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Abstract

Approximate Bayes Computations (ABC) are used for parameter inference when the
likelihood function is expensive to evaluate but relatively cheap to sample from. In ABC,
a population of particles in the product space of outputs and parameters is propagated
in such a way that its output marginal approaches a delta function at the measured
output and its parameter marginal approaches the posterior distribution. Inspired by
simulated annealing, we present a new class of particle algorithms for ABC, based on a
sequence of Metropolis kernels, associated with a decreasing sequence of tolerances w.r.t.
the measured output. Unlike other algorithms, our class of algorithms is not based on
importance sampling. Hence, it does not suffer from a loss of effective sample size due to
re-sampling. We prove convergence under a condition on the speed at which the tolerance
is decreased. Furthermore, we present a scheme that adapts the tolerance according to
the mean and the standard deviation of the distance of the particles from the measured
output, and the jump distribution in parameter space according to the covariance of the
population. These adaptations can be interpreted as mean-field interactions between the
particles. Thus, the statistical independence of the particles is preserved, in the limit of
infinite sample size. The performance of this new class of algorithms is investigated with
a toy example, for which we have an analytical solution.

1 Introduction

One way of implementing parameter inference in the Bayesian framework is to generate sam-
ples from the posterior distribution

f(y16)f(0)
fly)

where f(0) denotes the prior distribution encoding our knowledge about the parameter vector
0 before the experiment and f(y|@) is the likelihood function, that is, the probability density
of outputs given the parameter vector 8, evaluated at the measurement vector y. Numeri-
cal methods such as the Metropolis algorithm [§] require many evaluations of the likelihood
function to generate such a sample. However, for complex stochastic models, the likelihood
function is often prohibitively expensive to evaluate. Therefore, in recent years, algorithms
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have been suggested that generate samples from by sampling from the likelihood rather
than calculating its value.

As far as we know, the origin of these algorithms is to be found in population genetics.
Tavaré et al. [10] replaced the output of a genetic model by a summary statistic and adopted
a rejection technique to generate samples from the posterior. Weiss et al. [12] extended this
method sampling a vector of summary statistics and introducing a tolerance for its distance
from the observed summary statistics. Thus, their algorithm generates samples from an
approximate posterior. Algorithms that generate samples from an approximate posterior via
sampling outputs from the likelihood are nowadays called Approximate Bayes Computations
(ABC). Marjoram et al. [7] used Markov chains to produce samples from an approximate
posterior. Their algorithm combines a random walk in parameter space with drawing from the
likelihood and an acceptance /rejection step that accounts for the prior and only accepts moves
into an e ball around the target y. However, a small static tolerance leads to a high rejection
rate. Therefore, Toni et al. [11] suggested using a decreasing sequence of tolerances and letting
a population of particles of constant size N evolve towards an approximate posterior. Their
algorithm consists of an iteration of importance sampling steps, where each iteration consists
of drawing a new population from the old one with weights and subsequent re-weighting. This
re-weighting leads to a loss of effective sample size at each iteration step and, furthermore,
computational costs of the order O(N?). An adaptive version of Toni’s algorithm, which uses
the empirical variances of the population to adapt the jump distribution in parameter space,
was presented by Beaumont [3]. All of the mentioned algorithms generate samples from the
probability distribution proportional to f(0)f(x|8)x(e — p(x,y)), where p is some metric on
the output space and x denotes the Heaviside function whose value is unity if its argument
is non-negative and 0 otherwise.

In this paper, we present a new class of (adaptive) population algorithms that are of
order O(N) and do not suffer from a loss of effective sample size. The idea is to start with a
population of particles drawn from an arbitrary distribution (e.g. the prior) in the product
space of parameters and outputs and apply a sequence of Markov kernels, (I, ), each of which
having
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as equilibrium distribution. A choice for P, which does not require evaluation of f(x|6) for
simulation is given in . The key question is then how fast we should decrease ¢ in order
to have a fast convergence and at the same time not to acquire an additional bias due to a
too fast convergence. We will give a convergence proof for a schedule that satisfies
€ > const k=™

where n is the dimension of the output space and « is defined in . Furthermore, we will
present an adaptive schedule that attempts to stay close to equilibrium, at all times. Both
the jump distribution in parameter space and the tolerance € are adapted using the empirical
covariance of the population in parameter space and both the average and standard deviation
of the distance from the target, respectively. The adaptation of € we suggest was developed
for simulated annealing and motivated from thermodynamics [9]. It is a heuristic scheme,
for which there is no convergence proof, yet. The adaptation can be interpreted as a mean-
field interaction between the particles. As a consequence, the particles remain statistically
independent, in the limit of an infinite sample size.



The tolerance € that can be achieved in reasonable time is limited by the dimension of the
output space. This deficiency is inherent to all ABC algorithms simply because drawing an
output from an e-ball around y scales like €’*. Methods to reduce this bias are investigated
elsewhere (see, e.g., Leuenberger et al. [6]).

The paper is organized as follows: In Subsect. we explain the main idea behind our
class of algorithms. In Subsect. the explicit scheme together with a convergence proof is
given. The adaptive scheme is developed in Subsect. at the end of which a version of it
is provided in pseudo-code for convenience. In Sect. a comparison with the Metropolis
algorithm and population algorithms that are based on importance sampling is made. Sect.
contains an application to a toy model, for which the posterior is available analytically.

2 A new class of ABC algorithms

2.1 Basic idea

Our aim is to sample from the posterior distribution , without evaluating the likelihood
function. The basic idea of ABC is to rewrite as the marginalization

Fpost (1) / £(x18)£(8)3(x — y)dx (2)

and sample from the joint density f(x|0)f(0)d(x—y) in the (8, x)-space, © x X. If the output
space has a high cardinality or is continuous, sampling from f(x|0)f(8)0(x — y) becomes
inefficient or impossible, respectively. In these cases, we approximate it by the following
family of distributions
1 — €

7e(0,%) = %f(XI9)f(9)€ pLye, (3)
where p(x,y) measures how close x is to the observation y. For simplicity, we set X = R"
and

1 n
p(X,Y) :aZ|xi_yi|a7 (4)
i=1

for some a > 0, but our results could easily be extended to more general manifolds equipped
with distance measures obeying suitable regularity conditions. This might become necessary,
if summary statistics are used to map the output space to some smaller-dimensional manifold
(see, e.g., [10], [12]).

Under the assumption that f(x|@) is uniformly bounded and, as a function of x, continu-
ous at y, m. converges weakly to f(x(0)f(0)d(x — y)dfdx, for € \, 0. Our idea is to choose a
family of Markov transition kernels (P:) on the space © x X, which have 7. as stationary dis-
tribution and apply them recursively on members of a sample drawn from an arbitrary initial
distribution, for a decreasing sequence of €’s. If € is decreased sufficiently slowly, we expect
to end up with an approximate sample from the posterior distribution. This is analogous to
the simulated annealing algorithm, although in simulated annealing the limiting distribution
is usually concentrated on a finite set. Still, we will strongly rely on ideas developed in the
context of simulated annealing. The transition kernels (P.) that we will use are defined by
the transition densities

(5)
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combined with a multiple of a Dirac delta distribution at (6’,x") such that P.((8',x"),0x X) =
1. Here, k is a symmetric transition density on ©. It is straightforward to check that =, is
the equilibrium distribution for P,.

The main question now is how fast € should be decreased. Obviously, an arbitrarily slow
decrease of € allows to stay arbitrarily close to equilibrium at all times, which guarantees
convergence. However, this is clearly inefficient. On the other hand, a decrease that is much
faster than the relaxation velocity of the transition kernel may result in slow convergence
(because the acceptance probability decreases for decreasing €) or convergence to a biased
result. A bias can be the result of the process not having enough time to explore the ©
space while converging in the X space. For instance if we set ¢ = 0, (0,x) is accepted iff
p(x,y) < p(«’,y). Hence in this case, the prior has no influence, which leads to convergence
to a biased result.

In the next subsection we will present an explicit schedule (ex) that ensures convergence
to an unbiased result. A potentially better performance can be achieved when the state of
the system is used to adapt the tolerance € and the jump distribution k. This idea will be
developed in Subsect.

2.2 An explicit scheme with convergence proof

In this subsection, we use a time discrete description. That is, we start with a sample from
an arbitrary distribution pg and then recursively make transitions of the whole sample with
the kernel P, , for an explicitly given decreasing sequence €, \, 0. In this way, we generate
samples distributed according to

Hi+1 = ,Ukpek_H = /P€k+1 (07x; ‘)dﬂk(07x)' (6)

We expect that for a suitable choice of (ex), ux, will converge weakly to f(x|0) f(0)0(x—y)dOdx,
and thus in particular the marginal will converge weakly to the posterior distribution (|1)).
In order to ease the notation we set z = (87, x7)” and write, for the joint prior,

f(2) = [f(x10)1(8).

Furthermore, w.l.o.g. we will assume y = 0 and replace p(x,y) by p(x). For our main result,
we make the following assumptions about the parameter space © and the functions k(6’,6),
f(8) and f(x|@) thereon:

(A1) 3c; > 1 such that ¢;' < f(8)/£(8") < c1, for all 6,8’ € ©.
(A2) Feo > 0 such that k(6',0) > cof(0), for all 6,0" € ©.
A3)

(A3) f(x|@) is continuously differentiable w.r.t. x for all 8, and the function and all partial
derivatives are bounded uniformly in x and 6.

These conditions essentially restrict the parameter space to be compact. We will in fact
prove stronger than weak-convergence results, namely convergence in total variation of the
distributions of (8, 6;1/ “x), with a as defined in . The densities of these scaled distributions

are )
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and
A n/o (03 1 (07
7e(0,%) := €/ (0, /%) = C(el/a)f(el/ x|0) f(6) exp(—p(x))

where
C(E) = [ £(6H/°x16)1(0) exp(—p(x))dz.
and the transition densities for the scaled variables are
Qe (2,2) = 1°.((8, /%), (0, /X))
Theorem 2.1. If the assumptions (A1) — (A3) above are satisfied and if
ex > const k™ (7)

for an arbitrary constant (where n denotes the dimension of X and « is defined by ),
then, for any absolutely continuous initial distribution fig the distribution i converges in
total variation to T(z) X fpost(0]0) exp(—p(x)), for k — oco.

Proof: We will apply corollary (2.34) in [5]. We start by introducing some notation. Let

A

T = Tep, ph=2PFP,, Pst=DPsPsi1...P,

where P. is defined by the transition density ge.
By assumption (A3) and dominated convergence,

__ f(06)f(6) exp(=p(x))
J 1(016)f(6)d8 [ exp(—p(x))dx

pointwise and thus by Scheffé’s theorem also in L!-norm, that is in total variation. In order
to deduce

(6, %) — 70(0,x)

|| fi0Po:t — #o||7v — 0,

we have to verify conditions (2.31) and (2.33) in [5]. These conditions are

[TetPn) =0, (8)
k

where
c(Py) = sup||Pr(z,.) — Pu(Z, )|1v,
z,z’
and
> k1 — Frllrv < oo (9)
k

Replacing !/

A

for ¢(P,) we use

by €, we may set, without loss of generality, a = 1. To get an upper bound

A~

c(P.) = sup (1 — /min(de(z’,z),(je(z”,z))dz) )
By (A1) and (A2), for any 7/,

ic(7,2) > e”ﬁ—jf<9>f<ex|o> exp(—p(x)) -



Hence we obtain

/min((je(z', z),Gc(2",2))dz > 6”?0(6).
1

Because C(e) — C(0) > 0 as ¢ — 0, it follows that, for e sufficiently small e,
5 c2 C(0)
P)<1- ", 10
Py <1- 250 (10)

and holds for the choice .
In order to show @, we start with

\7e(2) — 7o ()] < |f(ex|0) — f(E/Xg()!)fw) exp(—p(x)) Y (Z)|C(€’)C(_€)C(€)| '

By (A3) and the intermediate value theorem, we obtain that
|f(ex16) — f(e'x16)| < const |[x][1]e — €

and, moreover, that C(e) is differentiable with

IC()] < const / 1/ 1 exp(—p(x))dx,

where const is the bound for the partial derivatives of f(.|@). Hence we find that

const

Te — < /= — —€].
= rellry < G [ Ixlhesp(—px)dx|e—¢]

Therefore @D holds for any sequence (e) which converges monotonically to zero.

2.3 An adaptive scheme

In this subsection, we adopt an optimal adaptive cooling strategy that has been developed for
simulated annealing [9]. It is naturally expressed in the language of thermodynamics using
a continuous time description. We propagate a distribution, u(z,t), with , which is now
interpreted as a transition rate and whose tolerance € is time-dependent. Then, the time
dependence of p(z,t) is described by the master equation (or Kolmogorov forward equation)

(0 = [ (e Dagy (2.2) = n(z. a2 (1)

Now, the idea is to decrease €(t) adaptively in such a way that u(z,t) stays close to the target
distribution

m(z,t) = 27 (e(t)) f (x]0) f(8)e POV, (12)

at all times, while minimizing the number of computer iterations needed to reach a given
final state. Thus, €(¢) will be dependent on u(t) and the master equation will become
non-linear. As a measure for the number of computer iterations, the total entropy production
is used. We introduce the notation p(7) for the mean distance to y under distribution 7, i.e.,
we set

p(r(t)) = / p(x,y)(z, t)dz,
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and, analogously, for p(u(t)). It can be shown that (see, e.g., [2]), as long as the difference
p(u(t)) — p(m(t)) is relatively small, minimal entropy production is approximately satisfied if
e(t) satisfies the differential equation

de(t) _ ve(t)
dt VO(Bn(t)

where v is constant and relatively small. In (13, C(t) is the derivative of the mean particle
distance from y w.r.t. €, i.e.,

(13)

de(t)
If p is interpreted as an energy and € as a temperature then C(t) can be interpreted as a heat
capacity. Furthermore, n(t) is a relazation time, namely the time the system’s mean energy
would take to reach the target’s mean energy at current velocity. That is,

cio) - ) )

plx(t) = plu()
0= dpw@y "

In terms of natural time units defined by 7(t) and rescaling energy with o(r(t)) (see (17)),
the tuning parameter v can be interpreted as a thermodynamic speed. In accordance with [9],
we shall refer to the algorithm presented here as the constant thermodynamic speed (CTS)
algorithm. Using eqn. ([12))

o (r
C(t) = 6(2(3)) (16)
where
o?(n(t)) = /(P(XaY) — p(n(t)))*n(z,t)dz, (17)
and using

(18)
eqn. can be expressed as
p(m(t)) = p(u(t)) —vo(r(t)), (19)

that is, the equilibrium mean energy is kept a constant multiple of the equilibrium standard
deviation below the current system’s mean energy. Assuming that o(u(t)) doesn’t vary a lot
we approximate o(7(t)) by o(u(t)). Using we can then determine the time dependence
of p(m(t)) from p(t). The time dependence of €(t) is then derived from and (18):

de(t) _ () dp(r(t)) (1) dp(x(t))
t

it 2@ At o2(ul)  dt (20)

Additionally to the adaptation of € we may also adapt the jump distribution k. We suggest

to use a Gaussian distribution whose covariance is adapted to the covariance, ¥, of u(t) w.r.t.
© space, according to

k=pX+sl. (21)

The small multiple of the identity in eq. is added to prevent the process from degener-
ating, and (8 is a tuning parameter of the algorithm.



In order to initialize the algorithm, we draw a population from , for a relatively
large € = €, using a rejection technique, i.e., we draw particles (6,x) from f(8)f(x|@) and
accept them with probability e PxY)/eo In order to stay as close as possible to the time
continuous process defined by we should update a single particle (randomly chosen from
the population) at a time according to and update the mean fields p(u(t)), o(u(t)) and
Y (u(t)) after each update, which can be done using recursion relations as shown in egs.

through .

There is always a small fraction of particles that get stuck on their way towards the target.
Therefore, for certain applications, it might be helpful to insert a resampling step every once in
a while. However, resampling means a loss of effective sample size. Therefore, the population
needs to be given enough time between two resampling steps to recover. E.g., a resampling
step can be made after a sufficiently large number of accepted updates. In a resampling step,
we draw a new population from the old with weights

exp (W) , (22)

where ¢ is a (small) tuning parameter. After this step, the new population is a sample from
the distribution
fi2) = (a)e Ve
To first order in 4,
. 0
p(i) ~ p(i) =~ (). (23)

Maintaining we define € such that
p(me) = p() — vo(me).
Neglecting terms of order O(v§) and O(§2), and using and , we then find that
Ere(l—9). (24)
Thus, we suggest the following algorithm:

1. Initialization of the algorithm:

(a) Repeat the following steps until a population of N particles is obtained:

i. Draw a parameter vector, 6, from the prior.
ii. Draw an output, x, from the likelihood f(x|6).
iii. Accept the particle (0, x) with probability

e—Px¥)/e0

for a sufficiently large €.

(b) Set the initial mean particle distance of the equilibrium, pg, equal to the average
particle distance p:

L&
po=p= NZP(XhY)-
i=1



(c) Calculate the standard deviation of the particles from the target

(d) Set the initial € according to eqn.

6:60(1—ﬂ),
o

where v is a small tuning parameter (by default v = 0.1).

(e) Calculate the parameters’ average and empirical covariance according to

and

2. Iterate the following steps:

a) Draw a random particle, (0;,x,), from the population.
JrXj

(b) Draw an independent proposal parameter from the normal distribution
0"~ N(8;,k),

where k is calculated according to .
(c) Draw a proposal output, x*, from the likelihood f(x|0%).

(d) Draw a uniform random number r.

(e) If

r < min <l,exp <p(Xj,Y)

do the following updates:

) )

i. Update the mean particle distance from the target

_ _ 1 «
Pnew = Pold + N(p(x 7Y) - p(Xj,Y)) .

ii. Update the variance of the distances

1

N _ *
0-72Lew = old T N 1 (pold pgzew) - N _1 (pQ(Xja Y) - p2(X aY)) :

(26)



—

iii. Update the mean of the parameters

_ _ 1.
0w =004+ N(ﬁ —-0;). (27)

iv. Update the covariance of the parameters

N a2l a a2l p 1 * *
Enew e Eold + ﬁ(aoldedd - 9new0new) ﬁ((e )T0 - 0310‘7) . (28)

<

. Update the equilibrium particle distance according to eq. as
(pO)new ‘= Pnew — V0new - (29)
vi. Update the tolerance according to eq. as

0)old — 0
€new = €old — €¢2)ld ()0 )O 2 (p >new . (30)
Ohew

vii. Set §; = 6" and x; = x*.
viii. Increment the acceptance counter a.

(f) (optional) If a = [N, for a sufficiently large [ (e.g. | = 10), draw a new population
of size NV from the old one with weights and update the tolerance according

toas

€new = 6old(1 - 5) .

Remark:

Implementing eqn. does not guarantee that we stay close to equilibrium at all times. The
risk to drift away from equilibrium naturally increases once the relaxation time 7(t) (which
can be estimated from ) isn’t small anymore compared to the observation time. If this
happens, it might be a good idea to either stop the algorithm or then switch to constant e.

2.4 Comparison with other algorithms

An important property of our algorithm is that, in the limit N — oo, the particles remain
uncorrelated, if they were drawn independently at the beginning, even though the particles
interact. This property is called propagation of chaos and is a well known consequence of the
fact that the interaction is of mean-field type (see, e.g., [4]).

Whether or not our algorithm is to be preferred over the Metropolis algorithm depends on
the ”degree of stochasticity” of our model and the desired precision of the result: A model is
said to have a high degree of stochasticity if it is much cheaper to draw a sample from the
likelihood than to evaluate the likelihood function. In the limit of infinitely many particles, as
we have just seen, our algorithm yields independent samples from (an approximation of) the
posterior, whereas the sample generated from the Metropolis algorithm suffers from autocor-
relation. On the other hand, contrary to Metropolis, the whole history of the particles in our
population has to be discarded. Which of these (dis-)advantages is more dominant depends
on the tuning of the algorithms and the desired sample size. However, no matter how well
our algorithm is tuned, its acceptance rate decreases dramatically at a certain tolerance level.

10



A well tuned Metropolis algorithm, on the other hand, has a constant acceptance rate of
20 — 50%.

In our algorithm, the sample size remains constant (except possibly at the few resampling
steps that were suggested in Subsect. . This is the main advantage compared to population
methods based on importance sampling, such as [I1] or [3], where each importance sampling
step entails a reduction in effective sample size. Efficiency is further gained replacing x(e —
p(x,y)) by exp(—p(x,y)/€). With this replacement, moves are not only accepted if they end
up in an e-ball around the target but they are more likely accepted if they move closer to the
target. Finally, our algorithm is of the order O(N), whereas importance sampling algorithms
are of the order O(N?), due to the weighting step. However, both algorithms scale like O(N)
with the number of simulations from the likelihood, which is usually the most costly step.

3 Toy Example

In order to test the performance of our algorithm, we consider a case where the analytical
equilibrium solution as a function of ¢ is available. The prior shall be given by a univariate
normal distribution,

f(8) o exp [—;92] . (31)

The output, y, is assumed to be normally distributed around #, and we assume to have n
independent measurements, y = (y1,...,yn). Thus, the likelihood function reads as

f(y10) o exp [—; > (i 9)2] : (32)

i=1
In order to be able to calculate the analytical solution, we set a = 2 in , i.e., we set

px,y) = 5 D (i — ).

=1

Then, the equilibrium solution is given by the normal distribution

7 (0%) = () x exp |5 @ - pT= - ) (33)
with .
n=12()) (34)
and
(1+n)|-217
¥l = (35)
—21 | g

A tedious but straightforward calculation shows that

(1+e)/(n+1+e)|el+en 17

Y
e(1+e)n 11 Al +v0O

11



where
A=en+1+2)nt, v=ent, ni=n+1+en+2)+e,

and O denotes the matrix with zeroes on the diagonal and ones on the off-diagonals. From

this and we find that

m+1)(1+e)y.

From this, we read off the posterior’s mean

ny
Eﬂ' = ’
,(0) =" (39)
and variance )
Var,, 0) = . 39
ey () = — (39)

The mean particle distance is calculated from eq.

n+1

(p(%,¥))me = %Z (Bii + (i — yi-1)?) - (40)

1=2

Using and this yields

ne 1¢~ o 2, —1
(ol ¥))m = 5, (n +1+2+ Z;yidl +e)’n ) (41)

—
We spare the reader with the expression for the heat capacity C(e) but comment on its
important properties. For small values of > | yf, C'is monotonously decreasing as a function

of e. Thus, it assumes its maximum at ¢ = 0, namely
c0)=—-. (42)

For > % | y? larger than a certain value, C(e) starts forming a peak before it decays to zero,
for € — oc.

In Figs. [1] and [2] we compare the convergence of three different schemes: the CTS scheme
explained in Subsect. [2.3] the explicit scheme for which we have proven convergence in
Subsect. and an explicit scheme with a constant and small €. For simplicity, we have
chosen y; = y. Furthermore, the population size was chosen to be N = 1000. For the explicit
schedule, we’ve chosen, according to Theorem 2.1,

€(t) = eot71/10 , (43)

because o = 2 and n = 20, for an initial ¢y = 2.7. (Note that, for large N, we can approxi-
mate the time continuous process used in this section by a sequence of transitions @ upon
multipliying (5)) by a small time step At.) For the constant scheme we have chosen €(t) = 0.1.
The decay of €(t), for these three schedules, is plotted in the left panel of Fig. [I} The explicit
scheme shows the slowest decay, whereas the tolerance of the constant scheme was chosen
considerably smaller than the tolerance that is reached by the CT'S after a long simulation
time of 3000N particle updates. For this example, resampling was found not to lead to a
significant increase in convergence speed of the CTS schedule and was thus not applied.

12



The right panel in Fig. [1If shows the mean energy (particle distance) as a function of e.
The solid black line corresponds to the equilibrium and shows the functional dependence of
p(m) from e, as given by eq. (1)). For the CTS schedule, the mean energy of u(t) is always
slightly above the mean energy of the target m(¢), as dictated by . The slope of the bold
black curve is the heat capacity . A much simpler adaptive scheme [I] would be to set

e(t) = Cy ' p(u(1)), (44)

where Cy can be interpreted as a constant heat capacity. The schedule is associated
with a straight line in the right panel of plot If we don’t want the process to converge
for an € > 0, we have to set Cy equal to the maximum of the heat capacity, which means
that, for Y 1, yf not too large, we have to set Cyp = n/2, according to . But then, at
the beginning of the process, we would have a huge discrepancy between p(u) and p(w), and,
therefore, potentially pick up an additional bias. Therefore, is not advised whenever
p(me(t)) is strongly non-linear as a function of e. The explicit scheme starts off slightly
off equilibrium but then quickly reaches equilibrium and stays close to it, as we would expect
given our convergence proof. The constant schedule is obviously very far from equilibrum,
at least at the beginning of the algorithm. That this is still so at the end of the simulation
period is revealed by the left panel of Fig. [2] which shows the convergence of the expectation
value and the standard deviation of the f-marginal of p(t), respectively. The bold black lines
show the corresponding values of the target distribution . For the explicit schedule ((43])
and the CT'S, mean and standard deviation of u(t) closely follow the corresponding values of
7(t). For a constant e, however, still at the end of the simulation time, the expectation value
of the marginal of x(t) shows a bias that is much larger than the error given by a finite € and
a finite population size. The former is given by the upper solid black line in the left panel of
Fig. and the latter can be estimated as

og(e)

VN

This demonstrates the effect a too fast cooling can have.

Finally, due to the relatively large output dimension n = 20, all schedules have a relatively
large bias in the standard deviation, as revealed by the right panel of Fig. . This, however,
is a problem inherent to all ABC schedules.

~ 0.007 . (45)

4 Conclusions

The interacting particle algorithm presented in this paper has several advantages compared to
the other Approximate Bayes Computations the authors are aware of. Firstly, our algorithm
is not based on importance sampling. Consequently, there is no loss of effective sample size
due to re-sampling. Secondly, the Heaviside function x(e — p(x,y)) has been replaced by the
smooth kernel exp(—p(x,y)/€). Thus, moves are more likely to be accepted if they move
closer to the target and not only if they move into an e-ball around the target. Thirdly, our
algorithm not only adapts the jump distribution in parameter space but also the tolerance on
the output space. The tuning thus restricts to the two parameters v and § (apart from the
resampling parameters 0 and [). Since these adaptations can be interpreted as a mean-field
interaction between the particles, the particles remain statistically independent if they were
drawn independently at the beginning, in the limit of an infinite sample size.
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Figure 1: The left panel shows the decay of €, as a function of time, for three different
cooling schedules. The right panel shows the mean energy, as a function of €, for two different
cooling schedules. The black line in the right panel shows the mean energy of the equilibrium
solution, as a function of e. We set n = 20 and y = 0.5.

The disadvantage of the adaptive algorithm presented here is that it is based on a heuristic
designed to keep the population close to equilibrium at all times, but does not guarantee
convergence. Dragging along all the particles might lead to the disadvantage that we invest
too much computation into a small fraction of outliers that got stuck on their way towards
the target. This can be remedied employing a resampling step every once in a while.

The biggest disadvantage inherent to all ABC algorithms is that the tolerance leads to
a bias that grows with the dimension of the output space n. Therefore, it is important to
use summary statistics to reduce the output dimension or employ local approximations of the
likelihood, for ABC to be useful for problems with large output dimensions.
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