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Abstract

In this work we are interested in the problems of supervised learning and variable se-
lection when the input-output dependence is described by a nonlinear function depending
on a few variables. Our goal is to consider a sparse nonparametric model, hence avoid-
ing linear or additive models. The key idea is to measure the importance of each variable
in the model by making use of partial derivatives. Based on this intuition we propose
a new notion of nonparametric sparsity and a corresponding least squares regularization
scheme. Using concepts and results from the theory of reproducing kernel Hilbert spaces
and proximal methods, we show that the proposed learning algorithm corresponds to a
minimization problem which can be provably solved by an iterative procedure. The con-
sistency properties of the obtained estimator are studied both in terms of prediction and
selection performance. An extensive empirical analysis shows that the proposed method
performs favorably with respect to the state-of-the-art methods.
Keywords: Sparsity, Nonparametrics, Variable selection, Regularization, Proximal meth-
ods, RKHS

1 Introduction

It is now common to see practical applications, for example in bioinformatics and computer
vision, where the dimensionality of the data is in the order of hundreds, thousands and even
tens of thousands. It is known that learning in such a high dimensional regime is feasible only
if the quantity to be estimated satisfies some regularity assumptions [24]. In particular, the
idea behind, so called, sparsity is that the quantity of interest depends only on a few relevant
variables (dimensions). In turn, this latter assumption is often at the basis of the construction
of interpretable data models, since the relevant dimensions allow for a compact, hence inter-
pretable, representation. An instance of the above situation is the problem of learning from
samples a multivariate function which depends only on a (possibly small) subset of relevant
variables. Detecting such variables is the problem of variable selection.

Largely motivated by recent advances in compressed sensing [15, 25], the above problem
has been extensively studied under the assumption that the function of interest (target function)
depends linearly to the relevant variables. While a naive approach (trying all possible subsets of
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variables) would not be computationally feasible it is known that meaningful approximations
can be found either by greedy methods [53], or convex relaxation (`1 regularization a.k.a. basis
pursuit or LASSO [52, 17, 28]). In this context efficient algorithms (see [50, 39] and references
therein) as well as theoretical guarantees are now available (see [14] and references therein). In
this paper we are interested into the situation where the target function depends non-linearly
to the relevant variables. This latter situation is much less understood. Approaches in the
literature are mostly restricted to additive models [33]. In such models the target function is
assumed to be a sum of (non-linear) univariate functions. Solutions to the problem of vari-
able selection in this class of models include [48] and are related to multiple kernel learning
[8]. Higher order additive models can be further considered, encoding explicitly dependence
among the variables – for example assuming the target function to be also sum of functions de-
pending on couples, triplets etc. of variables, as in [38] and [7]. Though this approach provides
a more interesting, while still interpretable, model, its size/complexity is essentially more than
exponential in the initial variables. Only a few works, that we discuss in details in Section 2,
have considered notions of sparsity beyond additive models.

In this paper, we propose a new approach based on the idea that the importance of a vari-
able, while learning a non-linear functional relation, can be captured by the corresponding
partial derivative. This observation suggests a way to define a new notion of nonparametric
sparsity and a corresponding regularizer which favors functions where most partial deriva-
tives are essentially zero. The question is how to make this intuition precise and how to derive
a feasible computational learning scheme. The first observation is that, while we cannot mea-
sure a partial derivative everywhere, we can do it at the training set points and hence design a
data-dependent regularizer. In order to derive an actual algorithm we have to consider two
further issues: How can we estimate reliably partial derivatives in high dimensions? How can
we ensure that the data-driven penalty is sufficiently stable? The theory of reproducing kernel
Hilbert spaces (RKHSs) provides us with tools to answer both questions. In fact, partial deriva-
tives in a RKHS are bounded linear functionals and hence have a suitable representation that
allows efficient computations. Moreover, the norm in the RKHS provides a natural further reg-
ularizer ensuring stable behavior of the empirical, derivative based penalty. Our contribution
is threefold. First, we propose a new notion of sparsity and discuss a corresponding regular-
ization scheme using concept from the theory of reproducing kernel Hilbert spaces. Second,
since the proposed algorithm corresponds to the minimization of a convex, but not differen-
tiable functional, we develop a suitable optimization procedure relying on forward-backward
splitting and proximal methods. Third, we study properties of the proposed methods both
in theory, in terms of statistical consistency, and in practice, by means of an extensive set of
experiments.

Some preliminary results have appeared in a short conference version of this paper [49].
With respect to the conferecen version, the current version contains: the detailed discussion of
the derivation of the algorithm with all the proofs, the consistency results of Section 4, an aug-
mented set of experiments and several further discussions. The paper is organized as follows.
In section 3 we discuss our approach and present the main results in the paper. In Section 4 we
discuss the computational aspects of the method. In Section 5 we prove consistency results. In
Section 6 we provide an extensive empirical analysis. Finally in Section 7 we conclude with a
summary of our study and a discussion of future work.
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2 Problem Setting and Previous Work

Given a training set zn = (x,y) = (xi, yi)
n
i=1 of input output pairs, with xi ∈ X ⊆ Rd and

yi ∈ Y ⊆ R, we are interested into learning about the functional relationship between input
and output. More precisely, in statistical learning the data are assumed to be sampled identi-
cally and independently from a probability measure ρ on X ×Y so that if we measure the error
by the square loss function, the regression function fρ(x) =

∫
ydρ(x, y) minimizes the expected

risk E(f) =
∫

(y − f(x))2dρ(x, y).
Finding an estimator f̂ of fρ from finite data is possible, if fρ satisfies some suitable prior as-
sumption [24]. In this paper we are interested in the case where the regression function is sparse
in the sense that it depends only on a subset Rρ of the possible d variables. Estimating the set
Rρ of relevant variables is the problem of variable selection.

Linear and additive models The sparsity requirement can be made precise considering linear
functions f(x) =

∑d
a=1 βax

a with x = (x1, . . . , xd). In this case the sparsity of a function is
quantified by the so called zero-norm Ω0(f) = #{a = 1, . . . , d | βa 6= 0}. The zero norm, while
natural for variable selection, does not lead to efficient algorithms and is often replaced by the
`1 norm, that is Ω1(f) =

∑d
a=1 |βa|. This approach has been studied extensively and is now

fairly well understood, see [14] and references therein. Regularization with `1 regularizers,
obtained by minimizing

Ê(f) + λΩ1(f), Ê(f) =
1

n

n∑
i=1

(yi − f(xi))
2,

can be solved efficiently and, under suitable conditions, provides a solution close to that of the
zero-norm regularization.

The above scenario can be generalized to additive models f(x) =
∑d

a=1 fa(x
a), where fa

are univariate functions in some (reproducing kernel) Hilbert spaces Ha, a = 1, . . . , d. In this
case the analogous of the zero-norm and the `1 norm are Ω0(f) = #{a ∈ {1, . . . , d} : ‖fa‖ 6= 0}
and Ω1(f) =

∑d
a=1 ‖fa‖, respectively. This latter setting, related to multiple kernel learning

[8, 6], has been considered for example in [48], see also [36] and references therein. Consider-
ing additive models limits the way in which the variables can interact. This can be partially
alleviated considering higher order terms in the model as it is done in ANOVA decomposi-
tion [58, 31]. More precisely, we can add to the simplest additive model functions of couples
fa,b(x

a, xb), triplets fa,b,c(xa, xb, xc), etc. of variables – see [38]. For example one can consider
functions of the form f(x) =

∑d
a=1 fa(x

a) +
∑

a<b fa,b(x
a, xb). In this case the analogous to the

zero and `1 norms are Ω0(f) = #{a = 1, . . . , d : ‖fa‖ 6= 0} + #{(a, b) : a < b, ‖fb,c‖ 6= 0}
and Ω1(f) =

∑d
a=1 ‖fa‖ +

∑
a<b ‖fa,b‖, respectively. Note that in this case sparsity will not be

in general with respect to the original variables but rather with respect to the elements in the
additive model. Clearly, while this approach provides a more interesting and yet interpretable
model, its size/complexity is essentially more than exponential in the number of variables.
Some proposed attempts to tackle this problem are based on restricting the set of allowed spar-
sity patterns and can be found in [7].

2.1 Nonparametric approaches

The above discussion naturally raises the question:
What if we are interested into learning and performing variable selection when the functions of interest
are not described by an additive model?
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Few papers have considered this question. Here we discuss in some more details [37, 13,
Miller and Hall(2010)], [20], to which we also refer for further references.
The first three papers [37, 13, Miller and Hall(2010)] follow similar approaches focusing on the
point-wise estimation of the regression function and of the relevant variables. The basic idea is
to start from a locally linear (or polynomial) point wise estimator fn(x) at a point x obtained
from the minimizer of

1

n

n∑
i=1

(yi − 〈w, xi − x〉Rd)2KH(xi − x) (1)

whereKH is a localizing window function depending on a matrix (or a vector)H of smoothing
parameters. Different techniques are used to (locally) select variables. In the RODEO algo-
rithm [37], the localizing window function depends on one smoothing parameter per variable
and the partial derivative of the local estimator with respect to the smoothing parameter is
used to select variables. In [13], selection is considering a local lasso, that is an `1 to the local
empirical risk functional (1). In the LABAVS algorithm discussed in [Miller and Hall(2010)]
several variable selection criterion are discussed including the local lasso, hard thresholding,
and backward step wise approach. The above approaches typically leads to cumbersome com-
putations and do not scale well with the dimensionality of the space and with the number of
relevant variables.
Indeed, in all the above works the emphasis is in the theoretical analysis quantifying the estima-
tion errors of the proposed methods. It is shown in [37] that the RODEO algorithm is a nearly
optimal pointwise estimator of the regression function, under assumption on the marginal
distribution and the regression functions. These results are further improved in [13] where
optimal rates are derived under milder assumptions and sparsistency (the recovery of Rρ) is
also studied. Uniform error estimates are derived in [Miller and Hall(2010)] (see Section 2.6 in
[Miller and Hall(2010)] for further discussions and comparison). More recently, an estimator
based on the comparison of some well chosen empirical Fourier coefficients to a prescribed sig-
nificance level is described and studied in [20] where a careful statistical analysis is proposed
considering different regimes for n, d and d∗, where d∗ is the cardinality of Rρ. Finally, in a
slightly different context, [23] studies the related problem of determining the number of func-
tion values at adaptively chosen points that are needed in order to correctly estimate the set of
globally relevant variables.

3 Sparsity Beyond linear Models

In this section we present our approach and summarize our main contributions.

3.1 Sparsity and Regularization using Partial Derivatives

Our study starts from the observation that, if a function f is differentiable, the relative impor-
tance of a variable at a point x can be captured by the magnitude of the corresponding partial
derivative1 ∣∣∣∣ ∂f∂xa

∣∣∣∣ .
This observation can be developed into a new notion of sparsity and corresponding regulariza-
tion scheme that we study in the rest of the paper. We note, that tegularization using derivatives

1In order for the partial derivatives to be defined at all points we always assume that the closure of X coincides
with the closure of its interior.
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is not new. Indeed, the classical splines (Sobolev spaces) regularization [57], as well as more
modern techniques such as manifold regularization [12] use derivatives to measure the regular-
ity of a function. Similarly total variation regularization utilizes derivatives to define regular
function. None of the above methods though allows to capture a notion of sparsity suitable
both for learning and variable selection– see Remark 1.

Using partial derivatives to define a new notion of a sparsity and design a regularizer for
learning and variable selection requires considering the following two issues. First, we need
to quantify the relevance of a variable beyond a single input point to define a proper (global)
notion of sparsity. If the partial derivative is continuous 2 then a natural idea is to consider∥∥∥∥ ∂f∂xa

∥∥∥∥
ρX

=

√∫
X

(
∂f(x)

∂xa

)2

dρX (x). (2)

where ρX is the marginal probability measure of ρ on X . While considering other Lp norms is
possible, in this paper we restrict our attention to L2. A notion of nonparametric sparsity for a
smooth, non-linear function f is captured by the following functional

ΩD
0 (f) = #

{
a = 1, . . . , d :

∥∥∥∥ ∂f∂xa
∥∥∥∥
ρX

6= 0

}
, (3)

and the corresponding relaxation is

ΩD
1 (f) =

d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
ρX

.

The above functionals encode the notion of sparsity that we are going to consider. While for
linear models, the above definition subsumes the classic notion of sparsity, the above definition
is non constrained to any (parametric) additive model.

Second, since ρX is only known through the training set, to obtain a practical algorithm we
start by replacing the L2 norm with an empirical version∥∥∥∥ ∂f∂xa

∥∥∥∥
n

=

√√√√ 1

n

n∑
i=1

(
∂f(xi)

∂xa

)2

and by replacing (2) by the data-driven regularizer,

Ω̂D
1 (f) =

d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
n

. (4)

While the above quantity is a natural estimate of (2) in practice it might not be sufficiently
stable to ensure good function estimates where data are poorly sampled. In the same spirit of
manifold regularization [12], we then propose to further consider functions in a reproducing
kernel Hilbert space (RKHS) defined by a differentiable kernel and use the penalty,

Ω̂D
1 (f) + ν‖f‖2H,

where ν is a small positive number. The latter terms ensures stability while making the regu-
larizer strongly convex. This latter property is a key for well-posedeness and generalization, as

2In the following, see Remark 2, we will see that further appropriate regularity properties on f are needed
depending on whether the support of ρX is connected or not.
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Figure 1: Difference between `1/`1 and `1/`2 norm for binary matrices (white = 1, black=0),
where in the latter case the `1 norm is taken over the rows (variables) and the `2 norm over the
columns (samples). The two matrices have the same number of nonzero entries, and thus the
same `1/`1 norm, but the value of the `1/`2 norm is smaller for the matrix on the right, where
the nonzero entries are positioned to fill a subset of the rows. The situation on the right is thus
favored by `1/`2 regularization.

we discuss in Section 5. As we will see in the following, RKHS will also be a key tool allowing
computations of partial derivative of potentially high dimensional functions.

The final learning algorithm is given by the minimization of the functional

1

n

n∑
i=1

(yi − f(xi))
2 + τ

(
d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥
n

+ ν‖f‖2H

)
. (5)

The remainder of the paper is devoted to the analysis of the above regularization algorithm.
Before summarizing our main results we add two remarks.

Remark 1 (Comparison with Derivative Based Regulrizers). It is perhaps useful to remark the
difference between the regularizer we propose and other derivative based regularizers. We start by con-
sidering

d∑
a=1

∥∥∥∥ ∂f∂xa
∥∥∥∥2

n

=
1

n

n∑
i=1

d∑
a=1

(
∂f(xi)

∂xa

)2

=
1

n

n∑
i=1

‖∇f(xi)‖2,

where∇f(x) is the gradient of f at x. This is essentially a data-dependent version of the classical penalty
in Sobolev spaces which writes

∫
‖∇f(x)‖2dx, where the uniform (Lebesgue) measure is considered. It

is well known that while this regularizer measure the smoothness it does not yield any sparsity property.
A different derivative based regularizer is given by 1

n

∑n
i=1

∑d
a=1

∣∣∣∂f(xi)
∂xa

∣∣∣ . Though this penalty (which

we call `1/`1) favors sparsity, it only forces partial derivative at points to be zero. In comparison the reg-
ularizer we propose is of the `1/`2 type and utilizes the square root to “group” the values of each partial
derivative at different points hence favoring functions for which each partial derivative is small at most
points. The difference between penalties is illustrated in Figure 1. Finally note that we can also con-
sider 1

n

∑n
i=1 ‖∇f(xi)‖. This regularizer, which is akin to the total variation regularizer

∫
‖∇f(x)‖dx,

groups the partial derivatives differently and favors functions with localized singularities rather than
selecting variables.

Remark 2. As it is clear from the previous discussion, we quantify the importance of a variable based
on the norm of the corresponding partial derivative. This approach makes sense only if

‖ ∂f
∂xa
‖ρX = 0 ⇒ f is constant with respect to xa. (6)

The previous fact holds trivially if we assume the function f to be continuously differentiable (so that the
derivative is pointwise defined, and is a continuous function) and suppρX to be connected. If the latter
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assumption is not satisfied the situation is more complicated, as the following example shows. Suppose
that ρX is the uniform distribution on the disjoint intervals [−2,−1] and [1, 2], and Y = {−1, 1}.
Moreover assume that ρ(y|x) = δ−1, if x ∈ [−2,−1] and ρ(y|x) = δ1, if x ∈ [1, 2]. Then, if we
consider the regression function

f(x) =

{
−1 if x ∈ [−2,−1]

1 if x ∈ [1, 2]

we get that f ′(x) = 0 on the support of ρX , although the variable x is relevant. To avoid such pathological
situations when suppρX is not connected inRd we need to impose more stringent regularity assumptions
that basically imply that a function which is constant on a open interval is constant everywhere. This
is verified when f belongs to the RKHS defined by a polynomial kernel, or, more generally, an analytic
kernel such as the Gaussian kernel.

3.2 Main Results

We summarize our main contributions.

1. Our main contribution is the analysis of the minimization of (5) and the derivation of a
provably convergent iterative optimization procedure. We begin by extending the repre-
senter theorem [57] and show that the minimizer of (5) has the finite dimensional repre-
sentation

f̂ τ (x) =

n∑
i=1

1

n
αik(xi, x) +

n∑
i=1

d∑
a=1

1

n
βai

∂k(s, x)

∂sa

∣∣∣∣
s=xi

,

with α, (βai)
n
i=1 ∈ Rn for all a = 1, . . . , d. Then, we show that the coefficients in the

expansion can be computed using forwards-backward splitting and proximal methods
[18, 9]. More precisely, we present a fast forward-backward splitting algorithm, in which
the proximity operator does not admit a closed form and is thus computed in an ap-
proximated way. Using recent results for proximal methods with approximate proximity
operators, we are able to prove convergence (and convergence rates) for the overall pro-
cedure. The resulting algorithm requires only matrix multiplications and thresholding
operations and is in terms of the coefficients α and β and matrices given by the kernel
and its first and second derivatives evaluated at the training set points.

2. We study the consistency properties of the obtained estimator. We prove that, if the kernel
we use is universal, then there exists a choice of τ = τn depending on n such that the
algorithm is universally consistent [51], that is

lim
n→∞

P
(
E(f̂ τn)− E(fρ) > ε

)
= 0

for all ε > 0. Moreover, we study the selection properties of the algorithm and prove that,
if Rρ is the set of relevant variables and R̂τn the set estimated by our algorithm, then the
following consistency result holds

lim
n→∞

P
(
R̂τn ⊆ Rρ

)
= 1.

7



Figure 2: Comparison of predictions for a radial function of 2 out of 20 variables (the 18
irrelevant variables are not shown in the figure). In the upper left plot is depicted the value
of the function on the test points (left), the noisy training points (center), the values predicted
for the test points by our method (DENOVAS) (right). The bottom plots represent the values
predicted for the test points by state-of-the-art algorithms based on additive models. Left:
Multiple kernel learning based on additive models using kernels. Center: COSSO, which is a
higher order additive model based on ANOVA decomposition [38]. Right: Hierarchical kernel
learning [7].

3. Finally we provide an extensive empirical analysis both on simulated and benchmark
data, showing that the proposed algorithm (DENOVAS) compares favorably and often
outperforms other algorithms. This is particularly evident when the function to be esti-
mated is highly non linear. The proposed method can take advantage of working in a rich,
possibly infinite dimensional, hypotheses space given by a RKHS, to obtain better estima-
tion and selection properties. This is illustrated in Figure 2, where the regression function
is a nonlinear function of 2 of 20 possible input variables. With 100 training samples the
algorithms we propose is the only one able to correctly solve the problem among different
linear and non linear additive models. On real data our method outperforms other meth-
ods on several data sets. In most cases, the performance of our method and regularized
least squares (RLS) are similar. However our method brings higher interpretability since
it is able to select a smaller subset of relevant variable, while the estimator provided by
RLS depends on all variables.

4 Computational Analysis

In this section we study the minimization of the functional (5).

4.1 Basic Assumptions

We first begin by listing some basic conditions that we assume to hold throughout the paper.
We let ρ be a probability measure on X × Y with X ⊂ Rd and Y ⊆ R. A training set

zn = (x,y) = (xi, yi)
n
i=1 is a sample from ρn. We consider a reproducing kernel K : X ×X → R

8



[2] and the associated reproducing kernel Hilbert space. We assume ρ and K to satisfy the
following assumptions.

[A1] There exists κ1 <∞ such that supx∈X ‖t 7→ k(x, t)‖H < κ1.

[A2] The kernel k is C2(X × X ) and there exists κ2 < ∞ such that for all a = 1, . . . , d we have
supx∈X ‖t 7→

∂k(s,x)
∂sa

∣∣∣
s=t
‖H < κ2 .

[A3] There exists M <∞ such that Y ⊆ [−M,M ].

4.2 Computing the regularized solution

We start our analysis discussing how to compute efficiently a regularized solution of the func-
tional

Êτ (f) :=
1

n

n∑
i=1

(yi − f(xi))
2 + τ

(
2Ω̂D

1 (f) + ν‖f‖2H
)
, (7)

where Ω̂D
1 (f) is defined in (4). We start observing that the term ‖f‖2H makes the above func-

tional coercive and strongly convex with modulus3 τν/2, so that standard results ([29]) ensures
existence and uniqueness of a minimizer f̂ τ , for any ν > 0.

The rest of this section is divided into two parts. First we show how the theory of RKHS
[1] allows to compute derivatives of functions on high dimensional spaces and also to derive
a new representer theorem that allows to deal with finite dimensional minimization problems.
Second we discuss how to apply proximal methods [18, 9] to derive an iterative optimization
procedure for which we can prove convergence. It is possible to see that the solution of Problem
(7) can be written as

f̂ τ (x) =

n∑
i=1

1

n
αikxi(x) +

n∑
i=1

d∑
a=1

1

n
βa,i(∂ak)xi(x), (8)

where α, (βa,i)ni=1 ∈ Rn for all a = 1, . . . , d kx is the function t 7→ k(x, t), and (∂ak)x denotes par-
tial derivatives of the kernel, see (20). The main outcome of our analysis is that the coefficients
α and β can be provably computed through an iterative procedure. To describe the algorithm
we need some notation. For all a, b = 1, . . . , d, we define the n× n matrices K,Za,La,b as

Ki,j =
1

n
k(xi, xj), (9)

[Za]i,j =
1

n

∂k(s, xj)

∂sa

∣∣∣∣
s=xi

, (10)

and

[La,b]i,j =
1

n

∂2k(x, s)

∂xa∂sb

∣∣∣∣
x=xi,s=xj

3We say that a function E : H → R ∪ {+∞} is:

• coercive if lim‖f‖→+∞ E(f)/‖f‖ = +∞;

• strongly convex of modulus µ if E(tf + (1− t)g) ≤ tE(f) + (1− t)E(g)− µ
2
t(1− t)‖f − g‖2 for all t ∈ [0, 1].
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for all i, j = 1, . . . , n. Clearly the above quantities can be easily computed as soon as we have
an explicit expression of the kernel, see Example 1 in Appendix A. We introduce also the n×nd
matrices

Z = (Z1, . . . ,Zd)

La = (La,1, . . . ,La,d) ∀a = 1, . . . , d (11)

and the nd× nd matrix

L =

 L1,1 . . . L1,d

. . . . . . . . .
Ld,1 . . . Ld,d

 =

 La
. . .
Ld


Denote with Bn the unitary ball in Rn,

Bn = {v ∈ Rn |‖v‖n ≤ 1}. (12)

The coefficients in (8) are obtained through Algorithm 1, where β is considered as a nd column
vector β = (β1,1, . . . , β1,n, . . . , βd,1, . . . , βd,n)T .

Algorithm 1
Given: parameters τ, ν > 0 and step-sizes σ, η > 0
Initialize: α0 = α̃1 = 0, β0 = β̃1 = 0, s1 = 1, v̄0 = 0, t = 1
while convergence not reached do
t = t+ 1

st =
1

2

(
1 +

√
1 + 4s2

t−1

)
(13)

α̃t =

(
1 +

st−1 − 1

st

)
αt−1 +

1− st−1

st
αt−2, β̃t =

(
1 +

st−1 − 1

st

)
βt−1 +

1− st−1

st
βt−2,

(14)

αt =
(

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t + Zβ̃t − y

)
(15)

set v0 = v̄t−1, q = 0
while convergence not reached do
q = q + 1
for a = 1, . . . d do

vqa = π τ
σ
Bn

(
vq−1
a − 1

η

(
Lav

q−1 −
(

ZTa α
t +
(

1− τν

σ

)
Laβ̃

t
)))

(16)

end for
end while
set v̄t = vq

βt =
(

1− τν

σ

)
β̃t − v̄t. (17)

end while
return (αt, βt)

The proposed optimization algorithm consists of two nested iterations, and involves only
matrix multiplications and thresholding operations. Before describing its derivation and dis-
cussing its convergence properties, we add three remarks. First, the proposed procedure re-
quires the choice of an appropriate stopping rule, which will be discussed later, and of the step
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sizes σ and η. The simple a priori choice σ = ‖K‖ + τν, η = ‖L‖ ensures convergence, as dis-
cussed in the Subsection 4.5, and is the one used in our experiments. Second, the computation
of the solution for different regularization parameters can be highly accelerated by a simple
warm starting procedure, as the one in [32]. Finally, in Subsection 4.6 we discuss a principled
way to select variable using the norm of the coefficients (v̄ta)

d
a=1.

4.3 Kernels, Partial Derivatives and Regularization

We start discussing how (partial) derivatives can be efficiently computed in RKHSs induced
by smooth kernels and hence derive a new representer theorem. Practical computation of the
derivatives for a differentiable functions is often performed via finite differences. For functions
defined on a high dimensional space such a procedure becomes cumbersome and ultimately
not-efficient. RKHSs provide an alternative computational scheme.

Recall that the RKHS associated to a symmetric positive definite function k : X ×X → R is
the unique Hilbert space (H, 〈·, ·〉H) such that kx = k(x, ·) ∈ H, for all x ∈ X and

f(x) = 〈f, kx〉H, (18)

for all f ∈ H, x ∈ X . Property (18) is called reproducing property and k is called reproducing
kernel [1]. We recall a few basic facts. The functions in H can be written as pointwise limits
of finite linear combinations of the type

∑p
i=1 αikxi , where αi ∈ R, xi ∈ X for all i. One of the

most important results for kernel methods, namely the representer theorem [57], shows that a
large class of regularized kernel methods induce estimators that can be written as finite linear
combinations of kernels centered at the training set points. In the following we will make use
of the so called sampling operator, which returns the values of a function f ∈ H at a set of input
points x = (x1, . . . , xn)

Ŝ : H → Rn, (Ŝf)i = 〈f, kxi〉, i = 1, . . . , n. (19)

The above operator is linear and bounded if the kernel is bounded– see Appendix A, which is
true thanks to Assumption (A1).

Next, we discuss how the theory of RKHS allows efficient derivative computations. Let

(∂ak)x :=
∂k(s, ·)
∂sa

∣∣∣∣
s=x

(20)

be the partial derivative of the kernel with respect to the first variable. Then, from Theorem 1
in [59] we have that, if k is at least a C2(X × X ), (∂ak)x belongs to H for all x ∈ X and most
importantly

∂f(x)

∂xa
= 〈f, (∂ak)x〉H,

for a = 1, . . . , d, x ∈ X . It is useful to define the analogous of the sampling operator for
derivatives, which returns the values of the partial derivative of a function f ∈ H at a set of
input points x = (x1, . . . , xn),

D̂a : H → Rn, (D̂af)i = 〈f, (∂ak)xi〉, (21)

where a = 1, . . . , d, i = 1, . . . , n. It is also useful to define an empirical gradient operator
∇̂ : H → (Rn)d defined by ∇̂f = (D̂af)da=1. The above operators are linear and bounded, since
assumption [A2] is satisfied. We refer to Appendix A for further details and supplementary
results.

Provided with the above results we can prove a suitable generalization of the representer
theorem.

11



Proposition. The minimizer of (7) can be written as

f̂ τ =
n∑
i=1

1

n
αikxi +

n∑
i=1

d∑
a=1

1

n
βa,i(∂ak)xi

with α ∈ R and β ∈ Rnd.

The above result is proved in Appendix A and shows that the regularized solution is deter-
mined by the set of n + nd coefficients α ∈ Rn and β ∈ Rnd. We next discuss how such
coefficients can be efficiently computed.

Notation. In the following, given an operator A we denote by A∗ the corresponding adjoint
operator. When A is a matrix we use the standard notation for the transpose AT = A∗.

4.4 Computing the Solution with Proximal Methods

The functional Êτ is not differentiable, hence its minimization cannot be done by simple gra-
dient methods. Nonetheless it has a special structure that allows efficient computations using
a forward-backward splitting algorithm [18], belonging to the class of the so called proximal
methods.

Second order methods, see for example [16], could also be used to solve similar problems.
These methods typically converge quadratically and allows accurate computations. However,
they usually have a high cost per iteration and hence are not suitable for large scale problems, as
opposed to first order methods having much lower cost per iteration. Furthermore, in the sem-
inal paper by Nesterov [45] first-order methods with optimal convergence rate are proposed
[44]. First order methods have since become a popular tool to solve non-smooth problems in
machine learning as well as signal and image processing, see for example FISTA – [9] and ref-
erences therein. These methods have proved to be fast and accurate [10], both for `1-based
regularization – see [18], [21], [30], [40] – and more general regularized learning methods – see
for example [27], [43], [35] –.

Forward-backward splitting algorithms The functional Êτ is the sum of the two terms F (·) =
Ê(·) + τν‖·‖2H and 2τ Ω̂D

1 . The first term is strongly convex of modulus τν and differentiable,
while the second term is convex but not differentiable. The minimization of this class of func-
tionals can be done iteratively using the forward-backward (FB) splitting algorithm,

f t = prox τ
σ

Ω̂D1

(
f̃ t − 1

2σ
∇F (f̃ t)

)
(22)

f̃ t = c1,tf
t−1 + c2,tf

t−2 (23)

where f0 = f1 ∈ H is an arbitrary initialization, c1,t, c2,t are suitably chosen positive sequences,
and prox τ

σ
Ω̂D1

: H → H is the proximity operator [42] defined by,

prox τ
σ

Ω̂D1
(f) = argmin

g∈H

(
τ

σ
Ω̂D

1 (g) +
1

2
‖f − g‖2

)
.

The above approach decouples the contribution of the differentiable and not differentiable
terms. Unlike other simpler penalties used in additive models, such as the `1 norm in the
lasso, in our setting the computation of the proximity operator of Ω̂D

1 is not trivial and will
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be discussed in the next paragraph. Here we briefly recall the main properties of the itera-
tion (22), (23) depending on the choice of c1,t, c2,t and σ. The basic version of the algorithm
[18], sometimes called ISTA (iterative shrinkage thresholding algorithm [9]), is obtained set-
ting c1,t = 1 and c2,t = 0 for all t > 0, so that each step depends only on the previous iterate.
The convergence of the algorithm for both the objective function values and the minimizers is
extensively studied in [18], but a convergence rate is not provided. In [9] it is shown that the
convergence of the objective function values is of order O(1/t) provided that the step size σ
satisfies σ ≥ L, where L is the Lipschitz constant of ∇F/2. An alternative choice of c1,t and
c2,t leads to an accelerated version of the algorithm (22), sometimes called FISTA (fast iterative
shrinkage thresholding algorithm [54, 9]), which is obtained by setting s0 = 1,

st =
1

2

(
1 +

√
1 + 4s2

t−1

)
, c1,t = 1 +

st−1 − 1

st
, and c2,t =

1− st−1

st
. (24)

The algorithm is analyzed in [9] and in [54] where it is proved that the objective values gener-
ated by such a procedure have convergence of order O(1/t2), if the step size satisfies σ ≥ L.

Computing the Lipscthitz constant L can be non trivial. Theorems 3.1 and 4.4 in [9] show
that the iterative procedure (22) with an adaptive choice for the step size, called backtracking,
which does not require the computation of L, shares the same rate of convergence of the cor-
responding procedure with fixed step-size. Finally, it is well known that, if the functional is
strongly convex with a positive modulus, the convergence rate of both the basic and acceler-
ated scheme is indeed linear for both the function values and the minimizers [45, 43, 46].

In our setting we use FISTA to tackle the minimization of Êτ but, as we mentioned before,
we have to deal with the computation of the proximity operator associated to Ω̂D

1 .

Computing the proximity operator. Since Ω̂D
1 is one-homogeneus, i.e. Ω̂D

1 (λf) = λΩ̂D
1 (f) for

λ > 0, the Moreau identity, see [18], gives a useful alternative formulation for the proximity
operator, that is

prox τ
σ

Ω̂D1
= I − π τ

σ
Cn , (25)

where Cn = (∂Ω̂D
1 )(0) is the subdifferential 4 of Ω̂D

1 at the origin, and π τ
σ
Cn : H → H is the

projection on τ
σCn– which is well defined since Cn is a closed convex subset of H. To describe

how to practically compute such a projection, we start observing that the DENOVAS penalty
Ω̂D

1 is the sum of d norms in Rn. Then following Section 3.2 in [43] (see also [29]) we have

Cn = ∂Ω̂D
1 (0) =

{
f ∈ H | f = ∇̂∗v with v ∈ Bd

n

}
,

where Bd
n is the cartesian product of d unitary balls in Rn,

Bd
n = Bn × · · · ×Bn︸ ︷︷ ︸

d times

= {v = (v1, . . . , vd) |va ∈ Rn, ‖va‖n ≤ 1, a = 1, . . . , d},

with Bn defined in (12). Then, by definition, the projection is given by

π τ
σ
Cn(f) = ∇̂∗v̄,

4 Recall that the subdifferential of a convex functional Ω : H → R∪ {+∞} is denoted with ∂Ω(f) and is defined
as the set

∂Ω(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H, ∀g ∈ H}.
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where
v̄ ∈ argmin

v∈ τ
σ
Bdn

‖f − ∇̂∗v‖2H. (26)

Being a convex constrained problem, (26) can be seen as the sum of the smooth term ‖f − ∇̂∗v‖2H
and the indicator function of the convex set Bd

n. We can therefore use (22), again. In fact we can
fix an arbitrary initialization v0 ∈ Rnd and consider,

vq+1 = π τ
σ
Bdn

(
vq − 1

η
∇̂(∇̂∗vq − f)

)
, (27)

for a suitable choice of η. In particular, we notice that π τ
σ
Bdn

can be easily computed in closed
form, and corresponds to the proximity operator associated to the indicator function of Bd

n.
Applying the results mentioned above, if η ≥ ‖∇̂∇̂∗‖, convergence of the function values of
problem (26) on the sequence generated via (27) is guaranteed. However, since we are inter-
ested in the computation of the proximity operator, this is not enough. Thanks to the special
structure of the minimization problem in (26), it is possible to prove (see [19, 43]) that

‖∇̂∗vq − ∇̂∗v̄‖H → 0, or, equivalently ‖∇̂∗vq − π τ
σ
Cn(f)‖H → 0. (28)

A similar first-order method to compute convergent approximations of ∇̂∗v̄ has been pro-
posed in [11].

4.5 Overall Procedure and Convergence analysis

To compute the minimizer of Êτ we consider the combination of the accelerated FB-splitting
algorithm (outer iteration) and the basic FB-splitting algorithm for computing the proximity
operator (inner iteration). The overall procedure is given by

st =
1

2

(
1 +

√
1 + 4s2

t−1

)
f̃ t =

(
1 +

st−1 − 1

st

)
f t−1 +

1− st−1

st
f t−2 (29)

f t =
(

1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝf̃ t − y

)
− ∇̂∗v̄t,

for t = 2, 3, . . . , where v̄t is computed through the iteration

vq = π τ
σ
Bdn

(
vq−1 − 1

η
∇̂
(
∇̂∗vq−1 −

(
1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝf̃ t − y

)))
, (30)

for given initializations.
The above algorithm is an inexact accelerated FB-splitting algorithm, in the sense that the

proximal or backward step is computed only approximately. The above discussion on the con-
vergence of FB-splitting algorithms was limited to the case where computation of the proximity
operator is done exactly (we refer to this case as the exact case). The convergence of the inex-
act FB-splitting algorithm does not follow from this analysis. For the basic – not accelerated –
FB-splitting algorithm, convergence in the inexact case is still guaranteed (without a rate) [18],
if the computation of the proximity operator is sufficiently accurate. The convergence of the
inexact accelerated FB-splitting algorithm is studied in [56] where it is shown that the same
convergence rate of the exact case can be achieved, again provided that the accuracy in the
computation of the proximity operator can be suitably controlled. Such a result can be adapted
to our setting to prove the following theorem, as shown in Appendix B.
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Theorem 1. Let εt ∼ t−l with l > 3/2, σ ≥ ‖Ŝ∗Ŝ‖ + τν, η ≥ ‖∇̂∇̂∗‖, and f t given by (29) with
v̄t computed through (30). Define gt =

(
1− τν

σ

)
f̃ t − 1

σ Ŝ
∗
(
Ŝf̃ t − y

)
. If v̄t = vq, for q such that the

following condition is satisfied

2τ

σ
Ω̂D

1 (f t)− 2〈∇̂∗vq, f t〉 ≤ ε2t , (31)

Then there exists a constant C > 0 such that

Êτ (f t)− Êτ (f̂ τ ) ≤ C

t2
,

and thus, if ν > 0,

‖f t − f̂ τ‖H ≤
2

t

√
C

ντ
. (32)

As for the exact accelerated FB-splitting algorithm, the step size of the outer iteration has
to be greater than or equal to L = ‖Ŝ∗Ŝ‖ + τν. In particular, we choose σ = ‖Ŝ∗Ŝ‖ + τν and,
similarly, η = ‖∇̂∇̂∗‖.

We add few remarks. First, as it is evident from (32), the choice of ν > 0 allows to obtain
convergence of f t to f̂ τ with respect to the norm in H, and positively influences the rate of
convergence. This is a crucial property in variable selection, where it is necessary to accurately
estimate the minimizer of the expected risk f †ρ and not only its minimum E(f †ρ). Second, con-
dition (31) represents an implementable stopping criterion for the inner iteration, once that the
representer theorem is proved. Further comments on the stopping rule are given in Section 4.6.
Third, we remark that for proving convergence of the inexact procedure, it is essential that the
specific algorithm proposed to compute the proximal step generates a sequence belonging to
Cn and satisfying (28).

4.6 Further Algorithmic Considerations

We conclude discussing several practical aspects of the proposed method.

The finite dimensional implementation. We start by showing how the representer theorem
can be used, together with the iterations described by (29) and (30), to derive Algorithm 1. This
is summarized in the following proposition.

Proposition. For ν > 0 and f0 = 1
n

∑
i α

0
i kxi + 1

n

∑
i

∑
a β

0
a,i(∂ak)xi for any α0 ∈ Rn, β0 ∈ Rnd,

the solution at step t for the updating rule (29) is given by

f t =
1

n

n∑
i=1

αtikxi +
1

n

n∑
i=1

d∑
a=1

βta,i(∂ak)xi (33)

with αt and βt defined by the updating rules (15-14), where v̄t in (17) can be estimated, starting from
any v0 ∈ Rnd, and using the iterative rule (16).

The proof of the above proposition can be found in Appendix B, and is based on the obser-
vation that K,Za,Z,La defined at the beginning of this Section are the matrices associated to
the operators ŜŜ∗ : Rn → Rn, ŜD̂∗a : Rn → Rn, Ŝ∇̂∗ : Rnd → Rn and D̂a∇̂∗ : Rnd → Rn, respec-
tively. Using the same reasoning we can make the following two further observations. First,
one can compute the step sizes σ and η as σ = ‖K‖+ τν, and η = ‖L‖. Second, since in practice
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we have to define suitable stopping rules, Equations (32) and (28) suggest the following choices
5

‖f t − f t−1‖H ≤ ε(ext) and
2τ

σ
Ω̂D

1 (f t)− 2〈∇̂∗vq, f t〉 ≤ ε(int) .

As a direct consequence of (33) and using the definition of matrices K,Z,L, these quantities can
be easily computed as

‖f t − f t−1‖2H = 〈δα,Kδα〉n + 2〈δα,Zδβ〉n + 〈δβ,Lδβ〉n ,

2τ

σ
Ω̂D

1 (f t)− 2〈∇̂∗vq, f t〉 =

d∑
a=1

‖Zaαt + Laβ
t‖ − 2〈αt,Zvq〉n .

where we defined δα = αt − αt−1 and δβ = βt − βt−1. Also note that, according to Theorem 1,
ε(int) must depend on the outer iteration as ε(int) = εt ∼ t−2l, l > 3/2.

Finally we discuss a criterion for identifying the variables selected by the algorithm.

Selection. Note that in the linear case f(x) = β ·x the coefficients β1, . . . , βd coincide with the
partial derivatives, and the coefficient vector β given by `1 regularization is sparse (in the sense
that it has zero entries), so that it is easy to detect which variables are to be considered relevant.
For a general non-linear function, we then expect the vector (‖D̂af‖2n)da=1 of the norms of the
partial derivatives evaluated on the training set points, to be sparse as well. In practice since
the projection πτ/σBdn is computed only approximately, the norms of the partial derivatives will
be small but typically not zero. The following proposition elaborates on this point.

Proposition. Let v = (va)
d
a=1 ∈ Bd

n such that, for any σ > 0

∇̂∗v = − 1

σ
∇(Ê(f̂ τ ) + τν‖f̂ τ‖2H),

then
‖va‖n <

τ

σ
⇒ ‖D̂af̂

τ‖n = 0. (34)

Moreover, if v̄t is given by Algorithm 1 with the inner iteration stopped when the assumptions of The-
orem 1 are met, then there exists ε̃t > 0 (precisely defined in (40)) depending on the tolerance εt

used in the inner iteration and satisfying limt→0 ε̃
t = 0, such that if m := min{‖D̂af̂

τ‖n : a ∈
{1, . . . , d}s.t.‖D̂af̂

τ‖n > 0}.

‖v̄ta‖n ≥
τ

σ
− (ε̃t)2

2m
⇒ ‖D̂af̂

τ‖n = 0. (35)

The above result, whose proof can be found in Appendix B, is a direct consequence of the
Euler equation for Êτ and of the characterization of the subdifferential of Ω̂D

1 . The second
part of the proof follows by observing that, as ∇̂∗v belongs to the subdifferential of Ω̂D

1 at
f̂ τ ,∇̂∗v̄t belongs to the approximate subdifferential of Ω̂D

1 at f̂ τ , where the approximation of the
subdifferential is controlled by the precision used in evaluating the projection. Given the pair
(f t, v̄t) evaluated via Algorithm 1, we can thus consider to be irrelevant the variables such that
‖v̄ta‖n < τ/σ − (ε̃t)2/(2m). Note that the explicit form of ε̃t is given in (40)).

5In practice we often use a stopping rule where the tolerance is scaled with the current iterate, ‖f t − f t−1‖H ≤
ε(ext)‖f t‖H and 2τ

σ
Ω̂D1 (f t)− 2〈∇̂∗vq, f t〉 ≤ ε(int)‖∇̂∗vq‖H.
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5 Consistency for Learning and Variable Selection

In this section we study the consistency properties of our method.

5.1 Consistency

As we discussed in Section 3.1, though in practice we consider the regularizer Ω̂D
1 defined

in (4), ideally we would be interested into ΩD
1 (f) =

∑d
a=1 ‖Daf‖ρX , f ∈ H. The following

preliminary result shows that indeed Ω̂D
1 is a consistent estimator of ΩD

1 when considering
functions inH having uniformly bounded norm.

Theorem 2. Let r <∞, then under assumption (A2)

lim
n→∞

P

(
sup
‖f‖H≤r

|Ω̂D
1 (f)− ΩD

1 (f)| > ε

)
= 0 ∀ε > 0.

The restriction to functions such that ‖f‖H ≤ r is natural and is required since the penalty
Ω̂D

1 forces the partial derivatives to be zero only on the training set points. To guarantee that
a partial derivative, which is zero on the training set, is also close to zero on the rest of the
input space, we must control the smoothness of the function class where the derivatives are
computed. This motivates constraining the function class by adding the (squared) norm in H
into (5). This is in the same spirit of the manifold regularization proposed in [12].

The above result on the consistency of the derivative based regularizer is at the basis of the
following consistency result.

Theorem 3. Under assumptions A1, A2 and A3, recalling that E(f) =
∫

(y − f(x))2 dρ(x, y),

lim
n→∞

P

(
E(f̂ τn)− inf

f∈H
E(f) ≥ ε

)
= 0 ∀ε > 0,

for any τn satisfying
τn → 0 (

√
nτn)−1 → 0.

The proof is given in the appendix and is based on a sample/approximation error decom-
position

E(f̂ τ )− inf
f∈H
E(f) ≤ |E(f̂ τ )− Eτ (f τ )|︸ ︷︷ ︸

sample error

+ |Eτ (f τ )− inf
f∈H
E(f)|︸ ︷︷ ︸

approximation error

,

where
Eτ (f) := E(f) + 2τΩD

1 (f) + τν‖f‖2H, f τ := argmin
H

Eτ .

The control of both terms allows to find a suitable parameter choice which gives consistency.
When estimating the sample error one has typically to control only the deviation of the empir-
ical risk from its continuos counterpart. Here we need Theorem 2 to also control the deviation
of Ω̂D

1 from ΩD
1 . Note that, if the kernel is universal [51], then inff∈H E(f) = E(fρ) and Theorem

3 gives the universal consistency of the estimator f̂ τn .

To study the selection properties of the estimator f̂ τn– see next section– it useful to study
the distance of f̂ τn to fρ in the H-norm. Since in general fρ might not belong to H, for the sake
of generality here we compare f̂ τn to a minimizer of inff∈H E(f) which we always assume to

17



exist. Since the minimizers might be more then one we further consider a suitable minimal
norm minimizer f †ρ– see below. More precisely given the set

FH := {f ∈ H | E(f) = inf
f∈H
E(f)}

(which we assume to be not empty), we define

f †ρ := argmin
f∈FH

{ΩD
1 (f) + ν‖f‖2H}.

Note that f †ρ is well defined and unique, since ΩD
1 (·) + ν‖·‖2H is strongly convex and E is convex

and lower semi-continuous on H, which implies that FH is closed and convex in H. Then, we
have the following result.

Theorem 4. Under assumptions A1, A2 and A3, we have

lim
n→∞

P
(
‖f̂ τn − f †ρ‖H ≥ ε

)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√
nτ2

n)−1 → 0.

The proof, given in Appendix C, is based on the decomposition in sample error, ‖f̂ τ−f τ‖H,
and approximation error, ‖f τ − f †ρ‖H. To bound the sample error we use recent results [55] that
exploit Attouch-Wets convergence [3, 4, 5] and coercivity of the penalty (ensured by the RKHS
norm) to control the distance between the minimizers f̂ τ , f τ by the distance the minima Êτ (f̂ τ )
and Eτ (f τ ). Convergence of the approximation error is again guaranteed by standard results
in regularization theory [26]. We underline that our result is an asymptotic one, although it
would be interesting to get an explicit learning rate, as we discuss in Section 5.3.

5.2 Selection properties

We next consider the selection properties of our method. Following Equation (3), we start by
giving the definition of relevant/irrelevant variables and sparsity in our context.

Definition 1. We say that a variable a = 1, . . . , d is irrelevant with respect to ρ for a differentiable
function f , if the corresponding partial derivative Daf is zero ρX -almost everywhere, and relevant
otherwise. In other words the set of relevant variables is

Rf := {a ∈ {1, . . . , d} | ‖Daf‖ρX > 0}.

We say that a differentiable function f is sparse if ΩD
0 (f) := |Rf | < d.

The goal of variable selection is to correctly estimate the set of relevant variables, Rρ := R
f†ρ

.
In the following we study how this can be achieved by the empirical set of relevant variables,
R̂τn , defined as

R̂τn := {a ∈ {1, . . . , d}|‖D̂af̂
τn‖n > 0}.

Theorem 5. Under assumptions A1, A2 and A3

lim
n→∞

P
(
Rρ ⊆ R̂τn

)
= 1

for any τn satisfying
τn → 0 (

√
nτ2

n)−1 → 0.
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The above result shows that the proposed regularization scheme is a safe filter for variable
selection, since it does not discard relevant variables, in fact, for a sufficiently large number
of training samples, the set of truly relevant variables, Rρ, is contained with high probability
in the set of relevant variables identified by the algorithm, R̂τn . The proof of the converse
inclusion, giving consistency for variable selection (sometimes called sparsistency), requires
further analysis that we postpone to a future work (see the discussion in the next subsection).

5.3 Learning Rates and Sparsity

The analysis in the previous sections is asymptotic, so it is natural to ask about the finite sam-
ple behavior of the proposed method, and in particular about the implication of the sparsity
assumption. Indeed, for a variety of additive models it is possible to prove that the sample
complexity (the number of samples needed to achieve a given error with a specified probabil-
ity) depends linearly on the sparsity level and in a much milder way to the total number of
variables, e.g. logarithmically [14]. Proving similar results in our setting is considerably more
complex and in this section we discuss the main sources of possible challenges.

Towards this end, it is interesting to contrast the form of our regularizer to that of structured
sparsity penalties for which sparsity results can be derived. Inspecting the proof in Appendix
C, one can see that it possible to define a suitable family of operators Vj , V̂j : H → H, with
j = 1, . . . , d, such that

ΩD
1 (f) =

d∑
j=1

‖Vjf‖H, Ω̂D
1 (f) =

d∑
j=1

‖V̂jf‖H. (36)

The operators (Vj)j are positive and self-adjoint and so are the operators (V̂j)j . The latter can
be shown to be stochastic approximation of the operators (Vj)j , in the sense that the equalities
E[V̂ 2

j ] = V 2
j hold true for all j = 1, . . . , d.

It is interesting to compare the above expression to the one for the group lasso penalty,
where for a given linear model, the coefficients are assumed to be divided in groups, only few of
which are predictive. More precisely, given a collection of groups of indices G = {G1, . . . , Gr},
which forms a partition of the set {1, . . . , p}, and a linear model f(x) = 〈β, x〉Rp , the group lasso
penalty is obtained by considering

ΩGL(β) =
r∑

γ=1

‖β|Gγ‖R|Gγ | ,

where, for each γ, β|Gγ is the |Gγ | dimensional vector obtained restricting a vector β to the
indices in Gγ . If we let Pγ be the orthogonal projection on the subspace of Rd corresponding
Gγ-th group of indices, we have that 〈Pγβ, P ′γβ′〉 = 0 for all γ, γ′ ∈ Γ and β, β′ ∈ Rp, since the
groups form a partition of {1, . . . , p}. Then it is possible to rewrite the group lasso penalty as

ΩGL(β) =
r∑

γ=1

‖Pγβ‖R|Gγ | .

The above idea can be extended to an infinite dimensional setting to obtain multiple kernel
learning (MKL). Let H be a (reproducing kernel) Hilbert space which is the sum of Γ disjoint
(reproducing kernel) Hilbert spaces (Hγ , ‖·‖γ)γ∈Γ, and Pγ : H → Hγ the projections of H onto
Hγ , then MKL is induced by the penalty

ΩMKL(f) =
∑
γ∈Γ

‖Pγf‖γ .
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When compared to our derivative based penalty, see (36), one can notice at least two source
of difficulties:

1. the operators (Vj)j are not projections and no simple relation exists among their ranges,

2. in practice we have only access to the empirical estimates (V̂j)j .

Indeed, structured sparsity model induced by more complex index sets have been consid-
ered, see for example [35], but the penalties are still induced by operators which are orthogo-
nal projections. Interestingly, a class of penalties induced by a (possibly countable) family of
bounded operators V = {Vγ}γ∈Γ– not necessarily projections– has been considered in [41]. This
class of penalties can be written as

Ω(V)(f) = inf{
∑
γ∈Γ

‖fγ‖ | fγ ∈ H,
∑
γ∈Γ

Vγfγ = f}.

It is easy to see that the above penalty does not include the regularizer (36) as a special case.
In conclusion, rewriting our derivative based regularizer as in (36) highlights similarity and

differences with respect to previously studied sparsity methods: indeed many of these methods
are induced by families of operators. On the other hand, typically, the operators are assumed
to satisfy stringent assumptions which do not hold true in our case. Moreover in our case one
would have to overcome the difficulties arising from the random estimation of the operators.
These interesting questions are outside of the scope of this paper, will be the subject of future
work.

6 Empirical Analysis

The content of this section is divided into three parts. First, we describe the choice of tuning
parameters. Second, we study the properties of the proposed method on simulated data un-
der different parameter settings, and third, we compare our method to related regularization
methods for learning and variable selection.

When we refer to our method we always consider a two-step procedure based on variable
selection via Algorithm 1 and regression on the selected variable via (kernel) Regularized Least
Squares (RLS). The kernel used in both steps is the same. Where possible, we applied the same
reweighting procedure to the methods we compared with.

6.1 Choice of tuning parameters

When using Algorithm 1, once the parameters n and ν are fixed, we evaluate the optimal value
of the regularization parameter τ via hold out validation on an independent validation set of
nval = n samples. The choice of the parameter ν, and its influence on the estimator is discussed
in the next section.

Since we use an iterative procedure to compute the solution, the output of our algorithm
will not be sparse in general and a selection criterion is needed. In Subsection 4.6 we discussed
a principled way to select variable using the norm of the coefficients (v̄ta)

d
a=1.

When using MKL, `1 regularization, and RLS we used hold out validation to set the regular-
ization parameters, while for COSSO and HKL we used the choices suggested by the authors.
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6.2 Analysis of Our Method

6.2.1 Role of the smoothness enforcing penalty ν‖·‖2H
From a theoretical stand point we have shown that ν has to be nonzero, in order for the pro-
posed regularization problem (5) to be well-posed. We also mentioned that the combination
of the two penalties Ω̂D

1 and ‖·‖2H ensures that the regularized solution will not depend on
variables that are irrelevant for two different reasons. The first is irrelevance with respect to
the output. The second type of irrelevance is meant in an unsupervised sense. This happens
when one or more variables are (approximately) constant with respect to the marginal distri-
bution ρX , so that the support of the marginal distribution is (approximately) contained in a
coordinate subspace. Here we present two experiments aimed at empirically assessing the role
of the smoothness enforcing penalty ‖·‖2H and of the parameter ν. We first present an experi-
ment where the support of the marginal distribution approximately coincides with a coordinate
subspace x2 = 0. Then we systematically investigate the stabilizing effect of the smoothness
enforcing penalty also when the marginal distribution is not degenerate.

Adaption to the Marginal Distribution We consider a toy problem in 2 dimensions, where
the support of the marginal distribution ρX (x1, x2) approximately coincides with the coordi-
nate subspace x2 = 0. Precisely x1 is uniformly sampled from [−1, 1], whereas x2 is drawn
from a normal distribution x2 ∼ N (0, 0.05). The output labels are drawn from y = (x1)2 + w,
where w is a white noise, sampled from a normal distribution with zero mean and variance 0.1.
Given a training set of n = 20 samples i.i.d. drawn from the above distribution (Figure 3 top-
left), we evaluate the optimal value of the regularization parameter τ via hold out validation
on an independent validation set of nval = n = 20 samples. We repeat the process for ν = 0
and ν = 10. In both cases the reconstruction accuracy on the support of ρX is high, see Figure
3 bottom-right . However, while ν = 10 our method correctly selects the only relevant variable
x1 (Figure 3 bottom-left), when ν = 0 both variables are selected (Figure 3 bottom-center), since
functional Êτ,0 is insensible to errors out of supp(ρX ), and the regularization term τ Ω̂D

1 alone
does not penalizes variations out of supp(ρX ) .

Effect of varying ν Here we empirically investigate the stabilizing effect of the smoothness
enforcing penalty when the marginal distribution is not degenerate. The input variables x =
(x1, . . . , x20) are uniformly drawn from [−1, 1]20. The output labels are i.i.d. drawn from
y = λ

∑4
a=1

∑4
b=a+1 x

axb + w, where w ∼ N (0, 1), and λ is a rescaling factor that determines
the signal to noise ratio to be 15:1. We extract training sets of size n which varies from 40 to
120 with steps of 10. We then apply our method with polynomial kernel of degree p = 4,
letting vary ν in {0.1, 0.2, 0.5, 1, 2, 5, 10, 20}. For fixed n and ν we evaluate the optimal value
of the regularization parameter τ via hold out validation on an independent validation set of
nval = n samples. We measure the selection error as the mean of the false negative rate (fraction
of relevant variables that were not selected) and false positive rate (fraction of irrelevant vari-
ables that were selected). Then, we evaluate the prediction error as the root mean square error
(RMSE) error of the selected model on an independent test set of ntest = 500 samples. Finally
we average over 50 repetitions.

In Figure 4 we display the prediction error, selection error, and computing time, versus n for
different values of ν. Clearly, if ν is too small, both prediction and selection are poor. For ν ≥ 1
the algorithm is quite stable with respect to small variations of ν. However, excessive increase
of the smoothness parameter leads to a decrease in prediction and selection performance. In
terms of computing time, the higher the smoothness parameter the better the performance.
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Figure 3: Effect of the combined regularization Ω̂D
1 (·)+ν‖·‖2H on a toy problem inR2 where the

support of marginal distribution approximately coincides with the coordinate subspace x2 = 0.
The output labels are drawn from y = (x1)2 + w, with w ∼ N (0, 0.1).

Figure 4: Selection error (left), prediction error (center), and computing time (right) versus n
for different values of ν. The points correspond to the mean over the repetitions. The dotted
line represents the white noise standard deviation. In the left figure the curves corresponding
to ν = 5, ν = 10, and ν = 20 are overlapping.
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6.2.2 Varying the model’s parameters

We present 3 sets of experiments where we evaluated the performance of our method (DEN-
OVAS) when varying part of the inputs parameters and leaving the others unchanged. The
parameters we take into account are the following

• n, training set size

• d, input space dimensionality

• |Rρ|, number of relevant variables

• p, size of the hypotheses space, measured as the degree of the polynomial kernel.

In all the following experiments the input variables x = (x1, . . . , xd) are uniformly drawn
from [−1, 1]d. The output labels are computed using a noise-corrupted regression function f
that depends nonlinearly from a set of the input variables, i.e. y = λf(x) + w, where w is a
white noise, sampled from a normal distribution with zero mean and variance 1, and λ is a
rescaling factor that determines the signal to noise ratio. For fixed n, d, and |Rρ| we evaluate
the optimal value of the regularization parameter τ via hold out validation on an independent
validation set of nval = n samples.

Varying n, d, and |Rρ| In this experiment we want to empirically evaluate the effect of the
input space dimensionality, d, and the number of relevant variables, |Rρ|, when the other pa-
rameters are left unchanged. In particular we use d = 10, 20, 30, 40 and |Rρ| = 2, 3, 4, 5, 6. For
each value of |Rρ| we use a different regression function, f(x) = λ

∑|Rρ|
a=1

∑|Rρ|
b=a+1 cabx

axb, so
that for fixed |Rρ| all 2-way interaction terms are present, and the polynomial degree of the
regression function is always 2. The coefficients cab are randomly drawn from [.5, 1] And λ is
determined in order to set the signal to noise ratio as 15:1. We then apply our method with
polynomial kernel of degree p = 2. The regression function thus always belongs to the hy-
potheses space.
In Figure 5, we display the selection error, and the prediction error, respectively, versus n for
different values of d and number of relevant variables |Rρ|. Both errors decrease with n and in-
crease with d and |Rρ|. In order to better visualize the dependance of the selection performance
with respect to d and |Rρ|, in Figure 6 we plotted the minimum number of input points that are
necessary in order to achieve 10% of average selection error. It is clear by visual inspection that
|Rρ| has a higher influence than d on the selection performance of our method.

Varying n and p In this experiment we want to empirically evaluate the effect of the size
of the hypotheses space on the performance of our method. We therefore leave unchanged
the data generation setting, made exception for the number of training samples, and vary the
polynomial kernel degree as p = 1, 2, 3, 4, 5, 6. We let d = 20, Rρ = {1, 2}, and f(x) = x1x2, and
let vary n from 20 to 80 with steps of 5. The signal to noise ratio is 3:1.
In Figure 7, we display the prediction and selection error, versus n, for different values of p. For
p ≥ 2, that is when the hypotheses space contains the regression function, both errors decrease
with n and increase with p. Nevertheless the effect of p decreases for large p, in fact for p = 4, 5,
and 6, the performance is almost the same. On the other hand, when the hypotheses space
is too small to include the regression function, as for the set of linear functions (p = 1), the
selection error coincides with chance (0.5), and the prediction error is very high, even for large
numbers of samples.
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Figure 5: Prediction error (top) and selection error (bottom) versus n for different values of d
and number of relevant variables (|Rρ|). The points correspond to the means over the repeti-
tions. The dotted line represents the white noise standard deviation.

Figure 6: Minimum number of input points (n) necessary to achieve 10% of average selection
error versus the number of relevant variables |Rρ| for different values of d (left), and versus d
for different values of |Rρ| (right).

Varying the number of relevant features, for fixed |Rρ|: comparison with `1 regularization on
the feature space In this experiment we want to empirically evaluate the effect of the number
of features involved in the regression function ( that is the number of monomials constituting
the polynomial) on the performance of our method when |Rρ| remains the same as well as all
other input parameters. Note that while |Rρ| is the number of relevant variables, here we vary
the number of relevant features (not variables!), which, in theory, has nothing to do with |Rρ|.
Furthermore we compare the performance of our method to that of `1 regularization on the
feature space (`1-features). We therefore leave unchanged the data generation setting, made
exception for the regression function. We set d = 10, Rρ = {1, 2, 3}, n = 30, and then use a
polynomial kernel of degree 2. The signal to noise ratio is this time 3:1. Note that with this
setting the size of the features space is 66. For fixed number of relevant features the regression
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Figure 7: Prediction error (left) and selection error (right) versus n for different values of the
polynomial kernel degree (p). The points correspond to the means over the repetitions. The
dotted line represents the white noise standard deviation.

Figure 8: Prediction error (left) selection error (right) versus the number of relevant features.
The points correspond to the means over the repetitions. The dotted line represents the white
noise standard deviation.

function is set to be a randomly chosen linear combination of the features involving one or two
of the first three variables (x1, (x1)2, x1x2, x1x3, etc.), with the constraint that the combination
must be a polynomial of degree 2, involving all 3 variables.
In Figure 8, we display the prediction and selection error, versus the number of relevant fea-
tures. While the performance of `1-features fades when the number of relevant features in-
creases, our method presents stable performance both in terms of selection and prediction er-
ror. From our simulation it appears that, while our method depends on the number of relevant
variables, it is indeed independent of the number of features.

6.3 Comparison with Other Methods

In this section we present numerical experiments aimed at comparing our method with state-
of-the-art algorithms. In particular, since our method is a regularization method, we focus on
alternative regularization approaches to the problem of nonlinear variable selection. For com-
parisons with more general techniques for nonlinear variable selection we refer the interested
reader to [7].

25



6.3.1 Compared algorithms

We consider the following regularization algorithms:

• Additive models with multiple kernels, that is Multiple Kernel Learning (MKL)

• `1 regularization on the feature space associated to a polynomial kernel (`1-features)

• COSSO [38] with 1-way interaction (COSSO1) and 2-way interactions (COSSO2) 6

• Hierarchical Kernel Learning [7] with polynomial (HKL pol.) and hermite (HKL herm.)
kernel

• Regularized Least Squares (RLS).

Note that, differently from the first 4 methods, RLS is not a variable selection algorithm, how-
ever we consider it since it is typically a good benchmark for the prediction error.

For `1-features and MKL we use our own Matlab implementation based on proximal meth-
ods (for details see [43]). For COSSO we used the Matlab code available at www.stat.wisc.
edu/˜yilin or www4.stat.ncsu.edu/˜hzhang which can deal with 1 and 2-way inter-
actions. For HKL we used the code available online at http://www.di.ens.fr/˜fbach/
hkl/index.html. While for MKL and `1-features we are able to identify the set of selected
variables, for COSSO and HKL extracting the sparsity patterns from the available code is not
straightforward. We therefore compute the selection errors only for `1-features, MKL, and our
method .

6.3.2 Synthetic data

We simulated data with d input variables, where each variable is uniformly sampled from [-
2,2]. The output y is a nonlinear function of the first 4 variables, y = f(x1, x2, x3, x4) + ε, where
epsilon is a white noise, ε ∼ N (0, σ2), and σ is chosen so that the signal to noise ratio is 15:1.
We consider the 4 models described in Table 1.

Table 1: Synthetic data design

d
number of

relevant variables
n model (f )

additive p=2 40 4 100 y =
∑4

a=1(xa)2

2way p=2 40 4 100 y =
∑4

a=1

∑4
b=a+1 x

axb

3way p=6 40 3 100 y = (x1x2x3)2

radial 20 2 100 y = 1
π ((x1)2 + (x2)2)e−((x1)2+(x2)2)

For model selection and testing we follow the same protocol described at the beginning of
Section 6, with n = 100, 100 and 1000 for training, validation and testing, respectively. Finally
we average over 20 repetitions. In the first 3 models, for MKL, HKL, RLS and our method we

6In all toy data, and in part of the real data, the following warning message was displayed:
Maximum number of iterations exceeded; increase options.MaxIter.
To continue solving the problem with the current solution as the starting point,
set x0 = x before calling lsqlin.
In those cases the algorithm did not reach convergence in a reasonable amount of time, therefore the error bars
corresponding to COSSO2 were omitted.
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employed the polynomial kernel of degree p, where p is the polynomial degree of the regression
function f . For `1-features we used the polynomial kernel with degree chosen as the minimum
between the polynomial degree of f and 3. This was due to computational reasons, in fact,
with p = 4 and d = 40, the number of features is highly above 100, 000. For the last model, we
used the polynomial kernel of degree 4 for MKL, `1-features and HKL, and the Gaussian kernel
with kernel parameter σ = 2 for RLS and our method 7. COSSO2 never reached convergence.
Results in terms of prediction and selection errors are reported in Figure 9.

Figure 9: Prediction error (top) and fraction of selected variables (bottom) on synthetic data
for the proposed method (DENOVAS), multiple kernel learning for additive models (MKL), `1

regularization on the feature space associated to a polynomial kernel (`1-features), COSSO with
1-way interactions (COSSO1), hierarchical kernel learning with polynomial kernel (HKL pol.),
and regularized least squares (RLS). The dotted line in the upper plot corresponds to the white
noise standard deviation. Selection errors for COSSO, and HKL are not reported because they
are not straightforwardly computable from the available code.

When the regression function is simple (low interaction degree or low polynomial degree)
more tailored algorithms, such as MKL–which is additive by design– for the experiment “ad-
ditive p=2”, or `1-features for experiments “2way p=4” – in this case the dictionary size is less
than 1000–, compare favorably with respect to our method. However, when the nonlinearity
of the regression function favors the use of a large hypotheses space, our method significantly
outperforms the other methods. This is particularly evident in the experiment “radial”, which
was anticipated in Section 3, where we plotted in Figure 2 the regression function and its esti-
mates obtained with the different algorithms for one of the 20 repetitions.

7Note that here we are interested in evaluating the ability of our method of dealing with a general kernel like
the Gaussian kernel, not in the choice of the kernel parameter itself. Nonetheless, a data driven choice for σ will be
presented in the real data experiments in Subsection 6.3.3.
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6.3.3 Real data

We consider the 7 benchmark data sets described in Table 2. We build training and validation

Table 2: Real data sets

number of number of
data name input variables instances source task

boston housing 13 506 LIACC8 regression
census 16 22784 LIACC regression
delta ailerons 5 7129 LIACC regression
stock 10 950 LIACC regression
image segmentation 18 2310 IDA9 classification
pole telecomm 2610 15000 LIACC regression
breast cancer 32 198 UCI 11 regression

sets by randomly drawing ntrain and nval samples, and using the remaining samples for testing.
For the first 6 data sets we let ntrain = nval = 150, whereas for breast cancer data we let ntrain =
nval = 60. We then apply the algorithms described in Subsection 6.3.1. with the validation
protocol described in Section 6. For our method and RLS we used the gaussian kernel with
the kernel parameter σ chosen as the mean over the samples of the euclidean distance form
the 20-th nearest neighbor. Since the other methods cannot be run with the gaussian kernel we
used a polynomial kernel of degree p = 3 for MKL and `1-features. For HKL we used both the
polynomial kernel and the hermite kernel, both with p = 3. Results in terms of prediction and
selection error are reported in Figure 10.
Some of the data, such as the stock data, seem not to be variable selection problem, in fact
the best performance is achieved by our method though selecting (almost) all variables, or,
equivalently by RLS. Our method outperforms all other methods on several data sets. In most
cases, the performance of our method and RLS are similar. Nonetheless our method brings
higher interpretability since it is able to select a smaller subset of relevant variable, while the
estimate provided by RLS depends on all variables.

We also run experiments on the same 7 data sets with different kernel choices for our
method . We consider the polynomial kernel with degree p = 2, 3 and 4, and the gaussian
kernel. Comparisons among the different kernels in terms of prediction and selection accu-
racy are plotted in Figure 11. Interestingly the choice of the gaussian kernel seems to be the
preferable choice in most data sets.

7 Discussion

Sparsity based method has recently emerged as way to perform learning and variable selec-
tion from high dimensional data. So far, compared to other machine learning techniques, this
class of methods suffers from strong modeling assumptions and is in fact limited to paramet-
ric or semi-parametric models (additive models). In this paper we discuss a possible way to
circumvent this shortcoming and exploit sparsity ideas in a non-parametric context.

We propose to use partial derivatives of functions in a RKHS to design a new sparsity
penalty and a corresponding regularization scheme. Using results from the theory of RKHS
and proximal methods we show that the regularized estimator can be provably computed
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Figure 10: Prediction error (top) and fraction of selected variables (center) and computing time (bottom)
on real data for the proposed method (DENOVAS), multiple kernel learning for univariate additive
functions (MKL), `1 regularization on the feature space associated to a polynomial kernel (`1-features),
COSSO with 1-way interactions (COSSO1), hierarchical kernel learning with polynomial kernel (HKL
pol.), hierarchical kernel learning with hermite kernel (HKL herm.) and regularized least squares (RLS).
Prediction errors for COSSO2 are not reported because it is always outperformed by COSSO1. such
errors were still too large to report in the first three data sets, and were not available since the algorithm
did not reach convergence for image segmentation, pole telecomm and breast cancer data. To make
the prediction errors comparable among experiments, root mean squared errors (RMSE) were divided
by the outputs standard deviation, which corresponds to the dotted line. Error bars are the standard
deviations of the normalized RMSE. Though the largest normalized RMSE appear out of the figure
axis, we preferred to display the prediction errors with the current axes limits in order to allow the
reader to appreciate the difference between the smallest, and thus most significant, errors. Selection
errors for COSSO, and HKL are not reported because they are not straightforwardly computable from
the available code. The computing time corresponds to the entire model selection and testing protocol.
Computing time for RLS is not reported because it was always negligible with respect to the other
methods.
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Figure 11: Prediction error (top) and fraction of selected variables (bottom) on real data for our
method with different kernels: polynomial kernel of degree p = 1, 2 and 3 (DENOVAS pol-p),
and Guassian kernel (DENOVAS gauss). Error bars represent the standard deviations. In order
to make the prediction errors comparable among experiments, root mean square errors were
divided by the outputs standard deviation, which corresponds to the dotted line.

through an iterative procedure. The consistency property of the proposed estimator are stud-
ied. Exploiting the non-parametric nature of the method we can prove universal consistency.
Moreover we study selection properties and show that that the proposed regularization scheme
represents a safe filter for variable selection, as it does not discard relevant variables. Exten-
sive simulations on synthetic data demonstrate the prediction and selection properties of the
proposed algorithm. Finally, comparisons to state-of-the-art algorithms for nonlinear variable
selection on toy data as well as on a cohort of benchmark data sets, show that our approach
often leads to better prediction and selection performance.

Our work can be considered as a first step towards understanding the role of sparsity be-
yond additive models. It substantially differs with respect to previous approaches based on
local polinomial regression [37, 13, Miller and Hall(2010)], since it is a regularization scheme
directly performing global variable selection. The RKHSs’ machinery allows on the one hand
to find a computationally efficient algorithmic solution, and on the other hand to consider very
general probability distributions ρ, which are not required to have a positive density with re-
spect to the Lebesgue measure (differently from [20]). Several research directions are yet to be
explored.

• From a theoretical point of view it would be interesting to further analyzing the sparsity
property of the obtained estimator in terms of finite sample estimates for the prediction
and the selection error.
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• From a computational point of view the main question is whether our method can be
scaled to work in very high dimensions. Current computations are limited by memory
constraints. A variety of method for large scale optimization can be considered towards
this end.

• A natural by product of computational improvements would be the possibility of con-
sidering a semi-supervised setting which is naturally suggested by our approach. More
generally we plan to investigate the application of the RKHS representation for differen-
tial operators in unsupervised learning.

• More generally, our study begs the question of whether there are alternative/better ways
to perform learning and variable selection beyond additive models and using non para-
metric models.
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A Derivatives in RKHS and Representer Theorem

Consider L2(X , ρX ) = {f : X → R measurable|
∫
|f(x)|2dρX (x) < ∞} and Rn with inner product

normalized by a factor 1/n, ‖·‖n.
The operator Ik : H → L2(X , ρX ) defined by (Ikf)(x) = 〈f, kx〉H, for almost all x ∈ X , is well-

defined and bounded thanks to assumption A1. The sampling operator (19) can be seen as its empirical
counterpart. Similarly Da : H → L2(X , ρX ) defined by (Daf)(x) = 〈f, (∂ak)x〉, for almost all x ∈ X
and a = 1, . . . d, is well-defined and bounded thanks to assumption A2. The operator (21) can be seen
as its empirical counterpart. Several properties of such operators and related quantities are given by the
following two propositions.

Proposition. If assumptions A1 and A2 are met, the operator Ik and the continuous partial derivative Da are
Hilbert-Schmidt operators fromH to L2(X , ρX ), and

I∗kg(t) =

∫
X
kx(t)g(x)dρX (x), I∗kIkf(t) =

∫
X
kx(t)〈f, kx〉HdρX (x)

D∗ag(t) =

∫
X

(∂ak)x(t)g(x)dρX (x), D∗aDbf(t) =

∫
X

(∂ak)x(t)〈f, (∂bk)x〉HdρX (x)
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Proposition. If assumptions A1 and A2 are met, the sampling operator Ŝ and the empirical partial derivative
D̂a are Hilbert-Schmidt operators fromH to Rn, and

Ŝ∗v =
1

n

n∑
i=1

kxivi, Ŝ∗Ŝf =
1

n

n∑
i=1

kxi〈f, kxi〉H

D̂∗av =
1

n

n∑
i=1

(∂ak)xivi, D̂∗aD̂bf =
1

n

n∑
i=1

(∂ak)xi〈f, (∂bk)xi〉H

where a, b = 1, . . . , d.

The proof can be found in [22] for Ik and Ŝ, where assumption A1 is used. The proof for Da and D̂a

is based on the same tools and on assumption A2. Furthermore, a similar result can be obtained for the
continuous and empirical gradient

∇ : H → (L2(X , ρX ))d, ∇f = (Daf)da=1

∇̂ : H → (Rn)d, ∇̂f = (D̂af)da=1,

which can be shown to be Hilbert-Schmidt operators from H to (L2(X , ρX ))d and from H to (Rn)d, re-
spectively.

We next restate Proposition 4.3 in a slightly more abstract form and give its proof.
Proposition [Proposition 4.3 Extended] The minimizer of (7) satisfies f̂τ ∈ Range(Ŝ∗) + Range(∇̂∗). Hence-
forth it satisfies the following representer theorem

f̂τ = Ŝ∗α+ ∇̂∗β =

n∑
i=1

1

n
αikxi +

n∑
i=1

d∑
a=1

1

n
βa,i(∂ak)xi (37)

with α ∈ Rn and β ∈ Rnd.

Proof. Being Range(Ŝ∗) + Range(∇̂∗) a closed subspace of H, we can write any function f ∈ H as
f = f// + f⊥, where f// ∈ Range(Ŝ∗) + Range(∇̂∗) and 〈f⊥, g〉H for all g ∈ Range(Ŝ∗) + Range(∇̂∗).
Now if we plug the decomposition f = f// + f⊥ in the variational problem (7), we obtain

f̂τ = argmin
f∈H, f=f//+f⊥

{
Ê(f//) + 2τ Ω̂D1 (f//) + τν‖f//‖2H + τν‖f⊥‖2H

}
which is clearly minimized by f⊥ = 0. The second equality in (37) then derives directly from definition
of Ŝ∗ and ∇̂∗.

We conclude with the following example on how to compute derivatives and related quantities for
the Gaussian Kernel.

Example 1. Note that all the terms involved in (33) are explictly computable. As an example we show how to

compute them when k(x, s) = e
− ‖x−s‖

2

2γ2 is the gaussian kernel on Rd. By definition

(∂ak)xi(x) = 〈 ∂k(s, ·)
∂sa

∣∣∣∣
s=xi

, kx〉H.

Given x ∈ X it holds

∂k(s, x)

∂sa
= e
− ‖x−s‖

2

2γ2 ·
(
−s

a − xa

γ2

)
=⇒ (∂ak)xi(x) = e

− ‖x−xi‖
2

2γ2 ·
(
−x

a
i − xa

γ2

)
.
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Moreover, as we mentioned above, the computation of βta,i and αti requires the knowledge of matrices K,Za,Z,La.
Also their entries are easily found starting from the kernel and the training points. We only show how the entries
of Z and La look like. Using the previous computations we immediately get

[Za]i,j = e
−
‖xj−xi‖

2

2γ2 ·
(
−
xai − xaj
γ2

)
.

In order to compute La we need the second partial derivatives of the kernel:

∂k(s, x)

∂xb∂sa
=


−e−

‖x−s‖2

2γ2 · s
a−xa
γ2 · s

b−xb
γ2 if a 6= b

−e−
‖x−s‖2

2γ2 ·
(

(sa−xa)2

γ2 − 1
γ2

)
if a = b.

so that

[La,b]i,j =


−e−

‖xj−xi‖
2

2γ2 · x
a
i−x

a
j

γ2 · x
b
i−x

b
j

γ2 if a 6= b

−e−
‖xj−xi‖

2

2γ2 ·
(

(xai−x
a
j )2

γ2 − 1
γ2

)
if a = b.

B Proofs of Section 4

In this appendix we collect the proofs related to the derivation of the iterative procedure given in Algo-
rithm 1. Theorem 1 is a consequence of the general results about convergence of accelerated and inexact
FB-splitting algorithms in [56]. In that paper it is shown that inexact schemes converge only when the
errors in the computation of the proximity operator are of a suitable type and satisfy a sufficiently fast
decay condition. We first introduce the notion of admissible approximations.

Definition 2. Let ε ≥ 0 and λ > 0. We say that h ∈ H is an approximation of proxλΩ̂D1
(f) with ε-precision

and we write h uε proxλΩ̂D1
(f), if and only if

f − h
λ
∈ ∂ ε2

2λ

Ω̂D1 (h), (38)

where ∂ ε2
2λ

denotes the ε-subdifferential.12

We will need the following results from [56].

Theorem 6. Consider the following inexact version of the accelerated FB-algorithm in (22) with c1,t and c2,t as
in (24)

f t uεt prox τ
σ Ω̂D1

((
I − 1

2σ
∇F

)
(c1,tf

t−1 + c2,tf
t−2)

)
. (39)

Then, if εt ∼ 1/tl with l > 3/2, there exists a constant C > 0 such that

Êτ (f t)− inf Êτ ≤ C

t2
.

Proposition. Suppose that Ω : H → R ∪ {+∞} can be written as Ω = ω ◦ B, where B : H → G is a linear
and bounded operator between Hilbert spaces and ω : G → R ∪ {+∞} is a one-homogeneous function such that
S := ∂ω(0) is bounded. Then for any f ∈ H and any v ∈ S such that

2λω(Bf)− 2〈λB∗v, f〉 ≤ ε2

it holds
f − λB∗v uε proxλΩ(f).

12 Recall that the ε-subdifferential ∂ε of a convex functional Ω : H → R ∪ {+∞} is defined as the set

∂εΩ(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H − ε, ∀g ∈ H}, ∀f ∈ H.
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Proof of Theorem 1. Since the the regularizer Ω̂D1 can be written as a composition of ω ◦ B, with B = ∇̂
and ω : Rd → [0,+∞), ω(v) =

∑d
a=1 ‖va‖n Proposition B applied with λ = τ/σ, ensures that each

sequence of the type ∇̂∗vq which meets the condition (28) generates, via (29), admissible approximations
of prox τ

σ Ω̂D1
. Therefore, if εt is such that εt ∼ 1/tl with l > 3/2, Theorem 6 implies that the inexact version

of the FB-splitting algorithm in (29) shares the 1/t2 convergence rate. Equation (32) directly follows from
the definition of strong convexity,

τν

8
‖f t − f̂τ‖2 ≤ Êτ (f t)/2 + Êτ (f̂τ )/2− Êτ (f t/2 + f̂τ/2) ≤ 1

2
(Êτ (f t)− Êτ (f̂τ ))

Proof of Proposition 4.6. We first show that the matrices K,Za,La defined in (9),(10), and (11), are the ma-
trices associated to the operators ŜŜ∗ : Rn → Rn, ŜD̂∗a : Rn → Rn and D̂a∇̂∗ : Rnd → Rn, respectively.
For K, the proof is trivial and derives directly from the definition of adjoint of Ŝ– see Proposition A. For
Za and Z, from the definition of D̂∗a we have that

(
ŜD̂∗aα

)
i

=
1

n

n∑
j=1

αj(∂ak)xj (xi) =

n∑
j=1

(Za)i,jαj = (Zaα)i,

so that Ŝ∇̂∗β =
∑d
a=1 ŜD̂

∗
a(βa,i)

n
i=1 =

∑d
a=1 Za(βa,i)

n
i=1 = Zβ. For La, we first observe that

〈(∂ak)x, (∂bk)x′〉H =
∂(∂bk)x′(t)

∂ta

∣∣∣∣
t=x

=
∂2k(s, t)

∂ta∂sb

∣∣∣∣
t=x,s=x′

,

so that operator D̂aD̂
∗
b : Rn → Rn is given by

((
D̂aD̂

∗
b

)
v
)
i

= 〈(∂ak)xi , D̂
∗
bv〉H =

1

n

n∑
j=1

〈(∂ak)xi , (∂bk)xj 〉Hvj = (La,b)i,jvj

for i = 1, . . . , n, for all v ∈ Rn. Then, since D̂a∇̂∗β =
∑d
a=1 D̂aD̂

∗
b (βa,i)

n
i=1, we have that La is the matrix

associated to the operator D̂a∇̂∗ : Rnd → Rn, that is

(D̂a∇̂∗β)i =

n∑
j=1

d∑
b=1

(La,b)i,jβb,j ,

for i = 1, . . . , n, for all β ∈ Rnd. To prove equation (33), first note that, as we have done in Proposition
4.3 extended, (33) can be equivalently rewritten as f t = Ŝ∗αt + ∇̂∗βt. We now proceed by induction.
The base case, namely the representation for t = 0 and t = 1, is clear. Then, by the inductive hypothesis
we have that f t−1 = Ŝ∗αt−1 + ∇̂∗βt−1, and f t−2 = Ŝ∗αt−2 + ∇̂∗βt−2 so that f̃ t = Ŝ∗α̃t + ∇̂∗β̃t with α̃t

and β̃t defined by (13) and (14). Therefore, using (22), (29), (25) it follows that f t can be expressed as:

(
I − π τ

σ Cn
)(

Ŝ∗
((

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t + Zβ̃t − y

))
+
(

1− τν

σ

)
∇̂∗β̃t

)
and the proposition is proved, letting α̃t, β̃t and v̄t as in Equations (15), (17) and (26).

For the projection, we first observe that operator D̂aŜ
∗ : Rn → Rn is given by

(D̂aŜ
∗α)i = (〈Ŝ∗α, (∂ak)xi〉H) =

1

n

n∑
j=1

αj(∂ak)xi(xj) =

n∑
j=1

αj(Za)j,i = ZTa α.

Then, we can plug the representation (37) in (30) to obtain (16).
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Proof of Proposition 4.6. Since f̂τ is the unique minimizer of the functional Êτ , it satisfies the Euler equa-
tion for Êτ

0 ∈ ∂(Ê(f̂τ ) + 2τ Ω̂D1 (f̂τ ) + τν‖f̂τ‖2H).

where, for an arbitrary λ > 0, the subdifferential of λΩ̂D1 at f is given by

∂λΩ̂D1 (f) ={∇̂∗v, v=(va)da=1∈(Rn)d | va = λD̂af/‖D̂af‖n if ‖D̂af‖n>0,

and ‖va‖n ≤ λ otherwise,∀a = 1, . . . , d}

Using the above characterization and the fact that Ê + τν‖·‖2H is differentiable, the Euler equation is
equivalent to

∇̂∗v = − 1

2σ
∇(Ê + τν‖·‖2H)(f̂τ ),

for any σ > 0 , and for some v = (va)da=1 ∈ (Rn)d with v = (va)da=1 ∈ (Rn)d such that

va =
τ

σ

D̂af̂
τ

‖D̂af̂τ‖n
if ‖D̂af̂

τ‖n > 0,

va ∈ τ

σ
Bn otherwise.

In order to prove (34), we proceed by contradiction and assume that ‖D̂af̂
τ‖n > 0. This would imply

‖va‖n = τ/σ, which contradicts the assumption, hence ‖D̂af̂
τ‖n = 0.

We now prove (35). First, according to Definition 2 (see also Theorem 4.3 in [56] and [9] for the case
when the proximity operator is evaluated exactly), the algorithm generates by construction sequences
f̃ t and f t such that

f̃ t − f t − 1

2σ
∇F (f̃ t) ∈ 1

2σ
∂σ(εt)22τ Ω̂D1 (f t) =

τ

σ
∂ σ

2τ (εt)2Ω̂D1 (f t).

where ∂ε denotes the ε-subdifferential13. Plugging the definition of f t from (29) in the above equation,
we obtain ∇̂∗v̄t ∈ τ

σ∂ σ
2τ (εt)2Ω̂D1 (f t). Now, we can use a kind of transportation formula [34] for the ε-

subdifferential to find ε̃t such that ∇̂∗v̄t ∈ τ
σ∂ σ

2τ (ε̃t)2Ω̂D1 (fτ ). By definition of ε-subdifferential:

Ω̂D1 (f)− Ω̂D1 (f t) ≥ 〈σ
τ
∇̂∗v̄t, f − f t〉H −

σ

2τ
(εt)2, ∀f ∈ H.

Adding and subtracting Ω̂D1 (f̂τ ) and 〈στ ∇̂
∗vt, f̂τ 〉 to the previous inequality we obtain

Ω̂D1 (f)− Ω̂D1 (f̂τ ) ≥ 〈σ
τ
∇̂∗v̄t, f − f̂τ 〉H −

σ

2τ
(ε̃t)2 ,

with
(ε̃t)2 = (εt)2 +

2τ

σ

(
Ω̂D1 (f t)− Ω̂D1 (f̂τ )

)
+ 〈2∇̂∗v̄t, f t − f̂τ 〉H.

From the previous equation, using (32) we have

(ε̃t)2 = (εt)2 +

√
C

ντ

(
τ

σ

∑
a

√
‖D̂∗aD̂‖+ 1

)
4

t
, (40)

which implies σ
τ ∇̂
∗v̄t ∈ ∂σ(ε̃t)2/2τ Ω̂D1 (f̂τ ). Now, relying on the structure of Ω̂D1 , it is easy to see that

∂εΩ̂
D
1 (f) ⊆ {∇̂∗v, v=(va)da=1∈(Rn)d | ‖va‖n ≥ 1− ε/‖D̂af‖n if ‖D̂af‖n>0}.

Thus, if ‖D̂af̂
τ‖n > 0 we have ‖v̄t‖n ≥ τ

σ (1− (ε̃t)2

2‖D̂af̂τ‖n
).

13 Recall that the ε-subdifferential, ∂ε, of a convex functional Ω : H → R ∪ {+∞} is defined as the set

∂εΩ(f) := {h ∈ H : Ω(g)− Ω(f) ≥ 〈h, g − f〉H − ε, ∀g ∈ H}, ∀f ∈ H.
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C Proofs of Section 5

We start proving the following preliminary probabilistic inequalities.

Lemma 1. For 0 < η1, η2, η3, η4 ≤ 1, n ∈ N, it holds

(1) P
( ∣∣∣‖y‖2n − ∫X×Y y2dρ(x, y)

∣∣∣ ≤ ε(n, η1)
)
≥1−η1 with ε(n, η1)=

2
√

2√
n
M2 log

2

η1
,

(2) P
(
‖Ŝ∗y − I∗kfρ‖H ≤ ε(n, η2)

)
≥1−η2 with ε(n, η2)=

2
√

2√
n
κ1M log

2

η2
,

(3) P
(
‖Ŝ∗Ŝ − I∗kIk‖ ≤ ε(n, η3)

)
≥1−η3 with ε(n, η3)=

2
√

2√
n
κ2

1 log
2

η3
,

(4) P
(
‖D̂∗aD̂a −D∗aDa‖ ≤ ε(n, η4)

)
≥1−η4 with ε(n, η4)=

2
√

2√
n
κ2

2 log
2

η4
.

Proof. From standard concentration inequalities for Hilbert space valued random variables – see for
example [47]– we have that, if ξ is a random variable with values in a Hilbert space H bounded by L
and ξ1, . . . , ξn are n i.i.d. samples, then

‖ 1

n

n∑
i=1

ξi − E(ξ)‖ ≤ ε(n, η) =
2
√

2√
n
L log

2

η

with probability at least 1− η, η ∈ [0, 1]. The proof is a direct application of the above inequalities to the
random variables,

(1) ξ =y2 ξ ∈ R with supzn ‖ξ‖ ≤M
2,

(2) ξ =kxy ξ ∈ H ⊗ R with supzn ‖ξ‖ ≤ κ1M ,
(3) ξ =〈·, kx〉Hkx ξ ∈ HS(H) with supzn ‖ξ‖HS(H) ≤ κ2

1,
(4) ξ =〈·, (∂ak)x〉H(∂ak)x ξ ∈ HS(H) with supzn ‖ξ‖HS(H) ≤ κ2

2.
where HS(H), ‖·‖HS(H) are the space of Hilbert-Schmidt operators on H and the corresponding norm,
respectively (note that in the final bound we upper-bound the operator norm by the Hilbert-Schmidt
norm).

Proofs of the Consistency of the Regularizer. We restate Theorem 2 in an extended form.
Theorem [Theorem 2 Extended] Let r <∞, then under assumption (A2), for any η > 0,

P

(
sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| ≥ rd 2

√
2

(n)1/4
κ2

√
log

2d

η

)
< η. (41)

Consequently

lim
n→∞

P

(
sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| > ε

)
= 0, ∀ε > 0.

Proof. For f ∈ H consider the following chain of inequalities,

|Ω̂D1 (f)− ΩD
1 (f)| ≤

d∑
a=1

∣∣∣‖D̂af‖n − ‖Daf‖ρX
∣∣∣

≤
d∑
a=1

(∣∣∣‖D̂af‖2n − ‖Daf‖2ρX
∣∣∣)1/2

=

d∑
a=1

(∣∣∣〈f, (D̂∗aD̂a −Da
∗Da)f〉H

∣∣∣)1/2

≤
d∑
a=1

‖D̂∗aD̂a −Da
∗Da‖1/2‖f‖H,
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that follows from from |
√
x − √y| ≤

√
|x− y|, the definition of D̂a, Da and basic inequalities. Then,

using d times inequality (d) in Lemma 1 with η/d in place of η4, and taking the supremum on f ∈ H
such that ‖f‖H ≤ r, we have with probability 1− η,

sup
‖f‖H≤r

|Ω̂D1 (f)− ΩD
1 (f)| ≤ rd 2

√
2

(n)1/4
κ2

√
log

2d

η
.

The last statement of the theorem follows easily.

Consistency Proofs. To prove Theorem 3, we need the following lemma.

Lemma 2. Let η ∈ (0, 1]. Under assumptions A1 and A3, we have

sup
‖f‖H≤r

|Ê(f)− E(f)| ≤ 2
√

2√
n

(
κ2

1r
2 + 2κ1Mr +M2

)
log

6

η
,

with probabilty 1− η.

Proof. Recalling the definition of Ik we have that,

E(f) =

∫
X×Y

(Ikf(x)− y)2dρ(x, y)

=

∫
X

(Ikf(x))2dρX (x) +

∫
X×Y

y2dρ(x, y)− 2

∫
X×Y

Ikf(x)ydρ(x, y)

=

∫
X

(Ikf(x))2dρX (x) +

∫
X×Y

y2dρ(x, y)− 2

∫
X
Ikf(x)fρ(x)dρX (x)

= 〈f, I∗kIkf〉H +

∫
X×Y

y2dρ(x, y)− 2〈f, I∗kfρ〉H.

Similarly Ê(f) = 〈f, Ŝ∗Ŝf〉H + ‖y‖2n − 2〈f, Ŝ∗fρ〉H. Then, for all f ∈ H, we have the bound

|Ê(f)− E(f)| ≤ ‖Ŝ∗Ŝ − I∗kIk‖‖f‖2H + 2‖Ŝ∗y − I∗kfρ‖H‖f‖H +

∣∣∣∣‖y‖2n − ∫
X×Y

y2dρ(x, y)

∣∣∣∣
The proof follows applying Lemma 1 with probabilities η1 = η2 = η3 = η/3.

We now prove Theorem 3. We use the following standard result in regularization theory (see for
example [26]) to control the the approximation error.

Proposition. Let τn → 0, be a positive sequence. Then we have that

Eτn(fτn)− inf
f∈H
E(f)→ 0.

Proof of Theorem 3. We recall the standard sample/approximation error decomposition

E(f̂τ )− inf
f∈H
E(f) ≤ |E(f̂τ )− Eτ (fτ )|+ |Eτ (fτ )− inf

f∈H
E(f)| (42)

where Eτ (f) = E(f) + 2τΩD
1 (f) + τν‖f‖2H.

We first consider the sample error. Toward this end, we note that

τν‖f̂τ‖2H ≤ Êτ (f̂τ ) ≤ Êτ (0) = ‖y‖2n =⇒ ‖f̂τ‖H ≤
‖y‖n√
τν
≤ M√

τν
,
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and similarly ‖fτ‖H ≤ (
∫
X y

2dρ)1/2/
√
τν ≤ M√

τν
.

We have the following bound,

E(f̂τ )− Eτ (fτ ) ≤ (E(f̂τ )− Ê(f̂τ )) + Ê(f̂τ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + Êτ (f̂τ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + Êτ (fτ )− Eτ (fτ )

≤ (E(f̂τ )− Ê(f̂τ )) + (Ê(fτ )− E(fτ )) + τ(Ω̂D1 (fτ )− ΩD
1 (fτ ))

≤ 2 sup
‖f‖H≤ M√

τν

|Ê(f)− E(f)|+ τ sup
‖f‖H≤ M√

τν

|Ω̂D1 (f)− ΩD
1 (f)|.

Let η′ ∈ (0, 1]. Using Lemma 2 with probability η = 3η′/(3 +d), and inequality (41) with η = dη′/(3 +d),
and if η′ is sufficiently small we obtain

E(f̂τ )− Eτ (fτ ) ≤ 4
√

2√
n
M2

(
κ2

1

τν
+

2κ1√
τν

+ 1

)
log

6 + 2d

η′
+ τ

2
√

2

(n)1/4
d
M√
τν
κ2

√
log

6 + 2d

η′
.

with probability 1− η′. Furthermore, we have the bound

E(f̂τ )− Eτ (fτ ) ≤ c
(
Mκ2

1

n1/2τν
+
τ1/2dκ2

n1/4
√
ν

)
log

6 + 2d

η′
(43)

where c does not depend on n, τ, ν, d. The proof follows, if we plug (43) in (42) and take τ = τn such
that τn → 0 and (τn

√
n)−1 → 0, since the approximation error goes to zero (using Proposition C) and

the sample error goes to zero in probability as n→∞ by (43).

We next consider convergence in the RKHS norm. The following result on the convergence of the
approximation error is standard [26].

Proposition. Let τn → 0, be a positive sequence. Then we have that

‖f†ρ − fτn‖H → 0.

We can now prove Theorem 4. The main difficulty is to control the sample error in the H-norm. This
requires showing that controlling the distance between the minima of two functionals, we can control
the distance between their minimizers. Towards this end it is critical to use the results in [55] based on
Attouch-Wetts convergence. We need to recall some useful quantities. Given two subsets A and B in a
metric space (H, d), the excess of A on B is defined as e(A,B) := supf∈A d(f,B), with the convention
that e(∅, B) = 0 for every B. Localizing the definition of the excess we get the quantity er(A,B) :
e(A ∩ B(0, r), B) for each ball B(0, r) of radius r centered at the origin. The r-epi-distance between two
subsets A and B ofH, is denoted by dr(A,B) and is defined as

dr(A,B) := max{er(A,B), er(B,A)}.

The notion of epi-distance can be extended to any two functionals F,G : H → R by

dr(G,F ) := dr(epi(G), epi(F )),

where for any F : H → R, epi(F) denotes the epigraph of F defined as

epi(F ) := {(f, α), F (f) ≤ α}.

We are now ready to prove Theorem 4, which we present here in an extended form.
Theorem [Theorem 4 Extended] Under assumptions A1, A2 and A3,

P
(
‖f̂τ − f†ρ‖H ≥ A(n, τ)1/2 + ‖fτ − f†ρ‖H,

)
< η (44)
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where

A(n, τ) = 4
√

2M

(
4κ2

1M√
nτ2ν2

+
4κ1√
nτν
√
τν

+
1√
nτν

+
2dκ2

n1/4ν
√
τν

)
for 0 < η ≤ 1. Moreover,

lim
n→∞

P
(
‖f̂τn − f†ρ‖H ≥ ε

)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√
nτ2
n)−1 → 0.

Proof of Theorem 4. We consider the decomposition of ‖f̂τ − f†ρ‖H into a sample and approximation
term,

‖f̂τ − f†ρ‖H ≤ ‖f̂τ − fτ‖H + ‖fτ − f†ρ‖H. (45)

From Theorem 2.6 in [55] we have that

ψ�τν(‖f̂τ − fτ‖H) ≤ 4dM/
√
τν(tEτEτ , tEτ Êτ )

where ψ�τν(t) := inf{ τν2 s
2 + |t− s| : s ∈ [0,+∞)}, and tEτ is the translation map defined as

tEτG(f) = G(f + fτ )− Eτ (fτ )

for all G : H → R.
From Theorem 2.7 in [55], we have that

dM/
√
τν(tEτEτ , tEτ Êτ ) ≤ sup

‖f‖H≤M/
√
τν

|tEτEτ (f)− tEτ Êτ (f)|.

We have the bound,

sup
‖f‖H≤M/

√
τν

|tEτEτ (f)− tEτ Êτ (f)| ≤ sup
‖f‖H≤M/

√
τν+‖fτ‖H

|Eτ (f)− Êτ (f)|

≤ sup
‖f‖H≤2M/

√
τν

|E(f)− Ê(f)|+ τ sup
‖f‖H≤2M/

√
τν

|ΩD
1 (f)− Ω̂D1 (f)|.

Using Theorem 2 (equation (41)) and Lemma 2 we obtain with probability 1− η′, if η′ is small enough,

dM/
√
τν(tEτEτ , tEτ Êτ ) ≤ 2

√
2√
n

(
κ2

1

4M2

τν
+ 4κ1

M2

√
τν

+M2

)
log

6 + 2d

η′
+ τ

2M√
τν
d

2
√

2

n1/4
κ2

√
log

6 + 2d

η′

≤ 2
√

2M

(
4κ2

1M√
nτν

+
4κ1M√
n
√
τν

+
M√
n

+ τ
2dκ2

n1/4
√
τν

)
log

6 + 2d

η′
. (46)

From the definition of ψ�τν it is possible to see that we can write explicitly (ψ�τν)−1 as

(ψ�τν)−1(y) =

{√
2y
τν if y < 1

2τν

y + 1
2τ otherwise.

Since τ = τn → 0 by assumption, for sufficiently large n, the bound in (46) is smaller than 1/2τν, and
we obtain that with probability 1− η′,

‖f̂τ − fτ‖H ≤
(

4
√

2M

(
4κ2

1M√
nτ2ν2

+
4κ1√
nτν
√
τν

+
1√
nτν

+
2dκ2

n1/4ν
√
τν

))1/2
√

log
6 + 2d

η′
. (47)

If we now plug (47) in (45) we obtain the first part of the proof. The rest of the proof follows by taking
the limit n → ∞, and by observing that, if one chooses τ = τn such that τn → 0 and (τ2

n

√
n)−1 → 0, the

assumption of Proposition C is satisfied and the bound in (47) goes to 0, so that the limit of the sum of
the sample and approximation terms goes to 0.
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Proofs of the Selection properties. In order to prove our main selection result, we will need the
following lemma.

Lemma 3. Under assumptions A1, A2 and A3 and defining A(n, τ) as in Theorem 4 extended, we have, for all
a = 1, . . . , d and for all ε > 0,

P
( ∣∣∣‖D̂af̂

τ‖2n − ‖Daf
†
ρ‖2ρX

∣∣∣ ≥ ε) < (6 + 2d)exp

(
−ε− b(τ)

a(n, τ)

)
,

where a(n, τ) = 2 max{ 2
√

2M2κ2
2√

nτν
, 2κ2

2A(n, τ)} and limτ→0 b(τ) = 0.

Proof. We have the following set of inequalities∣∣∣‖D̂af̂
τ‖2n − ‖Daf

†
ρ‖2ρX

∣∣∣ = |〈f̂τ , D̂∗aD̂af̂
τ 〉H − 〈f†ρ , D∗aDaf

†
ρ〉H+

〈f̂τ , D∗aDaf̂
τ 〉H − 〈f̂τ , D∗aDaf̂

τ 〉H+

〈f†ρ , D∗aDaf̂
τ 〉H − 〈f†ρ , D∗aDaf̂

τ 〉H|

=
∣∣∣〈f̂τ , (D̂∗aD̂a −D∗aDa)f̂τ 〉H + 〈f̂τ − f†ρ , D∗aDa(f̂τ − f†ρ)〉H

∣∣∣
≤ ‖D̂∗aD̂a −D∗aDa‖

M2

τν
+ κ2

2‖f̂τ − f†ρ‖2H

≤ ‖D̂∗aD̂a −D∗aDa‖
M2

τν
+ 2κ2

2‖f̂τ − fτ‖2H + 2κ2
2‖fτ − f†ρ‖2H.

Using Theorem 4 extended, equation (47), and Lemma 1 with probability η4 = η/(3 + d), we obtain
with probability 1− η∣∣∣‖D̂af̂

τ‖2n − ‖Daf
†
ρ‖2ρX

∣∣∣ ≤ 2
√

2M2κ2
2√

nτν
log

6 + 2d

η
+ 2κ2

2A(n, τ) log
6 + 2d

η
+ 2κ2

2‖fτ − f†ρ‖2H.

We can further write ∣∣∣‖D̂af̂
τ‖2n − ‖Daf

†
ρ‖2ρX

∣∣∣ ≤ a(n, τ) log
6 + 2d

η
+ b(τ),

where a(n, τ) = 2 max{ 2
√

2M2κ2
2√

nτν
, 2κ2

2A(n, τ)} and limτ→0 b(τ) = 0 according to Proposition C. The proof
follows by writing ε = a(n, τ) log 6+2d

η + b(τ) and inverting it with respect to η.

Finally we can prove Theorem 5.

Proof of Theorem 5. We have

P
(
Rρ ⊆ R̂τ

)
= 1− P

(
Rρ 6⊆ R̂τ

)
= 1− P

 ⋃
a∈Rρ

{a /∈ R̂τ}

 ≥ 1−
∑
a∈Rρ

P
(
a /∈ R̂τ

)

Let us now estimate P
(
a /∈ R̂τ

)
or equivalently P

(
a ∈ R̂τ

)
= P

(
‖D̂af̂

τ‖2n > 0
)

, for a ∈ Rρ. Let

C < mina∈Rρ ‖Daf
†
ρ‖2ρX . From Lemma 3, there exist a(n, τ) and b(τ) satisfying limτ→0 b(τ) = 0, such

that ∣∣∣‖Daf
†
ρ‖2ρX − ‖D̂af̂

τ‖2n
∣∣∣ ≤ ε

with probability 1− (6 + 2d)exp
(
− ε−b(τ)
a(n,τ)

)
, for all a = 1, . . . , d. Therefore, for ε = C, for a ∈ Rρ, it holds

‖D̂af̂
τ‖2n ≥ ‖Daf

†
ρ‖2ρX − C  0.
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with probability 1− (6 + 2d)exp
(
−C−b(τ)

a(n,τ)

)
. We than have

P
(
a ∈ R̂τ

)
= P

(
‖D̂af̂

τ‖2n > 0
)
≥ 1− (6 + 2d)exp

(
−C − b(τ)

a(n, τ)

)
,

so that P
(
a /∈ R̂τ

)
≤ (6 + 2d)exp

(
−C−b(τ)

a(n,τ)

)
. Finally, if we let τ = τn satisfying the assumption, we

have limn b(τn)→ 0, limn a(n, τn)→ 0, so that

lim
n→∞

P
(
Rρ ⊆ R̂τn

)
≥ lim

n→∞

[
1− |Rρ|(6 + 2d)exp

(
−C − c(τn)

a(n, τn)

)]
= 1− |Rρ|(6 + 2d) lim

n→∞
exp

(
−C − b(τn)

a(n, τn)

)
= 1.
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[34] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms: Part I: Funda-
mentals. Springer, Berlin, 1993.

[35] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictio-
nary learning. In Proceeding of ICML 2010, 2010.

[36] V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Ann. Statist., 38(6):3660–3695,
2010.

[37] J. Lafferty and L. Wasserman. Rodeo: Sparse, greedy nonparametric regression. Annals of Statistics,
36(1):28–63, 2008.

[38] Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric re-
gression. Annals of Statistics, 34:2272, 2006.

42



[39] I. Loris. On the performance of algorithms for the minimization of l1-penalized functionals. Inverse
Problems, 25(3):035008, 16, 2009.

[40] I. Loris, M. Bertero, C. De Mol, R. Zanella, and L. Zanni. Accelerating gradient projection methods
for l1-constrained signal recovery by steplength selection rules. Appl. Comput. Harmon. Anal., 27(2):
247–254, 2009. ISSN 1063-5203. doi: 10.1016/j.acha.2009.02.003. URL http://dx.doi.org/10.
1016/j.acha.2009.02.003.

[41] A. Maurer and M. Pontil. Structured sparsity and generalization. JMLR, 13:671–690, 2012.

[Miller and Hall(2010)] H. Miller and P. Hall. Local polynomial regression and variable selection. In
Borrowing strength: theory powering applications—a Festschrift for Lawrence D. Brown, volume 6 of Inst.
Math. Stat. Collect., pages 216–233. Inst. Math. Statist., 2010.
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Table 3: List of symbols and notations

Spaces and distribu-
tions

X ⊆ Rd input space

Y ⊆ R output space

ρ probability distribution on X × Y

ρX marginal distribution of ρ

L2(X , ρX ) {f : X → R : measurable and s.t.
∫
X f(x)2 dρX (x) < +∞}

H RKHS ⊆ {f : X → Y}

Norms and scalar
products

‖·‖n and 〈·, ·〉n 1√
n
· euclidean norm and scalar product

‖·‖ρX and 〈·, ·〉ρX norm and scalar product in L2(X , ρX )

‖·‖H and 〈·, ·〉H norm and scalar product inH

Functionals and Op-
erators

ΩD
1 : H → [0,+∞) ΩD

1 (f) =
d∑
a=1

√∫
X

(
∂f(x)
∂xa

dρX (x)
)2

Ω̂D1 : H → [0,+∞) Ω̂D1 (f) =
d∑
a=1

√
1
n

n∑
i=1

(
∂f(xi)
∂xa

)2
E : H → [0,+∞) E(f) =

∫
X (f(x)− y)2 dρ(x, y)

Eτ : H → [0,+∞) Eτ (f) =
∫
X (f(x)− y)2 dρ(x, y) + τ(2ΩD

1 (f) + ν‖f‖2H)

Ê : H → [0,+∞) Ê(f) =
n∑
i=1

1
n

(f(xi)− yi)2

Êτ : H → [0,+∞) Êτ (f) =
n∑
i=1

1
n

(f(xi)− yi)2 + τ(2Ω̂D1 (f) + ν‖f‖2H)

Ik : H → L2(X , ρX ) (Ikf)(x) = 〈f, kx〉H

Ŝ : H → Rn Ŝf = (f(x1), . . . , f(xn))

Da : H → L2(X , ρX ) (Daf)(x) = 〈f, (∂ak)x〉

D̂a : H → Rn D̂a(f) =
(
∂f
∂xa

(x1), . . . , ∂f
∂xa

(xn)
)

∇ :H→(L2(X , ρX ))d ∇f = (Daf)da=1

∇̂ : H → (Rn)d ∇̂f = (D̂af)da=1

Functions

kx : X → R t 7→ k(x, t)

f†ρ argminf∈argmin E{ΩD1 (f) + ν‖f‖2H}

(∂ak)x : X → R t 7→ ∂k(s,t)
∂sa

∣∣∣
s=x

fτ the minimizer inH of Eτ

f̂τ the minimizer inH of Êτ

Sets

Rρ {a ∈ {1, . . . d} :
∂f†ρ
∂xa
6= 0}

R̂τ {a ∈ {1, . . . d} : ∂fτ

∂xa
6= 0}

Bn {v ∈ Rn : ‖v‖n ≤ 1}

Bdn {v ∈ Rn : ‖v‖n ≤ 1}d
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