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Abstract
In practice, several time series exhibit long-range dependence or per-

sistence in their observations, leading to the development of a number of
estimation and prediction methodologies to account for the slowly decaying
autocorrelations. The autoregressive fractionally integrated moving average
(ARFIMA) process is one of the best-known classes of long-memory models.
In the package afmtools for R, we have implemented some of these statistical
tools for analyzing ARFIMA models. In particular, this package contains
functions for parameter estimation, exact autocovariance calculation, predic-
tive ability testing, and impulse response function, amongst others. Finally,
the implemented methods are illustrated with applications to real-life time
series.

Key words: ARFIMA models, long-memory time series, Whittle esti-
mation, exact variance matrix, impulse response functions, forecasting, R
package.

1 Introduction
Long-memory processes introduced by Granger and Joyeux (1980) and Hosking
(1981), are playing a key role in the time series series literature (for example
see Palma (2007) and references therein) and have become a useful model for
explaining natural events studied in geophysics, biology, and other areas. As a
consequence, a number of techniques for analyzing these processes have been de-
veloped and implemented in statistical packages. For example, packages about
long-memory processes have been developed in R (R Development Core Team,
2012): the longmemo package produces a Whittle estimation for Fractional Gaus-
sian Noise and Fractional ARIMA models via an approximate MLE using the
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Beran (1994) algorithm and performs Spectral Density of Fractional Gaussian
Noise and Periodogram Estimate. In addition, the fracdiff package simulates
ARFIMA time series, estimates ARFIMA parameters using an approximate MLE
approach (Haslett and Raftery, 1989), and calculates their variances with the Hes-
sian method. Recently, Hyndman and Khandakar (2008) describe the forecast
package to automatically predict univariate time series via State Space models
with exponential smoothing for ARIMA models. In addition, the forecast package
offers a forecast function for ARFIMA models estimated using the algorithm pro-
posed by Peiris and Perera (1988). The afmtools package requires the polynom,
hypergeo, sandwich and the aforementioned fracdiff and longmemo packages.

Unfortunately, many of these computational implementations have important
shortcomings. For instance, there is a severe lack of algorithms for calculating ex-
act autocovariance functions (ACVF) of ARFIMA models, for computing precise
estimator variances, and for forecasting performance tests (Giacomini and White,
2006), and impulse response functions (Hassler and Kokoszka, 2010), as well as
for other aspects. In order to circumvent some of these problems, this paper dis-
cusses the package afmtools developed by Contreras-Reyes et al. (2011). This
package aims to provide functions for computing ACVFs by means of the Sowell
(1992) algorithm, ARFIMA fitting through an approximate estimation scheme via
Whittle algorithm (Whittle, 1951), asymptotic parameter estimate variances and
several other tasks mentioned before. Hence, the aims of this paper are to analyze
the afmtools package and to illustrate its theoretical and practical performance,
which complements the existing development packages related to ARFIMA mod-
els mentioned above. Specifically, we implement our findings in a meteorological
application about tree ring growth.

The remainder of this paper is structured as follows. Section 2 is devoted
to describing the ARFIMA processes and their properties. This section includes
an analysis of the spectral density, autocovariance function, parameter variance-
covariance matrix estimation, impulse response function, and a model parameters
estimation method. In addition, this section provides a test for assessing the pre-
dictive ability of a time series model. Finally, Section 3 addresses the performance
of the functions implemented in the afmtools package. Apart from describing the
methodologies implemented in this package, we also illustrate their applications
to real-life time series data.

2 ARFIMA processes
Recent statistical literature has been concerned with the study of long-memory
models that go beyond the presence of random walks and unit roots in the uni-
variate time series processes. The autoregressive fractionally integrated moving-
average (ARFIMA) process is a class of long-memory models (Granger and Joyeux
(1980); Hosking (1981)), the main objective of which is to explicitly account for
persistence to incorporate the long-term correlations in the data. The general
expression for ARFIMA processes {yt} may be defined by the equation

Φ(B)yt = Θ(B)(1−B)−dεt, (1)

where Φ(B) = 1− φ1B − · · · − φpBp and Θ(B) = 1 + θ1B + · · ·+ θqB
q are the

autoregressive and moving-average operators, respectively; Φ(B) and Θ(B) have
no common roots, B is the backward shift operator and (1−B)−d is the fractional
differencing operator given by the binomial expansion

(1−B)−d =
∞∑
j=0

Γ(j + d)
Γ(j + 1)Γ(d)B

j =
∞∑
j=0

ηjB
j , (2)
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for d ∈ (−1, 1/2) and {εt} is a white noise sequence with zero mean and
innovation variance σ2. An asymptotic approximation of

ηj = Γ(j + d)
Γ(j + 1)Γ(d) (3)

for large j is

ηj ∼
jd−1

Γ(d) , (4)

where Γ is the usual gamma function.

Theorem 2.1 Consider the ARFIMA process defined by (1) and assume that the
polynomials Φ(·) and Θ(·) have no common zeros and that d ∈ (−1, 1

2 ). Then,

a) If the zeros of Φ(·) lie outside the unit circle {z : |z| = 1}, then there is a
unique stationary solution of (1) given by yt =

∑∞
j=−∞ ψjεt−j where ψj are

the coefficients of the following polynomial ψ(z) = (1− z)−dΘ(z)/Φ(z).

b) If the zeros of Φ(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the
solution {yt} is causal.

c) If the zeros of Θ(·) lie outside the closed unit disk {z : |z| ≤ 1}, then the
solution {yt} is invertible.

For a proof of Theorem 2.1, see e.g. Palma (2007). Recall that, according to
the representation theorem of Wold (1938), any stationary process is the sum of
a regular process and a singular process; these two processes are orthogonal and
the decomposition is unique. Thus, a stationary purely nondeterministic process
may be expressed as

yt = ψ(B)εt =
∞∑
j=0

ψjεt−j , (5)

The spectral measure of the purely nondeterministic process (5) is absolutely
continuous with respect to the Lebesgue measure on [−π, π], where the spectral
density of the process (1) can be written as

f(λ) = σ2

2π |ψ(e−iλ)|2 (6)

= σ2

2π |1− e
−iλ|−2d |Θ(e−iλ)|2

|Φ(e−iλ)|2

= σ2

2π

(
2 sin λ2

)−2d |Θ(e−iλ)|2

|Φ(e−iλ)|2 .

where i denotes the imaginary unit. A special case of ARFIMA models is
the fractionally differenced process described by Hosking (1981), in which the
polynomials are Φ(B) = Θ(B) = 1 and the spectral density is given by

f(λ) = σ2

2π |1− e
−iλ|−2d.
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2.1 Whittle estimation
The methodology to approximate MLE is based on the calculation of the pe-
riodogram I(λ) by means of the fast Fourier transform (FFT); e.g., Singleton
(1979), and the use of the approximation of the Gaussian log-likelihood function
due to Whittle (1951) and by Bisaglia and Guégan (1998). So, suppose that the
sample vector Y = (y1, y2, . . . , yn) is normally distributed with zero mean and
autocovariance given by (16) as

γ(k − j) =
∫ π

−π
f(λ)eiλ(k−j)dλ, (7)

where f(λ) is defined as in (6) and is associated with the parameter set Ω of
the ARFIMA model defined in (1). The log likelihood function of the process Y
is given by

L(Ω) = − 1
2n [log|∆| −Y>∆−1Y]. (8)

where ∆ = [γ(k − j)] with k, j = 1, ..., n. For calculating (8), two asymptotic
approximations are made for the terms log(|∆|) and Y>∆−1Y to obtain

L(Ω) ≈ − 1
4π

[∫ π

−π
log[2πf(λ)]dλ+

∫ π

−π

I(λ)
f(λ)dλ

]
, (9)

as n→∞, where

I(λ) = 1
2πn

∣∣∣∣∣∣
n∑
j=1

yje
iλj

∣∣∣∣∣∣
2

, (10)

is the periodogram indicated before. Thus, a discrete version of (9) is actually
the Riemann approximation of the integral and is

L(Ω) ≈ − 1
2n

 n∑
j=1

logf(λj) +
n∑
j=1

I(λj)
f(λj)

 , (11)

where λj = 2πj/n are the Fourier frequencies. Now, to find the estimator
of the parameter vector Ω, we use the minimization of L(Ω) produced by the
nlm function. This non-linear minimization function carries out a minimization
of L(Ω) using a Newton-type algorithm. Under regularity conditions according
to Theorem 2.2 (see Section 2.2), the Whittle estimator Ω̂ that maximizes the
log-likelihood function given in (11) is consistent and distributed normally (e.g.
Dahlhaus, 1994). The following figures illustrates the performance of the Whittle
estimator for an ARFIMA(1, d, 1) model.

Figure 1 shows several simulation results assessing the performance of the es-
timators of d, AR, and the MA parameters, for different ARFIMA models. These
plots include the exact and Hessian standard deviations. According to the defini-
tion of the ARFIMA model, the simulations are run in the interval (−1, 0.5) for d.
In addition, Figure 2 shows some simulation results regarding the log-likelihood
behavior for the cases d = {−0.9,−0.6,−0.3, 0, 0.25, 0.45} with a rectangular grid
φ × θ = (−0.9, 0.9) × (−0.9, 0.9) for the ARFIMA(1, d, 1) model. The plots of
Figure 1 show a similar behavior for the estimators with respect to the theoretical
parameters, except for the extreme values of the ARMA parameters near -1 and
1. Consequently, the confidence intervals tend to be larger than the other values
of φ and θ parameters for plots (b) and (e). In addition, the plots of Figure 2
present low values of the likelihood function for the values of φ and θ closed to 0,
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Figure 1: Dispersion plots between estimated and theoretical parameters of (a):
ARFIMA(0, d, 0), (b)-(c): ARFIMA(1, d, 0) and (d)-(e): ARFIMA(0, d, 1) where
the green dotted line is the exact standard deviation and the red line is the Hessian
standard deviation.

especially for the plots (c)-(f) when d = {−0.3, 0, 0.25, 0.45}. However, the plots
(a)-(d) show high values of the likelihood function when this is evaluated for the
points near φ = −0.9 and θ = 0.9. For the plots (e)-(f), the behavior is inverse, i.e.,
the likelihood function tends to be higher for values near φ = 0.9 and θ = −0.9.

2.2 Parameter variance-covariance matrix
Here, we discuss a method for calculating the exact asymptotic variance-covariance
matrix of the parameter estimates. This is a useful tool for making statistical
inferences about exact and approximate maximum likelihood estimators, such as
the Haslett and Raftery (1989) and Whittle methods (see Section 2.1). An example
of this calculation for an ARFIMA(1, d, 1) model is given by Palma (2007, pp. 105-
108). This calculation method of the Fisher information matrix is an alternative
to the numerical computation using the Hessian matrix.

This proposed method is based on the explicit formula obtained by means of the
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Figure 2: Log-Likelihood 3D plots for ARFIMA(1, d, 1) model with parameters
(a) d = −0.9, (b) d = −0.6, (c) d = −0.3, (d) d = 0, (e) d = 0.25 and (f) d = 0.45
using a grid φ× θ = (−0.9, 0.9)× (−0.9, 0.9).

derivatives of the parameters log-likelihood gradients. From the spectral density
defined in (6), we define the partial derivatives ∇Φ = (∂/∂φi) and ∇Θ = (∂/∂θj),
with i = 1, . . . , p and j = 1, . . . , q.

Theorem 2.2 Under the assumptions that yt is a stationary Gaussian sequence,
the densities f(λ), f−1(λ), ∂/∂µif−1(λ), ∂2/∂µi∂µjf

−1(λ) and ∂3/∂µi∂µj∂µkf
−1(λ)

are continuous in (λ, µ) for a parameter set µ = {d, φ1, . . . , φp, θ1, . . . , θq}; we have
the convergence in distribution for an estimated parameter µ̂ and the true param-
eter µ0 about a Gaussian ARFIMA model with

√
n(µ̂n − µ0) d−→

n→∞
N(0,Σ−1(µ0)), (12)
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where

Σ(µ) = 1
4π

∫ π

−π
[∇logfµ(λ)][∇logfµ(λ)]>dλ. (13)

For a proof of Theorem 2.2, see e.g. Palma (2007). Thus, if we consider the
model (1) with spectral density (6) where {εt} is an independent and identically
distributed N(0, σ2), we have that the parameter variance-covariance matrix Γ
may be calculated in the following proposition.

Proposition 2.3 If {yt} is stationary, then

∂

∂d
logf(λ) = −log[2(1− cosλ)],

∂

∂φ`
logf(λ) =

∑p
j=1 φj cos[(`− j)λ]∑p

j=1
∑p
k=1 φjφk cos[(j − k)λ]

,

∂

∂θ`
logf(λ) =

∑q
j=1 θj cos[(`− j)λ]∑q

j=1
∑q
k=1 θjθk cos[(j − k)λ]

.

Proof First, from the spectral density given in (6) we have that

logf(λ) = log
(
σ2

2π

)
− dlog[2(1− cosλ)] + log|Θ(eiλ)|2 − log|Φ(eiλ)|2.

By Theorems 2.1 and 2.2, we observe that Φ(eiλ) =
∑p
j=1 φje

iλj , this yields

|Φ(eiλ)|2 =
p∑
j=1

p∑
k=1

φjφke
iλ(j−k)

= 2
p∑
j=1

p∑
k=1

φjφk cos[(j − k)λ],

and

∂

∂φ`
|Φ(eiλ)|2 = 2φ` +

∑
j 6=`

φje
iλ(`−j) +

∑
k 6=`

φke
iλ(`−k)

=
p∑
j=1

φje
iλ(`−j) +

p∑
k=1

φke
iλ(`−k)

= 2
p∑
j=1

φj cos[(`− j)λ].

Analogously, we have that

∂

∂θ`
|Θ(eiλ)|2 = 2

q∑
j=1

θj cos[(`− j)λ].

Then, this implies the results for ∂
∂φ`

logf(λ) and ∂
∂θ`

logf(λ). For ∂
∂d logf(λ) is

direct.

Some computations and implementation of this matrix are described in Sec-
tion 3.2, associated with the parameters of several ARFIMA models, using the
Whittle estimator.
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2.3 Impulse response functions
The impulse response functions (IRF) is the most commonly used tool to eval-
uate the effect of shocks on time series. Among the several approximations to
compute this, we consider the theory proposed by Hassler and Kokoszka (2010)
to find the IRF of a process {yt} following an ARFIMA(p, d, q) model. The
properties of these approximations, depend on whether the series are assumed
to be stationary according to Theorem 2.1. So, under the assumption that the
roots of the polynomials Φ(B) and Θ(B) are outside the closed unit disk and
d ∈ (−1, 1/2), the process {yt} is stationary, causal and invertible. In this case,
we can write yt = Ψ(B)εt where Ψ(B) represents the expansion of the MA(∞)
coefficients denoted as ψj with j > 1. These coefficients satisfy the asymptotic
relationship ψj ∼ [Θ(1)jd−1]/[Φ(1)Γ(d)] as j → ∞ (Kokoszka and Taqqu, 1995),
Θ(1) = 1+

∑q
i=1 θi, and Φ(1) = 1−

∑p
i=1 φi. As a particular case, we have that the

ψj coefficients for an ARFIMA(0, d, 0) are given in closed form by the expression
ψj = Γ(j + d)/(Γ(j + 1)Γ(d)). Now, from (2) and the Wold expansion (5), the
process (1) has the expansion (1− B)−dyt =

∑∞
j=0 ηjyt−j =

∑∞
j=0Rjεt−j , where

Rj is the so-called IRF and is given by

Rj =
j∑
i=0

ψiηj−i. (14)

The terms ηj can be represented in recursive form using (3) as ηj = (1 + (d− 1)/j) ηj−1,
for j ≥ 1 and η0 = 1. From the asymptotic expression given in (4) and assuming
that

∑∞
j=0 ψj <∞, we have the following asymptotic representation

Rj ∼
jd−1

Γ(d)

∞∑
i=0

ψi (15)

as j →∞ and ψj/(jd−1) −→ 0.

2.4 Autocovariance function
We illustrate a method to compute the exact autocovariance function for the gen-
eral ARFIMA(p, d, q) process. Considering the parameterization of the autocovari-
ance function derived by writing the spectral density (6) in terms of parameters
of the model given by Sowell (1992), the autocovariance function of a general
ARFIMA(p, d, q) process is given by

γ(h) = 1
2π

∫ 2π

0
f(λ)e−iλhdλ, (16)

where i denotes the imaginary unit. Particularly, the autocovariance and au-
tocorrelation functions of the fractionally differenced ARFIMA(0, d, 0) process are
given by

γ0(h) = σ2 Γ(1− 2d)
Γ(1− d)Γ(d)

Γ(h+ d)
Γ(1 + h− d) ,

ρ0(h) = Γ(1− d)
Γ(d)

Γ(h+ d)
Γ(1 + h− d) ,

8



respectively. Then, the polynomial Φ(B) in (1) may be written as

Φ(B) =
p∏
i=1

(1− ρiB). (17)

Under the assumption that all the roots of φ(B) have multiplicity one, it can
be deduced from (16) that

γ(h) = σ2
q∑

i=−q

p∑
j=1

ψ(i)ξjC(d, p+ i− h, ρj).

with

ξj =

ρj p∏
i=1

(1− ρiρj)
∏
k 6=j

(ρj − ρk)

−1

,

C(d, h, ρ) = γ0(h)
σ2 [ρ2pβ(h) + β(−h)− 1],

β(h) = F (d+ h, 1, 1− d+ h, ρ),

F (a, b, c, x) = 1 + a · b
c · 1x+ a · (a+ 1) · b · (b+ 1)

c · (c+ 1) · 1 · 2 x2 + . . .

where F (a, b, c, x) is the Gaussian hypergeometric function (e.g. Gradshteyn
and Ryzhik, 2007). The term ψ(i) presented here and in Palma (2007, pp. 47-48)
is a corrected version with respect to Sowell (1992) and is

ψ(i) =
min(q,q+i)∑
k=max(0,i)

θkθk−i.

In the absence of AR parameters the formula for γ(h) reduces to

γ(h) = σ2
q∑

i=−q
ψ(i) Γ(1− 2d)Γ(h+ d− i)

Γ(1− d)Γ(d)Γ(1 + i− d− h) .

On the other hand, the findings of Hassler and Kokoszka (2010) describe the
asymptotic behavior of the autocovariance function γ(h) as

γ(h) ∼ cγ |h|2d−1, (18)

where cγ = σ2π−1Γ(1−2d) sin(πd)
(∑∞

j=0 ψj

)2
for large |h|. Let {y1, y2, . . . , yn}

be a sample from the process in (1) and let y be the sample mean. The exact vari-
ance of y is given by

Var(y) = 1
n

2
n−1∑
j=1

(
1− j

n

)
γ(j) + γ(0)

 .
By (18) and for large n, we have the asymptotic variance formula Var(y) ∼

n2d−1cγ/d(2d+1). The Sowell method is implemented in Section 3.3 for a selected
ARFIMA(1, d, 1) model and its exact autocorrelation function is compared with
the sample autocorrelation.

9



2.5 Predictive ability test
One approach to compare prediction models is through their root mean square
error (RMSE). Under this paradigm and given two forecasting methods, the one
that presents the lower RMSE is the better of the two. To compare statistically
the differences of predictive ability among two proposed models, we focus here on
the evaluation paradigm proposed by Giacomini and White (2006, GW). This test
aims to evaluate a prediction method but not to carry out a diagnostic analysis.
Therefore, it does not consider the parametric uncertainty, which is useful if we
want to compare nested models from an ARFIMA model. The GW test attributed
to Diebold and Mariano (1995) is based on the differences ∆Li = |x̂i−yi|−|ẑi−yi|,
where x̂i and ẑi are the forecasted observations of the first and second model
respectively, for i = 1, ..., n. The null hypothesis for the GW test associated with
expected difference E[∆L] of the two prediction models is H0: E[∆L] = 0, whereas
the alternative is H1: E[∆L] 6= 0. These hypotheses are tested by means of the
statistic,

∆L̂(N) = 1

N

√
σ̂2

N

N

n−τ∑
i=t0

∆Li,

where N = n − τ − t0 + 1, n is the total size of the sample, τ is the prediction
horizon, and t0 is the observation at which the mobile windows start. Note that
under H0, the statistic ∆L̂(N) is asymptotically normal. For τ = 1, an estimator
of σ̂N can be obtained from the estimation of σ̂

α̂
from a simple regression ∆L̂(N) =

α̂+ ε. However, for horizons τ > 1, it is possible to apply a heteroscedasticity and
autocorrelation consistent (HAC) estimator; for example, Newey and West (1987)
or Andrews (1974). The GW test is implemented in the gw.test() function and
described in Section 3.4.

3 Application
The functions described in the previous sections are implemented in the afmtools
package. We illustrate the performance of the Whittle method by applications to
real-life time series TreeRing (Statlib Data Base, http://lib.stat.cmu.edu/) dis-
played in Figure 3 left. In climatological areas, it is very important to analyze this
kind of data because this allows us to explore rainy and dry seasons in the study
area. Hipel and McLeod (1994) has been modeling this time series to determine
the range of possible growths for the upcoming years of the trees using ARMA and
ARIMA models. On the other hand, this time series displays a high persistence in
its observations and has been analyzed by Palma and Olea (2010) and Palma et
al. (2011) with a locally stationary approach. Apparently, the illustrated growth
of the trees, represented by the number of the rings, presents a long-range depen-
dence of its observations along the observations for ages and seasons (see Figure 3,
right). For these reasons, we model the Tree Ring widths time series using long-
memory models; specifically, the ARFIMA models are used to estimate, diagnose,
and compare forecasts of the number of tree rings for upcoming years.

In order to illustrate the usage of package functions, we consider a fitted
ARFIMA(1, d, 1) model. For this model, we have implemented the Whittle al-
gorithm and computed the exact variance-covariance matrix to compare with the
Hessian method. Afterward, we compare the Sowell method for computing the
ACVF function with the sample ACVF. Other functions have also been imple-
mented and illustrated in this section.

10

http://lib.stat.cmu.edu/


0 200 400 600 800 1000 1200
0

50
100

150
Time (annual)

tre
e ri

ng
 wi

dth

Figure 3: Left: Tree Ring Data Base. Right: Illustration of the observed climatic
episodes and tree ring growth. Image source: http://summitcountyvoice.com

3.1 The implementation of the Whittle algorithm
The estimation of the fractionally, autoregressive, and moving-average parameters
has been studied by several authors (Beran (1994); Haslett and Raftery (1989);
Hyndman and Khandakar (2008)). A widely used method is the approximate
MLE method of Haslett and Raftery (1989). In our study, estimation of the
ARFIMA(p, d, q) model using the corresponding Whittle method (Whittle, 1951)
is described in Section 2.1 and this model is fitted by using the arfima.whittle
function. To apply the Whittle algorithm to the TreeRing time series as an exam-
ple, we use the following command considering an ARFIMA(1, d, 1) model.

R> y <- data(TreeRing)
R> model <- arfima.whittle(series = y, nar = 1, nma = 1, fixed = NA)

Note that the option fixed (for fixing parameters to a constant value) has
been implemented. This option allows the user to fix the parameters d, φ1, or θ1,
in order of occurrence. For example, in our ARFIMA(1, d, 1) model, we can set
the parameter d to be equal to zero. Consequently, we obtain the estimation of a
simple ARMA(1, 1) model. The object model is of class arfima and provides the
following features:

• estimation of d and ARMA parameters;

• standard deviation errors obtained by the Hessian method and the respective
t value and Pr(>|t|) terms;

• the log-likelihood function performed in the arfima.whittle.loglik()
function;

• innovation standard deviation estimated by the ratio of the theoretical spec-
trum;

• residuals from the fitted model.

The commands plot(), residuals(), summary(), tsdiag() and print()
have been adapted to this model class of S3 method. The summary() option
shows the estimated parameters, the Hessian standard deviations, the t-statistic,
and their respectively p-values. The computation of the long-memory parameter
d as well as the autoregressive {φ1, ..., φp} and moving average {θ1, ..., θq} param-
eters can be handled quickly for moderate sample sizes. Printing the model object
by the summary() function shows the items mentioned before as

11
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Table 1: Summary of estimated parameters for several ARFIMA models.

FN(d) ARFIMA(1, d, 0) ARFIMA(0, d, 1) ARFIMA(1, d, 1)
Par. Est Hessian Exact Est Hessian Exact Est Hessian Exact Est Hessian Exact
d 0.195 0.048 0.023 0.146 0.048 0.038 0.156 0.048 0.035 0.106 0.048 0.063
φ - - - 0.072 0.029 0.049 - - - 0.397 0.035 0.282
θ - - - - - - 0.059 0.029 0.045 -0.285 0.032 0.254

R> summary(model)
$call
arfima.whittle(series = y, nar = 1, nma = 1)

$coefmat
Estimate Std. Error t value Pr(>|t|)

d 0.1058021 0.04813552 2.198004 0.02794879
phi 1 0.3965915 0.03477914 11.403142 0.00000000
theta 1 -0.2848590 0.03189745 -8.930462 0.00000000

$sd.innov
[1] 35.07299

$method
[1] "Whittle"

attr(,"class")
[1] "summary.arfima"

Furthermore, we evaluate the Whittle estimation method for long-memory
models by using the theoretical parameters versus the estimated parameters (see
Figure 1). In addition, we compare the exact standards deviations of the param-
eters from Section 2.2 with those obtained by the Hessian method. These results
and the evaluation of the Whittle estimations are illustrated in Table 1.

3.2 The implementation of exact variance-covariance ma-
trix

The var.afm() function shows the exact variance-covariance matrix and the stan-
dard deviations. The computation of the integrals of the expression (13) is carried
out by using the Quadpack numeric integration method (Piessens et al., 1983)
implemented in the integrate() function (stats package). Note that the func-
tions involved in these integrals diverge in the interval λ = [−π, π]. However,
they are even functions with respect to λ. Thus, we integrate over [0, π] and then
multiply the result by two. Now, by using the central limit theorem discussed
in Section 2.2, we can obtain the asymptotic approximation of the estimated pa-
rameters standards errors SE(Ω̂)i = ( 1

n [Σ̂−1]ii)1/2 of an ARFIMA model, where
Ω̂ = (d̂, φ̂1, . . . , φ̂p, θ̂1, . . . , θ̂q) and [Σ̂−1]ii corresponds to the ith diagonal compo-
nents of the matrix Σ̂−1 for i = {1, ..., p+ q + 1}.

By using the Whittle estimators, we search for the lowest AIC (Akaike Infor-
mation Criterion, Akaike, 1974) given by AIC(ω̂) = −2[logL(ω̂)− (p+ q+ 1)] over
a class of ARFIMA models with p, q ∈ {0, 1, 2}, where ω̂ is a subset of Ω̂ and L(ω̂)
is the likelihood associated with ω̂. From Table 2, we can see that the fraction-
ally differenced model ARFIMA(0, d, 0) has the lowest AIC. Candidate models are
marked in bold in Table 2.
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Table 2: Akaike’s criterion for Ω̂ = (d̂, φ̂1, φ̂2, θ̂1, θ̂2) with p-values obtained for the
Hessian standard deviation.

p q AIC d̂ p-value
0 0 -37.018 0.196 0
0 1 -35.008 0.156 0.001
0 2 -33.000 0.113 0.018
1 0 -35.007 0.146 0.002
1 1 -33.004 0.106 0.028
1 2 -30.996 0.142 0.003
2 0 -33.002 0.111 0.021
2 1 -30.995 0.130 0.007
2 2 -28.915 0.191 0
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Figure 4: Plots of residuals analysis from tsdiag standard command adapted to
ARFIMA model residuals.

Additionally, we propose a technique for obtaining the spectral density associ-
ated with ARFIMA and ARMA processes in spectrum.arfima() and spectrum.arma(),
respectively. This is done by using the polyroot() function of the polynom pack-
age to compute the roots of the polynomials Φ(e−iλ) and Θ(e−iλ). Both functions
need the estimated ARFIMA parameters and the sd.innov innovation standard
estimation given by an object of arfima class. For the spectrum density and pe-
riodogram, see Section 2 and Subsection 2.1, respectively. Since the calculation
of the FFT has a numerical complexity of the order O[nlog2(n)], this approach
produces a very fast algorithm to estimate the parameters. It is possible to obtain
the FFT through the fft() function based on the method proposed by Singleton
(1979).
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Figure 5: Diagnostic Plots made by the plot() command. Left: Plots of unit roots
circle along with the root provided by AR and MA polynomials and Theoretical
(red line) vs. Empirical Spectrum (back points) plot. Right: ACF plots of Tree
Rings and ARFIMA(1, d, 1) model residuals.

3.3 The implementation of the diagnostic functions
We have also implemented a very practical function called check.parameters.arfima().
This verifies whether the long-memory parameter d belongs to the interval (−1, 0.5)
and whether the roots of the fitted ARMA parameters lie outside the unit disk.
This function was incorporated in the plot() command. In the first plot of Fig-
ure 5, we can see that the roots of the AR and MA polynomials lie outside the
unit disk, according to the assumptions of stationarity solutions of (1) presented in
Theorem 2.1 (see Section 2). Alternatively, the check.parameters.arfima() that
takes an arfima-class object, gives TRUE/FALSE-type results indicating whether the
parameters pass the requirement for a stationary process.

Additionally, an adaptation of the function tsdiag() can be found in this
package. This is implemented in an S3-type arfima class method and shows three
plots for analyzing the behavior of the residual from the fitted ARFIMA model.
This function has additional arguments such as the number of observations n for
the standardized residuals and critical p-value alpha. Figure 4 illustrates these
results, where, the residuals are white noise at a confidence level of α = 95%.

On the other hand, the Rj (IRF) illustrated in Figure 7 decays exponentially
fast, at a rate of jd−1 because, these functions inherit the behavior of ηj . This
behavior is typical for ARFIMA models, as reported by Hassler and Kokoszka
(2010), Kokoszka and Taqqu (1995) and Hosking (1981). Figure 7 shows some Rj
curves associated with the three models considered in Table 1 for the asymptotic
method by formula (15) (labeled Asymptotic in the plot) and the counterpart
method by formula (14) (labeled Normal in the plot). Note that for a large value
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Figure 6: Theoretical (left) and Empirical (right) ACF of selected ARFIMA model.
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Figure 7: Plots of IRFs methods for h = 50, 100 and 150 lags.

of j ≈ 50, both methods tend to converge, and, the curves make an inflexion in
the value j ≈ 10. Note that the Asymptotic approximation tends to be equal to
the Normal method in the measure that the input h lag increases (see plots for
h=150 in Figure 7). These IRFs are available in the function ir.arfima(), with
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arguments h to evaluate the IRFs over a particular h lag and, model for an object
arfima.whittle. The ir.arfima() function produces the vectors RE and RA for
Normal and Asymptotic IRFs.

The exact Sowell autocovariance computation obtained by rho.sowell() and
the sample autocorrelation obtained by the ACF() command are applied to tree
ring time series. In Figure 6, the blue dotted lines in the first plot correspond to the
{∓2/

√
n} significance level for the autocorrelations. The function rho.sowell()

requires the specification of an object of class arfima in the object option that, by
default, is NULL. But, if object=NULL, the user can incorporate the ARFIMA pa-
rameters and the innovation standard deviation. Alternatively, the implemented
plot option gives a graphical result similar to the ACF() command in the sample
autocorrelation. We can see the similarity of both results for the discussed model.
The ACVF implementation is immediate but, for the calculation of the Gaussian
hypergeometric functions, we use the hypergeo() function from the hypergeo
package. For values of h > 50, we use the approximation (18) reducing consider-
ably the computation time as compared to the Sowell algorithm.

On the other hand, the rho.sowell() function is required by the function
smv.afm(). The function smv.afm() calculates the variance of the sample mean of
an ARFIMA process. When the argument comp is TRUE, the finite sample variance
is calculated, and when comp is FALSE, the asymptotic variance is calculated.
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Figure 8: Plots of out-of-sample predictions for (a) τ = 2, (b) τ = 4 and (c) τ = 5
for two models: ARIMA(0,1,0) in red and ARFIMA(1, d, 1) in blue with Haslett
& Raftery estimator (HR).
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Table 3: Summary of p-values of the GW test for each HAC estimator, τ = {2, 4, 5}
prediction horizon parameters and for the estimator methods B (Benchmark
model), ML (ARFIMA models using Maximum Likelihood estimator) and HR
(ARFIMA models using Haslett & Raftery estimator) over 40 observations of sam-
ples from the TreeRing data set. The p-values marked in bold are lower than the
probability (0.05) related to a 5% confidence level.

HAC Prediction Horizon Parameter
Estimators τ = 2 τ = 4 τ = 5

B ML HR B ML HR B ML HR
B - 0.001 0.001 B - 0.031 0.031 B - 0.126 0.126

HAC ML 0.001 - 0.307 ML 0.031 - 0.559 ML 0.126 - 0.689
HR 0.001 0.307 - HR 0.031 0.559 - HR 0.126 0.689 -

B ML HR B ML HR B ML HR
Newey & B - 0.002 0.002 B - 0.051 0.051 B - 0.174 0.174

West ML 0.002 - 0.005 ML 0.051 - 0.281 ML 0.174 - 0.479
HR 0.002 0.005 - HR 0.051 0.281 - HR 0.174 0.479 -

B ML HR B ML HR B ML HR
Lumley & B - 0.001 0.001 B - 0.023 0.023 B - 0.096 0.096
Heagerty ML 0.001 - 0.486 ML 0.023 - 0.652 ML 0.096 - 0.762

HR 0.001 0.486 - HR 0.023 0.652 - HR 0.096 0.762 -
B ML HR B ML HR B ML HR

B - 0.003 0.003 B - 0.041 0.041 B - 0.206 0.206
Andrews ML 0.003 - 0.018 ML 0.041 - 0.283 ML 0.206 - 0.456

HR 0.003 0.018 - HR 0.041 0.283 - HR 0.206 0.456 -

3.4 Forecasting evaluations
The GW method implemented in gw.test() for evaluating forecasts proposed by
Giacomini and White (2006) compares two vectors of predictions, x and y, provided
by two time series models and a data set p. We consider that it is relevant to
implement this test to determine if the predictions produced by a time series model
(e.g., ARFIMA) process good forecasting qualities. This test for predictive ability
is of particular interest since it considers the tau prediction horizon parameter or
ahead in the case of pred.arfima() function. Alternative methods are discussed,
for instance, by Diebold and Mariano (1995). If tau=1, the standard statistic
simple regression estimator method is used. Otherwise, for values of tau larger
than 1, the method chosen by the user is used in the method option. The available
methods for selection are described below. They include several Matrix Covariance
Estimation methods but, by default, the HAC estimator is used in the test. The
user can select between the several estimators of the sandwich package mentioned
before:

• HAC: Heteroscedasticity and Autocorrelation Consistent (HAC) Covariance
Matrix Estimation by vcovHAC() function (Zeileis (2004); Zeileis (2006)).

• NeweyWest: Newey-West HAC Covariance Matrix Estimation by NeweyWest()
function (Newey and West (1987)).

• LumleyHeagerty: Weighted Empirical Adaptive Variance Estimation by
weave() function (Lumley and Heagerty (1999)).

• Andrews: Kernel-based HAC Covariance Matrix Estimation by kernHAC()
function (Andrews (1974); Andrews and Monahan (1992)).

This test gives the usual results of the general test implemented in such as the
GW statistic in statistic, the alternative hypothesis in alternative, the p-value
in p.value, others such as the method mentioned before in method, and the name
of the data in data.name. In some studies, the GW test is used to compare selected
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models versus benchmark models such as ARMA, ARIMA, or SARIMA models
(e.g. Contreras-Reyes and Idrovo, 2011). So, to illustrate the GW test perfor-
mance, we simulate the out-of-sample prediction exercise through mobile windows
for TreeRing data sets considering the first 1124 observations and, later, forecast-
ing 40 observations using three models: the ARIMA(0,1,0) benchmark model, the
ARFIMA(p, d, q) with MLE estimator, and the Haslett & Raftery estimator (HR)
using the algorithm of the automatic forecast() function implemented in the
forecast package by Hyndman and Khandakar (2008) algorithm. In Figure 8,
the GW test compares the out-of-sample predictions of the ARIMA(0,1,0) and
ARFIMA(p,d,q) model. It is important to note that the goal of this test is only
to compare prediction abilities between models.

Finally, we study a more general simulation, comparing the three predictors
vectors with 40 real observations using gw.test() function considering the hy-
potheses testing alternative="two.sided" to contrast significant differences be-
tween predictions. In addition, we consider the four HAC estimators mentioned in
the beginning of this subsection and prediction horizon parameters τ = {2, 4, 5}.
The results are summarized in Table 3 and Figure 8. We can see that the differ-
ences in the prediction ability between B vs. MLE and B vs. HR are significant
for τ = 2 and 4 but, between MLE and HR they are not unequal for the three
considered values of τ . Given the non-significance of the MLE-HR test p-value,
the MLE model is not considered in Figure 8. As expected, the increments of the
prediction horizon parameter showed that the different prediction abilities of the
models tend to be zero because the time series uncertainty tends to increase. Con-
sequently, the individual prediction performance of each model is not considered
by the test.

4 Conclusions
We developed the afmtools package with the goal of incrementing the necessary
utilities to analyze the ARFIMA models and, consequently, it is possible to exe-
cute several useful commands already implemented in the long-memory packages.
In addition, we have provided the theoretical results of the Whittle estimator,
which were applied to the Tree Ring data base. Furthermore, we have performed
a brief simulation study for evaluating the estimation method used herein and also
have evaluated the properties of its log-likelihood function. The numerical exam-
ples shown here illustrate the different capabilities and features of the afmtools
package; specifically, the estimation, diagnostic, and forecasting functions. The
afmtools package would be improved by incorporating other functions related to
change-point models and tests of unit roots, as well as other important features of
the models related to long-memory time series.
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