then centered and adjusted for weekly seasonality by

subtracting from each observation the corresponding weekday average. This is done because PM10

concentration levels are significantly different for the weekends when traffic volume is much lower.

In the next step, 48 observations for a given day were combined into vectors and transformed into

functional data using ten cubic B-spline basis functions and least squares fitting. The fda package

available for the statistical software R was applied here. Eventually, 175 daily functional observations,

say, Y1, . . . , Y175, were obtained, roughly representing one winter season for which pollution levels are

known to be high. They are displayed in the upper left panel of Figure 6. Shown in this figure are

also the effect of the first three FPCs on the mean curve. Following Ramsay and Silverman [23], a

multiple (using the factor .5) of the `th empirical eigenfunction v̂` was added to and subtracted from

the overall estimated mean curve µ̂ to study the effect of large (small) first, second or third FPC.

Notice that

Yk ≈ µ̂+ yek1v̂1 + yek2v̂2 + yek3v̂3, k = 1, . . . , 175,

where yek` = 〈Yk, v̂`〉 are the empirical FPC scores. These combine to explain about 89% of variability

in the data. The upper right panel of Figure 6 indicates that if the first FPC score yek1, which

explains about 72% of the variation, is large (small), then a positive (negative) shift of the mean

occurs. The second and third FPCs are contrasts, explaining respectively 10% and 7% of variation,

with the second FPC describing differences in the first and second half of the day and the third FPC

indicating whether the diurnal peaks are more or less pronounced (see the lower panel of Figure 6).

For the comparison of the quality of the various prediction methods, the following was adopted.

Consecutive functional observations Yk, . . . , Yk+n−1 for selected values of 1 < n < 175 were chosen

and used for estimation and prediction. Then, squared prediction errors∫ 1

0

[
Yn+k(t)− Pr(Yn+k)(t)

]2
dt, k = 1, . . . , 175− n =: N,

were computed, where Pr(Yk+n) can stand for any of the prediction methods introduced in Section 5,
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Figure 2: Square-root transformed PM10 observations with fat overall mean curve (upper left panel),
effect of the first FPC (upper right panel), effect of the second FPC (lower left panel), and effect of
the third FPC (lower right panel).
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noting again that Pr(Yk+n) is based solely on observations Yk, . . . , Yk+n−1. From the N resulting

numbers median (MEDPr), mean (MSEPr) and standard deviation (SDPr) were computed. This

procedure was performed for the values n = 20, 40, 60 and 80. Results are reported in Table 5.

Confidence intervals for the expected square prediction error E
∫ 1
0

[
Yn+k(t)− Pr(Yn+k)(t)

]2
dt may

be obtained analogously to (5.2).

It can be seen that the prediction methods Mean and Naive are not competitive. The methods

VAR.ls and FAR give almost identical results for mean squared prediction error, thus corroborating

the theoretical findings. In accordance with the simulation study the innovations algorithms with

m = 2 and m = 3 generally provide the best predictions among the methods that do not invoke

covariates. While the mean of the squared prediction errors is not much different for VAR.ls, FAR

and Inno and n = 20, 40, differences become apparent for the larger choices n = 60, 80. The findings

are similar for the medians. Since the first three principal components already describe close to 90% of

the data variability, the addition of another FPC score (p = 4) did not lead to further improvements

and prediction results for this case are hence not displayed.

PM10 concentrations are known to be high at locations suffering from severe temperature in-

versions such as the basin areas of the Alps. Following Stadlober et al. [25], temperature difference

between Graz (350m above sea level) and Kalkleiten (710m above sea level) can be utilized to model

this phenomenon. Temperature inversion is often seen as a key factor influencing PM10 concen-

trations because temperatures increasing with sea level result in a sagging exchange of air, thereby

yielding a higher pollutant load at the lower elevation. This has been impressively captured in a study

conducted on behalf of the ZAMG Regionalstelle Steiermark, for which balloon probes were used to

analyze the diffusion of PM10 with respect to local meteorological variables. Detailed explanations

of the experiment may be found in [21]. As a graphical illustration, PM10 concentrations at different

altitude (vertical axis) and times (horizontal axis, between 6.10 am and 8.15 pm) are displayed in the

left panel of Figure 6, while the right panel shows the corresponding temperature values. The peaks

at ground level around 9 am and 6 pm coincide with rush hour traffic. When temperature inversion

begins to weaken, air exchange among different atmospheric layers leads to an almost uniform vertical

spread of PM10 and later to a decrease of pollution concentration at ground level.

To illustrate functional prediction with covariates, temperature difference curves of Graz and
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Figure 3: PM10 concentration (left) and temperature (right) for March 17, 2004. The vertical axis
is altitude above ground (0–400m), the horizontal axis is time (6.10 am to 8.15 pm).

Kalkleiten have been included as a dependent variable. For the overall sample, the first three FPCs

of the temperature difference curves describe about 95% of the variance. FPCA was used for co-

variate dimension reduction using q = 3, leading to the inclusion of a three-dimensional exogenous

regressor (which is almost equivalent to the true regressor curve) in the second step of Algorithm 4.

Results for the mean squared prediction errors are summarized under the label CTD (covariate tem-

perature difference) in Table 5, performing the predictions in the same way as above. A significant

improvement in the mean and median square prediction error can be observed.

7 Conclusions

This paper proposes a new prediction methodology for functional time series that appears to be widely

and easily applicable. It is based on the idea that dimension reduction with functional principal com-

ponents analysis should lead to a vector-valued time series of FPC scores that can be predicted with

any existing multivariate methodology, parametric and nonparametric. The multivariate prediction

is then transformed to a functional prediction using a truncated Karhunen-Loéve decomposition.

The proposed methodology seems to be advantageous for several reasons. Among them is its
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intuitive appeal, made rigorous for the predominant FAR(1) case, but also its ease of application as

existing software packages can be readily used, even by non-experts. It is in particular straightforward

to extend the procedure to include exogenous covariates into the prediction algorithm. Simulations

and an application to pollution data suggest that the proposed method leads to predictions that are

always competitive with and often superior to the benchmark predictions in the field.

Future research could look into fine-tuning the proposed algorithms and developing automatic

procedures to select the number of FPC scores p (and q if covariates are considered) as well as

the number m used to run the innovations algorithm. Further theoretical developments would be

welcome, but are beyond the scope of the present paper. It is hoped that the present article can

spawn interest among researchers working in the active area of functional time series.

A Theoretical considerations

A.1 Proof of Theorem 3.1

Recall the notations introduced above equation (3.4). In order to prove the asymptotic equivalence

between Ỹn+1 in (2.2) and Ŷn+1 in (3.2) for the case of FAR(1) functional time series, observe first

that (
1

n− 1
Xe′Xe

)−1
= Ip ⊗ Γ̂−1p ,

where Γ̂p is the p×p matrix with entries Γ̂p(`, `
′) = 1

n−1
∑n−1

k=1 y
e
k,`y

e
k,`′ determined by the FPC scores

yek,` = 〈Yk, v̂`〉, and ⊗ signifies the Kronecker product. With the help of (3.6), the VAR(1) based

predictor (2.2) can be written in the form

Ŷn+1 =
1

n− 1

{(
mat

([
Ip ⊗ Γ̂−1p

]
Xe′Ze

))′
Y e
n

}′
v̂,

with v̂ = (v̂1, . . . , v̂p)
′ being the vector of the first p empirical eigenfunctions. On the other hand,

defining the p × p matrix Γ̃p by the entries Γ̃p(`, `
′) = 1

n

∑n
k=1 y

e
k,`y

e
k,`′ = diag(λ̂1, . . . , λ̂p), direct

verification shows that (3.2) takes the form

Ỹn+1 =
1

n− 1

{(
mat

([
Ip ⊗ Γ̃−1p

]
Xe′Ze

))′
Y e
n

}′
v̂.

The only formal difference between the two predictors under consideration is therefore in the matrices

Γ̂p and Γ̃p. Now, for any `, `′ = 1, . . . , p,

Γ̂p(`, `
′) = Γ̃p(`, `

′) +
1

n− 1

1

n

n∑
k=1

yek,`y
e
k,`′ −

1

n− 1
yen,`y

e
n,`′
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= Γ̃p(`, `
′) +

1

n− 1

(
λ̂`I{` = `′}+ yen,`y

e
n,`′

)
,

so that ∣∣∣Γ̂p(`, `′)− Γ̃p(`, `
′)
∣∣∣ ≤ 1

n− 1

(
1

n

n∑
k=1

‖Yk‖2 + ‖Yn‖2
)

= Op

(
1

n

)
.

In the following ‖ · ‖ will be used with a slight abuse of notation not only to indicate L2 norm, but

also Euclidean norm in Rp and matrix norm ‖A‖ = sup‖x‖=1 ‖Ax‖, for a square matrix A ∈ Rp×p.

Let

∆ = mat

([
Ip ⊗

(
Γ̂−1p − Γ̃−1p

)] 1

n− 1
Xe′Ze

)
.

The orthogonality of the v̂` together with Pythagoras’ theorem and Bessel’s inequality imply that

‖Ŷn+1 − Ỹn+1‖2 =
∥∥∆′Y e

n

∥∥2 ≤ ‖∆‖2‖Y e
n‖2 = ‖∆‖2

p∑
`=1

(yen,`)
2 ≤ ‖∆‖2‖Yn‖2.

Define S = mat( 1
n−1X

e′Ze) and notice that

‖∆‖ =
∥∥(Γ̂−1p − Γ̃−1p

)
S
∥∥ ≤ ∥∥Γ̂−1p − Γ̃−1p

∥∥‖S‖.
Let w = (w1, . . . , wp)

′. Since S(`, `′) = 1
n−1

∑n−1
k=1 y

e
k,`y

e
k+1,`′ , iterative applications of the Cauchy-

Schwarz inequality yield

‖S‖2 = sup
‖w‖=1

p∑
`=1

( p∑
`′=1

1

n− 1

n−1∑
k=1

yek,`y
e
k+1,`′w`′

)2

≤
p∑
`=1

p∑
`′=1

(
1

n− 1

n−1∑
k=1

yek,`y
e
k+1,`′

)2

≤
p∑
`=1

p∑
`′=1

1

n− 1

n∑
k=1

(yek,`)
2 1

n− 1

n∑
k=1

(yek,`′)
2

≤
(

1

n− 1

n∑
k=1

‖Yk‖2
)2

= OP (1).

It remains to estimate ‖Γ̂−1p −Γ̃−1p ‖. The next step consists of using the fact that, for any A,B ∈ Rp×p,

it holds that (A+ B)−1 = A−1 − A−1(I + BA−1)−1BA−1, provided all inverse matrices exist. Now

choosing A = Γ̂p and B = Γ̃p − Γ̂p, it can be seen that

∥∥Γ̂−1p − Γ̃−1p
∥∥ =

∥∥∥Γ̃−1p
[
Ip + (Γ̂p − Γ̃p)Γ̃

−1
p

]−1
(Γ̂p − Λ̂p)Λ̂

−1
p

∥∥∥
≤
∥∥Γ̃−1p

∥∥2∥∥Γ̂p − Γ̃p
∥∥∥∥∥[Ip + (Γ̂p − Γ̃p)Γ̃

−1
p

]−1∥∥∥
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≤
∞∑
`=0

λ̂−`+2
p

∥∥Γ̃p − Γ̂p
∥∥`+1

= OP

(
1

n

)
.

Putting together all results, the statement of Theorem 3.1 is established.

A.2 Analysis of theoretical model errors

The arguments in Section 3.2 show that the errors δk of model (3.4) have a rather complicated form

and it is generally infeasible to explicitly determine Ωe. The main reason for this is that empirical

eigenfunctions were used for the projections. On the other hand, Hörmann and Kokoszka [15] have

noted that the empirical eigenfunctions v̂` are
√
n-consistent for the population eigenfunctions v`

(up to random signs) under mild conditions that are assumed to be satisfied in the following. This

suggests that for a theoretical analysis one can work with the population eigenfunctions v` instead.

Using these, (3.4) becomes

Y k = BpY k−1 + ηk, (A.1)

where ηk = ek + uk. Stacking the vectors in (A.1) one obtains in analogy to (3.5) the regression

Z = Xβp +E +U .

Defining Ω = Cov(E +U), the generalized least squares estimator for this problem becomes

β̂p(GLS) = (X ′Ω−1X)−1X ′Ω−1Z.

Note that the ηk are the theoretical counterparts of δk and δ̂k. Their second-order structure can,

however, be computed explicitly. First note that E[ηk] = 0. Defining Wh = Cov(ηk+h,ηk), it holds

that

Ω =

 W0 W1 W2 · · ·
W−1 W0 W1 · · ·

...
...

. . .

 .
Stationarity implies that

Wh = E[e1+he
′
1] + E[u1+he

′
1] + E[e1+hu

′
1] + E[u1+hu

′
1]

= Σh +DT
−h +Dh + Ch,
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where Σh = E[e1+he
′
1], Dh = E[e1+hu

′
1] and Ch = E[u1+hu

′
1]. By assumption, Σh = O, the p × p

zero matrix, if h 6= 0. Also, Dh = O for h ≥ 0. Hence

Ω =


C0 C1 C2 · · ·
C ′1 C0 C1 · · ·
C ′2 C

′
1 C0 · · ·

...
...

. . .

+


Σ0 D′−1 D

′
−2 · · ·

D−1 Σ0 D′−1 · · ·
D−2 D−1 Σ0 · · ·

...
...

. . .

 .
Using the definitions of ek and uk, the elements of Ch and D−h are for `, `′ = 1, . . . , p computed as

Ch(`, `′) =
∞∑

`1=p+1

∞∑
`2=p+1

E [〈Y1+h, v`1〉〈Y1, v`2〉] 〈Ψ(v`1), v`〉〈Ψ(v`2), v`′〉, (A.2)

D−h(`, `′) =

∞∑
`1=p+1

E [〈Y0, v`1〉〈ε1−h, v`〉] 〈Ψ(v`1), v`′〉. (A.3)

The following lemma shows that the matrices D−h and Ch decrease rapidly to O when h→∞. This

indicates that in general relatively small values of b for the banded covariance estimator Ω̂e
b may be

chosen.

Lemma A.1. Let Ψ∗ denote the adjoint operator of Ψ. If ε0 ∈ L2
H , then there is a constant c which

depends only on the distribution of ε0 and Ψ, such that

|Ch(`, `′)| ≤ c ‖Ψ‖hL‖Ψ∗(v`)‖‖Ψ∗(v`′)‖,

|D−h(`, `′)| ≤ c ‖Ψ‖hL‖Ψ∗(v`′)‖,

for any h ≥ 1.

Proof. Using Example 2.1 in Hörmann and Kokoszka [15], one can define for any h > 0 a sequence

(Y
(h)
k : k ∈ Z) having the same marginal distribution as the FAR(1) process (Yk : k ∈ Z) and satisfying

that (Y
(h)
k+m : m ≥ h) and (Yk−` : ` ≤ 0) are independent for any k ∈ Z and

ν2(Yk − Y
(h)
k ) =

(
E
[
‖Yk − Y

(h)
k ‖

2
])1/2

≤ c1 ν2(ε0)‖Ψ‖hL.

This and the Cauchy-Schwarz inequality imply that

∣∣E[〈Y1+h, v`1〉〈Y1, v`2〉]∣∣ =
∣∣∣E[〈Y1+h − Y (h)

1+h, v`1〉〈Y1, v`2〉
]∣∣∣

≤ ν2
(
Yk − Y

(h)
k

)
ν2(Y1)

≤ c2 ν2(ε0)‖Ψ‖hL.
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Notice that ν2(Y1) depends only on the distribution of ε0 and Ψ. Hence subsequently using (A.2),

the Cauchy-Schwarz inequality and Parseval’s identity, leads to

|Ch(`, `′)| ≤ c ‖Ψ‖hL
∞∑

`1=p+1

∞∑
`2=p+1

|〈Ψ(v`1), v`〉〈Ψ(v`2), v`′〉|

≤ c ‖Ψ‖hL
( ∞∑
`1=p+1

〈Ψ(v`1), v`〉2
)1/2( ∞∑

`2=p+1

〈Ψ(v`2), v`′〉2
)1/2

≤ c ‖Ψ‖hL
( ∞∑
`1=1

〈v`1 ,Ψ∗(v`)〉2
)1/2( ∞∑

`2=1

〈v`2 ,Ψ∗(v`′)〉2
)1/2

= c ‖Ψ‖hL‖Ψ∗(v`)‖‖Ψ∗(v`′)‖.

The second statement can be proven in a similar way and the proof is complete.
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p = 2 p = 3
n method med mean sd med mean sd

20

FAR 1.368 1.707 2.074 1.347 1.615 1.258

VAR.ls 1.016 1.031 1.060 1.037 1.050 1.114
VAR.gls 1.018 1.068 1.724 1.044 1.954 68.399
Naive 1.098 1.099 1.042 1.117 1.122 1.100
Mean 1.373 1.328 1.129 1.404 1.376 1.200

Inno, m = 1 0.995 0.997 0.999 0.997 0.997 0.999
Inno, m = 2 1.020 1.015 1.003 1.029 1.032 1.023
Inno, m = 3 1.039 1.028 1.001 1.054 1.060 1.048

40

FAR 1.323 1.638 1.611 1.257 1.513 1.149

VAR.ls 1.006 1.009 1.013 1.012 1.013 1.013
VAR.gls 1.009 1.008 1.009 1.014 1.017 1.012
Naive 1.155 1.135 1.041 1.190 1.185 1.126
Mean 1.426 1.377 1.191 1.495 1.445 1.220

Inno, m = 1 0.999 0.999 0.999 0.995 0.999 1.000
Inno, m = 2 1.012 1.007 0.997 1.023 1.017 1.014
Inno, m = 3 1.019 1.016 1.000 1.039 1.037 1.023

80

FAR 1.282 1.534 1.118 1.217 1.458 1.048

VAR.ls 1.003 1.002 0.999 1.002 1.003 1.004
VAR.gls 1.004 1.002 0.999 1.005 1.005 1.005
Naive 1.156 1.164 1.164 1.245 1.229 1.191
Mean 1.438 1.422 1.413 1.526 1.481 1.383

Inno, m = 1 1.000 1.000 1.000 1.000 1.000 1.001
Inno, m = 2 0.999 1.002 1.007 1.009 1.009 1.007
Inno, m = 3 1.008 1.008 1.014 1.024 1.022 1.014

160

FAR 1.280 1.560 1.262 1.187 1.437 1.086

VAR.ls 1.000 1.000 0.995 1.000 1.001 1.001
VAR.gls 0.999 1.000 0.995 1.008 1.003 1.003
Naive 1.201 1.176 1.128 1.279 1.262 1.193
Mean 1.467 1.414 1.228 1.575 1.500 1.270

Inno, m = 1 1.000 1.000 1.000 1.001 1.000 1.000
Inno, m = 2 1.004 1.000 1.002 1.006 1.000 0.992
Inno, m = 3 1.005 1.003 1.002 1.011 1.005 0.994

320

FAR 1.268 1.533 1.088 1.149 1.444 2.250

VAR.ls 1.000 1.000 1.001 0.999 1.000 1.000
VAR.gls 1.000 1.000 1.000 1.004 1.001 0.999
Naive 1.200 1.186 1.196 1.296 1.265 1.054
Mean 1.490 1.421 1.362 1.612 1.529 1.069

Inno, m = 1 1.000 1.000 1.000 1.000 1.000 1.000
Inno, m = 2 0.999 0.999 1.003 1.006 1.000 0.998
Inno, m = 3 0.999 1.000 1.005 1.008 1.003 0.999

Table 2: MEDFAR, MSEFAR and SDFAR obtained from 5,000 repetitions are presented when the data
generating process follows an FAR(1) model. For the competing methods Pr equal to VAR.ls,
VAR.gls, Naive, Mean and Inno relative values RMEDPr, RMSEPr and RSDPr are presented.
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p = 2 p = 3
n method med mean sd med mean sd

20

FAR 1.347 1.632 1.245 1.348 1.606 1.122

VAR.ls 1.028 1.037 1.061 1.042 1.070 1.136
VAR.gls 1.066 1.468 27.318 1.085 3.458 177.030
Naive 1.103 1.093 1.073 1.094 1.087 1.061
Mean 1.203 1.194 1.382 1.173 1.160 1.098

Inno, m = 1 1.001 0.998 1.001 0.993 0.997 0.996
Inno, m = 2 0.989 0.977 0.987 0.982 0.987 1.006
Inno, m = 3 0.993 0.990 0.993 1.010 1.017 1.024

40

FAR 1.324 1.613 1.732 1.291 1.586 1.785

VAR.ls 1.009 1.009 1.002 1.020 1.020 1.016
VAR.gls 1.037 1.261 10.989 1.067 346.569 21665.501
Naive 1.126 1.111 1.065 1.135 1.124 1.043
Mean 1.207 1.192 0.997 1.243 1.212 1.112

Inno, m = 1 1.000 0.999 1.001 0.999 0.999 1.000
Inno, m = 2 0.951 0.953 0.964 0.947 0.945 0.994
Inno, m = 3 0.958 0.961 0.968 0.955 0.963 1.002

80

FAR 1.304 1.561 1.199 1.280 1.518 1.143

VAR.ls 1.001 1.005 1.009 1.007 1.006 1.012
VAR.gls 1.039 1.071 2.694 1.045 1.129 7.914
Naive 1.118 1.121 1.091 1.165 1.161 1.126
Mean 1.218 1.221 1.143 1.253 1.247 1.310

Inno, m = 1 0.998 1.000 1.000 0.999 1.000 1.000
Inno, m = 2 0.938 0.938 0.949 0.901 0.913 0.955
Inno, m = 3 0.941 0.942 0.953 0.912 0.923 0.962

160

FAR 1.303 1.569 1.168 1.274 1.556 1.607

VAR.ls 1.000 1.001 1.000 1.001 1.001 1.000
VAR.gls 1.035 1.044 1.557 1.032 1.037 1.038
Naive 1.128 1.125 1.097 1.144 1.150 1.042
Mean 1.241 1.226 1.200 1.249 1.239 1.070

Inno, m = 1 1.000 1.000 1.000 1.000 1.000 1.000
Inno, m = 2 0.929 0.928 0.956 0.884 0.908 0.971
Inno, m = 3 0.930 0.931 0.957 0.894 0.914 0.970

320

FAR 1.300 1.543 1.191 1.246 1.508 1.291

VAR.ls 1.000 1.002 1.011 1.000 1.001 1.001
VAR.gls 1.037 1.035 1.043 1.033 1.036 1.009
Naive 1.132 1.125 1.063 1.189 1.172 1.095
Mean 1.233 1.228 1.299 1.261 1.260 1.177

Inno, m = 1 0.999 1.000 1.000 1.000 1.000 1.000
Inno, m = 2 0.918 0.923 0.961 0.870 0.887 0.921
Inno, m = 3 0.918 0.924 0.963 0.873 0.890 0.924

Table 3: MEDFAR, MSEFAR and SDFAR obtained from 5,000 repetitions are presented when the data
generating process follows an FAR(2) model. For the competing methods Pr equal to VAR.ls,
VAR.gls, Naive, Mean and Inno relative values RMEDPr, RMSEPr and RSDPr are presented.
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p = 2 p = 3
n method med mean sd med mean sd

20

FAR 1.759 2.102 1.811 1.753 2.049 1.430

VAR.ls 1.017 1.028 1.609 1.039 1.048 1.063
VAR.gls 1.000 1.017 1.746 1.033 1.383 14.873
Naive 1.035 1.054 1.113 1.035 1.056 1.088
Mean 1.036 1.038 0.853 1.023 1.050 1.133

Inno, m = 2 0.982 0.989 0.985 0.988 0.996 1.558
Inno, m = 3 0.979 0.990 0.985 0.987 0.994 1.009
Inno, m = 4 0.976 0.989 0.999 0.991 0.994 1.006

40

FAR 1.710 2.050 1.461 1.714 2.027 1.479

VAR.ls 1.008 1.011 0.994 1.014 1.011 0.981
VAR.gls 1.003 1.000 0.981 1.005 1.004 0.989
Naive 1.045 1.054 1.101 1.084 1.092 1.142
Mean 1.065 1.079 1.114 1.061 1.059 1.024

Inno, m = 2 0.990 0.978 0.964 0.990 0.983 0.972
Inno, m = 3 0.983 0.974 0.962 0.983 0.983 0.979
Inno, m = 4 0.977 0.972 0.970 0.983 0.985 0.988

80

FAR 1.721 2.042 1.509 1.666 1.999 1.694

VAR.ls 1.003 1.005 1.040 1.002 1.016 1.754
VAR.gls 0.999 1.000 1.020 0.998 1.008 1.656
Naive 1.050 1.064 1.121 1.077 1.082 0.946
Mean 1.055 1.072 1.160 1.082 1.119 2.161

Inno, m = 2 0.975 0.979 0.986 0.974 0.972 0.856
Inno, m = 3 0.971 0.972 0.981 0.965 0.966 0.828
Inno, m = 4 0.962 0.968 0.976 0.961 0.961 0.817

160

FAR 1.754 2.058 1.408 1.716 2.006 1.515

VAR.ls 1.001 1.001 0.999 1.001 1.002 1.000
VAR.gls 0.996 0.999 1.002 0.999 1.000 0.996
Naive 1.048 1.063 1.120 1.083 1.100 1.108
Mean 1.056 1.074 1.110 1.066 1.098 1.142

Inno, m = 2 0.979 0.980 0.983 0.962 0.966 0.971
Inno, m = 3 0.968 0.970 0.978 0.947 0.954 0.968
Inno, m = 4 0.961 0.966 0.976 0.933 0.948 0.967

320

FAR 1.724 2.082 1.773 1.650 1.979 1.414

VAR.ls 1.000 1.001 1.005 1.001 1.009 1.407
VAR.gls 1.003 1.001 1.006 1.001 1.007 1.265
Naive 1.068 1.073 1.110 1.092 1.099 1.112
Mean 1.057 1.067 1.102 1.099 1.117 1.933

Inno, m = 2 0.975 0.975 0.979 0.970 0.965 0.927
Inno, m = 3 0.965 0.964 0.970 0.952 0.950 0.912
Inno, m = 4 0.961 0.960 0.966 0.945 0.940 0.908

Table 4: MEDFAR, MSEFAR and SDFAR obtained from 5,000 repetitions are presented when the data
generating process follows an FMA(1) model. For the competing methods Pr equal to VAR.ls,
VAR.gls, Naive, Mean and Inno relative values RMEDPr, RMSEPr and RSDPr are presented.
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p = 2 p = 3
n method med mean sd med mean sd

20

FAR 1.58 2.43 2.46 1.53 2.36 2.36

VAR.ls 1.64 2.45 2.43 1.58 2.41 2.34
Mean 1.69 2.88 3.28 1.69 2.88 3.28
Naive 1.81 2.57 2.67 1.81 2.57 2.67

Inno, m = 2 1.58 2.38 2.49 1.71 2.37 2.29
Inno, m = 3 1.55 2.45 2.50 1.78 2.47 2.32

CTD, m = 2, q = 3 1.41 2.37 2.70 1.65 2.57 2.88

40

FAR 1.51 2.37 2.42 1.40 2.29 2.38

VAR.ls 1.51 2.37 2.40 1.39 2.31 2.40
Mean 1.69 2.87 3.28 1.69 2.87 3.28
Naive 1.73 2.58 2.78 1.73 2.58 2.78

Inno, m = 2 1.38 2.37 2.52 1.43 2.29 2.39
Inno, m = 3 1.51 2.38 2.56 1.53 2.27 2.38

CTD, m = 2, q = 3 1.40 2.22 2.32 1.34 2.16 2.25

60

FAR 1.61 2.24 2.22 1.36 2.03 2.17

VAR.ls 1.63 2.23 2.20 1.32 2.03 2.17
Mean 1.79 3.09 3.48 1.79 3.09 3.48
Naive 1.69 2.63 2.96 1.69 2.63 2.96

Inno, m = 2 1.44 2.09 2.09 1.17 1.98 2.06
Inno, m = 3 1.41 2.10 2.09 1.42 2.04 2.28

CTD, m = 2, q = 3 1.16 1.94 1.96 1.06 1.95 2.07

80

FAR 1.59 2.20 2.20 1.30 1.95 2.17

VAR.ls 1.51 2.19 2.21 1.25 1.95 2.22
Mean 1.82 3.32 3.70 1.82 3.32 3.70
Naive 1.91 2.84 3.13 1.91 2.84 3.13

Inno, m = 2 1.31 2.01 2.07 1.25 1.91 2.02
Inno, m = 3 1.47 1.98 2.02 1.22 1.89 2.09

CTD, m = 2, q = 3 1.26 1.80 1.73 1.21 1.82 1.80

Table 5: MEDPr, MSEPr and SDPr are shown for prediction methods Pr equal to FAR, VAR.ls,
VAR.gls, Mean, Naive, Inno and CDT.
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