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Abstract—We analyze a class of distributed quantized consen-
sus algorithms for arbitrary networks. In the initial setting, each
node in the network has an integer value. Nodes exchange their
current estimate of the mean value in the network, and then
update their estimation by communicating with their neighbors
in a limited capacity channel in an asynchronous clock setting.
Eventually, all nodes reach consensus with quantized precision.
We start the analysis with a special case of a distributed binary
voting algorithm, then proceed to the expected convergence
time for the general quantized consensus algorithm proposed
by Kashyap et al. We use the theory of electric networks,
random walks, and couplings of Markov chains to derive an
O(N3 logN) upper bound for the expected convergence time on
an arbitrary graph of size N , improving on the state of art bound
of O(N4 logN) for binary consensus and O(N5) for quantized
consensus algorithms. Our result is not dependent on graph
topology. Simulations on special graphs such as star networks,
line graphs, lollipop graphs, and Erdös-Rényi random graphs
are performed to validate the analysis.

This work has applications to load balancing, coordination of
autonomous agents, estimation and detection, decision-making
networks, peer-to-peer systems, etc.

Index Terms—Distributed quantized consensus, gossip, conver-
gence time

I. INTRODUCTION

Over the past decade, the problem of quantized consensus
has received significant attention [1][2][3][4][5]. It models
averaging in a network with a limited capacity channel [4].
Distributed algorithms are attractive due to their flexibility,
simple deployment and the lack of central control. This prob-
lem is of interest in the context of coordination of autonomous
agents, estimation, distributed data fusion on sensor networks,
peer-to-peer systems, etc. [1][6]. It is especially relevant to
remote and extreme environments where communication and
computation are limited, for example, in a decision-making
sensor network [7].

This work is motivated by a class of quantized consensus
algorithms in [3] and in [4]: nodes randomly and asyn-
chronously update local estimate and exchange information.
In [3], the author proposed a binary voting algorithm, where
all the nodes in the network vote “yes” or “no”. The algorithm
reaches consensus on the initial majority opinion almost
surely. However, the authors did not bound the convergence
time. In [8], the authors studied the convergence speed in
the special case of regular graphs for a similar distributed
binary consensus algorithm. Draief and Vojnovic [6] derived

an expected convergence time bound depending on the second
largest eigenvalue of a doubly stochastic matrix characterizing
the algorithm and voting margin, yet no specific bound is
provided for an arbitrary graph. An O(N4 logN) bound is
given in [9] on the binary voting convergence speed, where N
is the number of nodes in the network. A more general dis-
tributed quantized integer averaging algorithm was proposed
in [4]. Unlike the distributed algorithm in [10], where the
sum of values in the network is not preserved, Kashyap et al.
proposed an algorithm guaranteeing convergence with limited
communication, more specifically, only involving quantization
levels. This is a desired property in a large-scale network
where memory is limited, communication between nodes is
expensive and no central control is available to the network.
Also, this distributed algorithm is designed in a privacy-
preserving manner: during the process, the local estimation
on the average value is exchanged without revealing the initial
observation from nodes. Analysis of convergence time on the
complete graph and line graph is given in the original paper
in [4], and an O(N5) bound was derived in [2] by creating a
random walk model.

In this paper, we start with an analysis of convergence
time of the distributed binary voting problem. We construct a
biased lazy random walk model for this random process. We
improve the upper bound on the expected convergence time
in [9] from O(N4 logN) to O(N3 logN). We then extend
our results to the multi-level quantized consensus problem
with the use of Lyapunov functions [2][4]. By utilizing the
well-known relation between commuting time of a random
walk and electric networks [11], we derive an upper bound
on the hitting time of a biased random walk. Several coupled
Markov processes are then constructed to help the analysis.
We improve the state of art bound in [2] from O(N5) to
O(N3 logN).

The contribution of this paper is as follows:
• A polynomial upper bound of O(N3 logN) for the quan-

tized consensus algorithm. It is, to the best knowledge
of the authors, the tightest bound in literature for the
quantized consensus algorithm proposed in [3][4]. We
use the degree of nodes on the shortest path on the graph
to improve the bound on the hitting time of the biased
random walk.

• The analysis for arbitrary graphs is extended to a tighter
bound for certain network topologies by computing the

ar
X

iv
:1

20
8.

07
88

v1
  [

st
at

.A
P]

  3
 A

ug
 2

01
2



2

effective resistance between a pair of nodes on the graph.
This is attractive because we can then apply results from
algebraic graph theory [12][13] to compute the effective
resistance easily on the given graph structure.

The remainder of this paper is organized as follows. Section 2
describes the algorithm proposed in [3] and [4], and formulates
the convergence speed problem. In Section 3, we derive our
polynomial bound for this class of algorithms. In Section 4, we
give examples on how to derive an upper bound on the given
topology of the network, and simulation results are provided
to justify the analysis. We provide our conclusions in Section
5.

II. PROBLEM STATEMENT

A network is represented by a connected graph G = (V, E),
where V = {1, 2, ..., N} is the set of nodes and E is the set
of edges. (i, j) ∈ E if nodes i, j can communicate with each
other. Ni is the set of neighbors of node i.

Consider a network of N nodes, labeled 1 through N .
As proposed in [1][4][3], each node has a clock which ticks
according to a rate 1 exponential distribution. By the superpo-
sition property for the exponential distribution, this set up is
equivalent to a single global clock with a rate N exponential
distribution ticking at times {Zk}k≥0. The communication and
update of states only occur at {Zk}k≥0. When the clock of
node i ticks, i randomly chooses a neighbor j from the set
Ni. We say edge (i, j) is activated.

In the rest of this section, we will describe the distributed
binary voting consensus algorithm [3] and quantized consensus
algorithm [4]. We are interested in the performance of this
class of algorithms on arbitrary graphs.

A. Binary Voting Consensus

Initially, each node on the connected graph G has a vote,
strong positive or strong negative (or no vote at all). Assuming
that a majority opinion exists, the objective for the binary
voting consensus problem is to have each node settle on the
majority in a distributed manner.

Let S(i)(t) denote the state of node i at time t. S(i)(t) ∈
{S+, S−,W+,W−}, representing strong positive, strong neg-
ative, weak positive, and weak negative respectively, where
S± = ±2 and W± = ±1. For all i ∈ V , S(i)(0) is initialized
to the corresponding strong positive or strong negative. If i
does not have a vote at t = 0, it is randomly initialized to
either weak opinion. When two nodes i and j with opposite
strong opinions exchange information, they both update to
weak opinions. Further update rules are as follows:

1) If S(i)(t) = S(j)(t),
S(i)(t+ 1) = S(j)(t+ 1) = S(i)(t);

2) If |S(i)(t)| > |S(j)(t)| and S(i)(t) · S(j)(t) < 0,
S(i)(t+ 1) = −S(j)(t), S(j)(t+ 1) = S(i)(t), and vice
versa;

3) If |S(i)(t)| > |S(j)(t)| and S(i)(t) · S(j)(t) > 0,
S(i)(t + 1) = S(j)(t), S(j)(t + 1) = S(i)(t), and vice
versa;

Fig. 1: Update rules for distributed binary vote [3]. The figure
shows update principles: when opposite “strong opinion”s
meet, they both turn into “weak opinion”s; “strong opinion”
affects “weak opinion”; and swap principle.

4) If S(i)(t) = −S(j)(t),
S(i)(t+ 1) = sign

(
S(j)(t)

)
,

S(j)(t+ 1) = sign
(
S(i)(t)

)
.

The update rules are illustrated in Fig. 1. Let |S+| denote
the number of the strong positive opinions and |S+(t)| denote
the number of the strong positive opinions at time t. Note that
this algorithm supposes that there is an odd number of nodes
in the network, in order to guarantee convergence regardless
of initial votes of nodes.

Definition 1 (Convergence on Binary Voting Consensus). A
binary voting reaches convergence if all states of nodes on the
graph are positive or all states are negative.

A quick validation for this algorithm: we notice that the
S+ and S− will only annihilate each other when they meet,
otherwise they just take random walks on the graph. So only
the majority strong opinions will be left on the graph in the
end. That is the reason why randomly assigning weak opinions
to nodes with no initial vote does not affect the convergence
to the majority opinion. We also notice that strong opinions
can influence weak opinions as shown in Fig. 1. Eventually
all agents will take the sign of the majority strong opinions.
Because the graph has finite size, and this Markov chain has
finite states, convergence will happen in finite time almost
surely.

B. Quantized Consensus

Without loss of generality, let us assume that all nodes hold
integer values and the quantization is 1. Let Q(i)(t) denote the
integer value of node i at time t, with Q(i)(0) denoting the
initial values. Define

Qsum =

N∑
i=1

Q(i)(0). (1)

Let Qsum be written as qN + r, where 0 ≤ r < N . Then
the mean of the initial value in the network 1

NQsum ∈ [q, q+
1). Thus either q or q + 1 is an acceptable integer value for
quantized average consensus (if the quantization level is 1).

Definition 2 (Convergence on Quantized Consensus). A quan-
tized consensus reaches convergence at time t, if for any node
i on the graph, Q(i)(t) ∈ {q, q + 1}.
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There are a few properties that are desired for the quantized
consensus algorithm:
• Sum conservation:

N∑
i=1

Q(i)(t) =

N∑
i=1

Q(i)(t+ 1). (2)

• Variation non-increasing: if two nodes i, j exchange
information,

|Q(i)(t+ 1)−Q(j)(t+ 1)| ≤ |Q(i)(t)−Q(j)(t)|. (3)

When two nodes i and j exchange information, without loss
of generality, suppose that Q(i)(t) ≤ Q(j)(t). They follow the
simple update rules below:

1) If Q(j)(t)−Q(i)(t) ≥ 2, a non-trivial exchange occurs:

Q(i)(t+ 1) = Q(i)(t) + 1, Q(j)(t+ 1) = Q(j)(t)− 1.

2) If Q(j)(t)−Q(i)(t) ≤ 1, a trivial exchange occurs:

Q(i)(t+ 1) = Q(j)(t), Q(j)(t+ 1) = Q(i)(t).

Similar to the argument in Section II-A, we can view this
random process as a finite state Markov chain. Because the
variation decreases whenever there is a non-trivial exchange,
convergence will be reached in finite time almost surely.

Remark 1: In this quantized consensus algorithm, we define
convergence to be when all nodes reach two consecutive states.
However, This definition cannot be used to solve the binary
voting problem. If all nodes converge to W+ and W− states,
no conclusion can be made on the majority opinion.

Remark 2: In this section, the update rules allow the node
values to change by at most 1. This is relevant to load-
balancing systems where only one value can be exchanged
in the channel at a time due to the communication limit [4].
Adjustments can be made for this class of quantized consensus
algorithms, e.g. when two nodes exchange information, both
nodes can update their value to the mean of the two. The
analysis on the convergence time remains similar.

III. CONVERGENCE TIME ANALYSIS

The main results of this work are the following theorems:

Theorem 1. For a connected network of N nodes, an upper
bound for the expected convergence time of the binary voting
consensus algorithm is O(N3 log(N)).

Theorem 2. For a connected network of N nodes, an upper
bound for the expected convergence time of the quantized
consensus algorithm is O(N3 log(N)).

We use the analogy of electric networks and random walks
to derive the upper bound. Since the clock setting and edge
selection strategies are the same in the binary voting algo-
rithm and quantized consensus algorithm, their information
exchange processes can be coupled. Hence the meeting time
(defined below) is equal in both algorithms. Before deriving
the bound on the convergence time, we first provide some
definitions and notation that we will use and prove some useful
lemmas in Section III-A and Section III-B.

A. Definition and Notation

Definition 3 (Hitting Time). For a graph G and a specific
random walk, let H(i, j) denote the expected number of steps
a random walk beginning at i must take before reaching j.
Define the “hitting time” of G by H(G) = maxi,j H(i, j).

Definition 4 (Meeting Time). Consider two random walkers
placed on G. At each tick of the clock, they move according
to some joint probability distribution. Let M(i, j) denote the
expected time for the two walkers to meet at the same node
or to cross each other through the same edge (if they move at
the same time). Define the “meeting time” of G by M(G) =
maxi,jM(i, j).

Define a simple random walk on G, XS , with transition
matrix PS = (Pij) as follows:
• PSii := 0 for ∀i ∈ V ,
• PSij := 1

|Ni| for (i, j) ∈ E .
Ni is the set of neighbors of node i and |Ni| is the degree of
node i.

Define a natural random walk XN with transition matrix
PN = (Pij) as follows:
• PNii = 1− 1

N for ∀i ∈ V ,
• PNij = 1

N |Ni| for (i, j) ∈ E .
Define a biased random walk XB with transition matrix

PB = (Pij) as follows:
• PBii := 1− 1

N −
∑
k∈Ni

1
N |Nk| for ∀i ∈ V ,

• PBij := 1
N

(
1
|Ni| + 1

|Nj |

)
for (i, j) ∈ E .

B. Hitting Time and Meeting Time on Weighted Graph

In this class of algorithms, we label the initial observations
by the nodes as α1, α2, ..., αN . Before any two observations
αm, αn meet each other, they take random walks on the graph
G. Their marginal transition matrices are both PB . It may be
tempting to think that they are taking the natural random walks
as stated in [2]. Upon closer inspection, we find that there are
two sources stimulating the random walk from i to j, for all
(i, j) ∈ E : one is active, from the node i, P 1

ij = PNij ; the
other one is passive, from its neighbor j, P 2

ij = PNji . Thus
Pij = P 1

ij + P 2
ij ; i.e., the transitional matrix is actually PB

instead of PN . Denote this random process as X . Because of
the system settings, two random walks αm, αn can only move
at the same time if they are adjacent. Suppose αm is at node
x, and αn is at node y.

For x /∈ Ny , and i ∈ Nx, we have

PX joint(αm moves from x to i, αn does not move)

= PBxi − PX joint(αm moves from x to i, αn moves)
= PBxi . (4)

Similar for PX joint(αn moves from y to j, αm does not move).
Also,

PX joint(αm does not move, αn does not move)

= 1−
∑
i∈Nx

PBxi −
∑
j∈Ny

PByj . (5)
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For x ∈ Ny and i 6= y we have,

PX joint(αm moves from x to i, αn does not move)

= PBxi − PX joint(αm moves from x to i, αn moves)
= PBxi . (6)

PX joint(αm moves to y, αn moves to x) = PBxy (7)

PX joint(αm does not move, αn does not move)

= 1−
∑
i∈Nx

PBxi −
∑
j∈Ny

PByj + PBxy. (8)

Corollary 1. The biased random walk XB is a reversible
Markov process.

Proof: Let π be the stationary distribution of XB . It is
easy to verify that

πi =
1

N
(9)

for all i ∈ V . Thus by the symmetry of PB ,

πiP
B
ij = πjP

B
ji .

Lemma 1. In an arbitrary connected graph G with N nodes,
the hitting time of the biased random walk XB satisfies

HPB (G) < 3N3.

Proof: The biased random walk XB defined above is a
random walk on a weighted graph with weight

wij :=
1

N

(
1

|Ni|
+

1

|Nj |

)
for (i, j) ∈ E . (10)

wii := 1−
∑
j∈Ni

wij . (11)

wi =
∑
j∈V

wij = 1, w =
∑
i

wi = N. (12)

It is well-known that there is an analogy between a weighted
graph and an electric network, where a wire linking i and j
has conductance wij , i.e., resistance rij = 1/wij [11][14].
And they have the following relationship

HPB (x, y) +HPB (y, x) = wr′xy, (13)

where r′xy is the effective resistance in the electric network
between node x and node y. Since the degree of any node is
at most N − 1, for (i, j) ∈ E ,

wij =
1

N

(
1

|Ni|
+

1

|Nj |

)
>

1

N

1

min(|Ni|, |Nj |)

rij < N ×min(|Ni|, |Nj |) (14)

Consequently, r′ij ≤ rij < N ×min(|Ni|, |Nj |).

For all x, y ∈ V , let Q = (q1 = x, q2, q3, ..., ql−1, ql = y)
be the shortest path on the graph connecting x and y . Now
we claim that

l∑
k=1

|Nqk | < 3N.

Since any node, say u not lying on the shortest path can
only be adjacent to at most three vertices on Q (otherwise u
must be on the shortest path), we have

l∑
k=1

|Nqk | ≤ 2l + 3(N − l) < 3N. (15)

By (14) and (15), we have

r′xy ≤ N ×
l∑

k=1

|Nqk | < 3N2 (16)

By (13), we have

HPB (x, y) < HPB (x, y) +HPB (y, x)

= wr′xy

< N × 3N2

= 3N3. (17)

This completes the proof.
Note that this is an upper bound for arbitrary connected

graphs. A tighter bound can be derived for certain network
topologies. Examples will be given in Section IV.

Corollary 2. HPB (x, y) + HPB (y, z) + HPB (z, x) =
HPB (x, z) +HPB (z, y) +HPB (y, x).

Proof: This is direct result from Lemma 2 in Chap 3 of
Aldous-Fill’s book [11] since XB is reversible.

Definition 5 (Hidden Vertex). A vertex t in a graph is said
to be hidden if for every other point in the graph, H(t, v) ≤
H(v, t). A hidden vertex is shown to exist for all reversible
Markov chains in [15].

Lemma 2. The meeting time of any two states on the network
G following the random processes X in Section III-B is less
than 4HPB (G).

Proof: In order to prove the lemma, we construct a
coupling Markov chain, X ′ to assist the analysis. X ′ has the
same joint distribution as X except (7) and (8).

PX ′joint(αm, αn meet at x or y) = 2PBxy (18)

PX ′joint(αm does not move, αn does not move)

= 1−
∑
i∈Nx

PBxi −
∑
j∈Ny

PByj . (19)

First, we show that the meeting time of two random walkers
following X ′ is less than 2HPB (G).

For convenience, we adopt the following notation: if f(·) is
a real valued function on the vertex of the graph, then f(v̄)
is the weighted average of f(u) over all neighbors u of v,
weighted according to the edge weights.
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Similar as in [2][15], define a potential function

φ(x, y) := HPB (x, y) +HPB (y, t)−HPB (t, y), (20)

where t is a hidden vertex on the graph. By Corollary 2,
φ(x, y) is symmetric, i.e. φ(x, y) = φ(y, x). By the definition
of meeting time, M is also symmetric, i.e. M(x, y) =
M(y, x). Next we use φ to bound the meeting time.

By the definition of hitting time, for x 6= y we have

HPB (x, y)

= 1 + PBxxHPB (x, y) +
∑
i∈Nx

PBxiHPB (i, y)

= 1 + wxxHPB (x, y) +
∑
i∈Nx

wxiHPB (i, y), (21)

i.e.,

HPB (x, y) =
1∑

i∈Nx
wxi

+

∑
i∈Nx

wxiHPB (i, y)∑
i∈Nx

wxi

=
1∑

i∈Nx
wxi

+H(x̄, y). (22)

So for x 6= y,

φ(x, y) =
1∑

i∈Nx
wxi

+ φ(x̄, y). (23)

MX ′(x, y) = 1 +

1−
∑
i∈Nx

PBxi −
∑
j∈Ny

PByj

MX ′(x, y)

+
∑
i∈Nx

PBxiMX ′(i, y)

+
∑
j∈Ny

PByjMX ′(x, j). (24)

Note that (24) also holds for x ∈ Ny . We now have∑
i∈Nx

PBxi +
∑
j∈Ny

PByj

MX ′(x, y)

= 1 +
∑
i∈Nx

PBxiMX ′(i, y) +
∑
j∈Ny

PByjMX ′(x, j).(25)

(25) shows that at least one of the two inequalities below holds:

MX ′(x, y) >

∑
i∈Nx

PBxiMX ′(i, y)∑
i∈Nx

PBxi
=MX ′(x̄, y) (26)

MX ′(x, y) >

∑
j∈Ny

PByjMX ′(x, j)∑
j∈Ny

PByj
=MX ′(x, ȳ) (27)

Without loss of generality, suppose that (27) holds (otherwise,
we can prove the other way around). From (25), we have∑

i∈Nx

PBxiMX ′(x, y) = 1 +
∑
i∈Nx

PBxiMX ′(i, y)

+
∑
j∈Ny

PByjMX ′(x, j)−
∑
j∈Ny

PByjMX ′(x, y). (28)

i.e.,

MX ′(x, y) =
1∑

i∈Nx

PBxi
+MX ′(x̄, y)

+

∑
j∈Ny

PByj (MX ′(x, ȳ)−MX ′(x, y))

∑
i∈Nx

PBxi

<
1∑

i∈Nx

wxi
+MX ′(x̄, y). (29)

Now we claim thatMX ′(x, y) ≤ φ(x, y). Suppose it is not the
case. Let β = maxx,y{MX ′(x, y)− φ(x, y)}. Among all the
pairs x, y realizing β, choose any pair. It is clear that x 6= y,
since MX ′(x, x) = 0 ≤ φ(x, x). By (23) and (29),

MX ′(x, y) = φ(x, y) + β

=
1∑

i∈Nx
wxi

+ φ(x̄, y) + β

≥ 1∑
i∈Nx

wxi
+MX ′(x̄, y)

> MX ′(x, y). (30)

This is a contradiction. ThusMX ′(G) < φ(x, y) < 2HPB (G).
Now we are ready to complete the proof of Lemma 2. We

couple the Markov chains X and X ′ so that they are equal
until the two random walkers become neighbors. Note that
half of the time when the walkers in X ′ meet, they do not
meet in X , but stay in the same position. We claim that
MX (G) ≤ 2MX ′(G).

In the random process X ′, when two random walkers m, n
meet, instead of finishing the process, we let them cross and
continue the random walks according to PX ′joint. The expected
length of each cross is less than or equal to MX ′(G). At each
cross, the random process X finishes with a probability of 1/2,
independently. Thus for any x, y ∈ V we have

MX (x, y) ≤
∞∑
i=1

(
1

2

)i
iMX ′(G) = 2MX ′(G). (31)

This completes the proof.
Now we are ready to prove Theorems 1 and 2 in the next

two subsections.

C. An Upper Bound on Binary Consensus

Without loss of generality, let us suppose that in the initial
setting more nodes hold strong positive opinions (S+). As
briefly analyzed in Section II-A, the process undergoes two
stages: the depletion of S− and the depletion of W−. By our
assumption,

|S+(0)| > |S−(0)| (32)

and
|S+(0)|+ |S−(0)| = N, (33)

where N is the number of nodes on the graph.
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According to the update rules in Section II-A, we have

|S+(t)| − |S−(t)| = |S+(0)| − |S−(0)|. (34)

Let T1 and T2 denote the maximum expected time it takes
for Stage 1 and Stage 2 to finish. In the first stage, two opposite
strong opinions annihilate when an edge between them is
activated. Otherwise they take biased random walks on the
graph G. In the second stage, the remaining |S+(0)|−|S−(0)|
strong positives take random walks over graph G, transforming
weak negative into weak positive.

Let CTG(v) denote the expected time for a random walker
starting from node v to meet all other random walkers who
are also taking random walks on the same graph but starting
from different nodes. Define

CT (G) = max
v∈V

CTG(v).

Corollary 3. Let MX (G) be the meeting time of the biased
random walk X defined in Section II-A. Then

CT (G) = O(MX (G) logN). (35)

Proof: Since there are no more than N consecutive
meetings, we can easily get a union bound for CT (G), which
is NMX (G).

In order to obtain a tighter bound for CT (G), we divide
the random walk into lnN periods of length kMX (G) each,
where k is a constant. Let a be the “special” random walker
trying to meet all other random walkers. For any period i and
any other random walker v, by the Markov inequality, we have

Pr(a does not meet v during period i)

≤ MX (G)

kMX (G)

=
1

k
(36)

so

Pr(a does not meet v during any period)

≤
(

1

k

)lnN

= N− ln k (37)

If we take the union bound,

Pr(a doesn’t meet some walker during any period)

≤ N ·N− ln k. (38)

Conditioning on whether or not the walker a has met all
other walkers after all kMX (G) lnN steps, and using the
previous NMX (G) upper bound, we have

CT (G) ≤ kMX (G) lnN +N ·N− ln k ·NMX (G)

= kMX (G) lnN +N2−ln kMX (G) (39)

When k is sufficiently large, say k ≥ e6, the second term
is small, so

CT (G) < (k + 1)MX (G) lnN. (40)

This completes the proof.
Proof of Theorem 1: In order to analyze Stage 1, we

can construct a coupling process. When two different strong
opinions meet, instead of following the rules to change into
weak opinions, they just keep their states and keep moving
along the same path they would have as weak opinions. This
process is over when every strong opinion has met all other
opposite strong opinions, by when Stage 1 must have finished,
i.e. before at most N2/4 such meetings. The rest of the proof
just follows from Corollary 3, except we divide the random
walks into ln(N2/4) periods of length kMX (G) instead of
lnN . Hence we have T1 ≤ 2CT (G). T2 ≤ CT (G) follows
from the fact that there are at most N − 1 meetings for a
single strong opinion to meet all the weak opinions to ensure
convergence. By Lemma 1 , Lemma 2 and Corollary 3 , both
T1 and T2 are O(N3 logN).

Hence the upper bound of convergence time of binary voting
is thus O(N3 logN).

D. An Upper Bound on Quantized Consensus

Recall that a non-trivial exchange in quantized consensus
happens when the difference in values at the nodes is greater
than 1.

Let Q(t) denote a vector of values all nodes holding at time
t. Set Q̄ = Qsum/N , where Qsum is defined in (1).

We construct a Lyapunov function LQ̄ [2][4][10] as:

LQ̄(Q(t)) =

N∑
i=1

(
Qi(t)− Q̄

)2
. (41)

Let m = miniQi(0) and M = maxiQi(0). It is easy to
see that LQ̄(Q(0)) ≤ (M−m)2N

4 . Equality holds when half of
the values are M and others are m.

Corollary 4. In a non-trivial exchange,

LQ̄(Q(t)) ≥ LQ̄(Q(t+ 1)) + 2.

Proof: A non-trivial exchange follows the first update rule
of quantized consensus algorithm in Section II-B.

Suppose Qi(t) = x1 and Qj(t) = x2 have a non-trivial
exchange at time t, and the rest of the values stay unchanged.
Without loss of generality, let x1 ≤ x2 − 2. We have

LQ̄(Q(t))− LQ̄(Q(t+ 1))

= x2
1 + x2

2 − (x1 + 1)2 − (x2 − 1)2

= 2(x2 − x1)− 2 ≥ 2. (42)

Proof of Theorem 2: Corollary 4 shows that the Lya-
punov function is decreasing. The convergence of quantized
consensus must be reached after at most γ = (M−m)2N

8 non-
trivial exchanges. Similar to the analysis for the binary voting
algorithm, when every random walker has met each of the
other random walkers γ times, all the non-trivial exchanges
must have finished. By Corollary 3, this process finishes in
O(N3 logN) time.
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Fig. 2: A star network.

IV. SIMULATION RESULTS

In this section, we give examples of star networks, line
graphs and lollipop graphs in order to show how to use the
analysis in Section III for the particular graphs with known
topologies. Simulation results are provided to validate the
analysis. We also simulate the distributed process on Erdös-
Rényi random graph in order to get some insight on how the
algorithm performs on a random graph.

A. Star Networks

Star networks are a common network topology. A star
network S of N nodes has one central hub and N − 1 leaf
nodes, as shown in Fig. 2. Now let us derive an upper bound
following the similar analysis in Section III.

1) Analysis: By (10) in Section III-B, suppose that there is
a star network of N nodes, with the central hub denoted as c.
For ∀i, j 6= c, we have

wic = wjc =
1

N

(
1 +

1

N − 1

)
=

1

N − 1
. (43)

The equivalent resistance between any two leaf nodes i and j
is

r′ij =
1

wic
+

1

wjc
= 2N − 2. (44)

By the symmetry of the star network, it is easy to see that

HPB (i, j) = HPB (j, i). (45)

By (13),

HPB (S) = HPB (i, j) = N(N − 1). (46)

Then following similar analysis in Section III-C and Section
III-D, we can bound the convergence time of both binary and
multi-level quantized consensus algorithms of a star network
by O(N2 logN).

2) Simulations: We simulate the star networks with the
number of nodes N ranging from 21 to 481 , with intervals of
20, for both binary consensus and quantized consensus algo-
rithms. For binary consensus, Initially, there are dN/2e strong
positive and bN/2c strong negative nodes, i.e., |S+|− |S−| =
1. Those nodes communicate with each other following the
protocol in Section II-A. The process finishes when consensus
is reached. Simulation results on binary consensus are shown
in Fig. 5a, and are indeed of order O(N2 logN), as analyzed
above.

Fig. 3: A line graph.

For quantized consensus, we show two different initial
settings: (1) Q(i)(0) = 2, Q(j)(0) = 0, Q(k)(0) = 1, for
k 6= i, j and i, j 6= c, Fig. 5b; (2) Initial values of nodes are
drawn uniformly from 1 to 100, Fig. 5c. Nodes on the graph
exchange information according to the update rules in Section
II-B.

We notice that quantized consensus algorithm converges
faster than the binary consensus in the above setting, because
a non-trivial exchange takes place whenever the difference of
the values between the selected nodes is greater than one.
The Lyapunov value is non-increasing. However, in binary
consensus, a strong negative opinion can influence the weak
opinions before its annihilation. In the first setting in quantized
consensus simulation, there is only one non-trivial exchange
before reaching convergence, hence the convergence time is
actually the meeting time of the graph. In the second setting,
due to the uniform distribution of node values, the non-trivial
exchange is more often than the first setting, because the
special structure of a star network, central hub can balance
the values of leaf nodes quickly.

Convergence time in all cases is the average of 20 rounds
of simulations.

B. Line Graph

A line graph is a simple graph structure. Nodes in a line
graph L are connected to one another in a line as shown in
Fig. 3. Although a line graph is less realistic in applications, it
serves as an example here to show that the convergence time
can indeed reach O(N3 logN), thus to show the tightness of
the derived bound.

1) Analysis: In a line graph of N nodes, for two adjacent
nodes i, j (not end points), we have

wij =
1

N

(
1

2
+

1

2

)
=

1

N
. (47)

The equivalent resistance is

rij = N. (48)

For two end points, similarly, both have resistance of 2/3N
with their neighbors. Thus the effective resistance between
two end points m,n of the line graph is N2 − 5

3N . By the
symmetry of a line graph, the hitting time of the graph is

HPB (L) = HPB (m,n) =
1

2
N

(
N2 − 5

3
N

)
. (49)

The rest follows the analysis in Section IV-A1, an upper bound
on the convergence time for binary and multi-level quantized
consensus is O(N3 logN).

2) Simulations: Experiment settings for line graph are same
as in Section IV-A2. The results are plotted in Fig. 5d - Fig.
5f.
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Fig. 4: A lollipop graph.

C. Lollipop Graph

A lollipop graph is a line graph joined to a clique. Fig. 4
shows a lollipop graph P with N nodes, m of which form a
clique Km, and the rest of N −m nodes connected to Km by
node i as a line. It is well known that a lollipop graph, when
m = b(2N + 1)/3c, is the extremal graph for the maximum
hitting time O(N3) of a simple random walk [16][17]. In a
simple random walk starting from i, the walker is very unlikely
to go to j, compared with from j to i. This results in a latency
factor of N for a simple random walk starting from the clique
and going to the end of the line on the lollipop. For a natural
random walk XN on P , the hitting time is O(N4) [2], because
of the laziness of XN . However, it is not the case in a biased
random walk. Since PBij = PBji , it is equal likely that a random
walker moves from i to j and from j to i.

For any two nodes s, t on the clique Km, and m is O(N),

wst =
1

N

(
1

m− 1
+

1

m− 1

)
=

2

N(m− 1)
. (50)

The effective resistance r′st of a clique is clearly less than
rst = 1/wst = O(N2), and therefore the hitting time from
any node on Km to i is O(N3). Furthermore, the line on P
has hitting time of O(N3), as analyzed in Section IV-B. We
then have

HPB (P) = O(N3). (51)

Similarly, an upper bound of convergence time is O(N3 logN)
for lollipop graph.

Experiment settings for a lollipop graph are the same as in
Section IV-A2. The results are plotted in Fig. 5g - Fig. 5i.

D. Erdös-Rényi random graph

In an Erdös-Rényi random graph R, an edge is set between
each pair of nodes independently with equal probability p. As
one of the properties of Erdös-Rényi random graphs, when
p > (1+ε) logN

N , the graph R will almost surely be connected
[18].

E(number of edges) = 0.5N(N − 1)p.

The diameter of Erdös-Rényi random graphs is rather sensitive
to small changes in the graph, but the typical distance between
two random nodes on the graph is d = logN

log(pN) [18].
We created Erdös-Rényi random graphs by setting p =

5 logN/N , where N ranged from 21 to 481, with an interval
of 20. Other settings are the same as in Section IV-A2.
Experiment results of Erdös-Rényi random graphs are shown

in Fig. 5j - Fig 5l. It appears that the expected convergence
time of binary consensus is on the order of N2 logN , which
is lower than the general upper bound of Theorem 1.

V. CONCLUSIONS

In this paper, we use the theory of electric networks, random
walks, and couplings of Markov chains to derive a polynomial
bound on convergence time with respect to the size of the net-
work, for a class of distributed quantized consensus algorithms
[3][4]. We improve the state of art bound of O(N4 logN)
for binary consensus and O(N5) for quantized consensus
algorithms to O(N3 logN). Our analysis can be extended
to a tighter bound for certain network topologies using the
effective resistance analogy. Our results provide insights to the
performance of the binary and multi-level quantized consensus
algorithms.

REFERENCES

[1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Transactions on Information Theory, pp. 2508–2530,
2006.

[2] M. Zhu and S. Martı́nez, “On the convergence time of asynchronous
distributed quantized averaging algorithms,” IEEE Transactions on
Automatic Control, vol. 56, pp. 386–390, 2011.
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(a) Simulation results of average convergence time
on binary consensus algorithm of star networks.
The solid line indicates 0.63N2 logN .

(b) Simulation results of average convergence time
on quantized consensus of star networks in setting
1. The solid line indicates 0.6N2, and the dash
line indicates 0.7N2.

(c) Simulation results of average convergence time
on quantized consensus of star networks in setting
2. The solid line indicates 13N logN , and the dash
line indicates 15N logN .

(d) Simulation results of average convergence time
on binary consensus algorithm of line graphs. The
solid line indicates 0.15N3 logN .

(e) Simulation results of average convergence time
on quantized consensus of line graphs in setting 1.
The solid line indicates 0.17N3.

(f) Simulation results of average convergence time
on quantized consensus of line graphs in setting 2.
The solid line indicates 0.25N3.

(g) Simulation results of average convergence time
on binary consensus algorithm of lollipop graphs.
The solid line indicates 0.14N3 logN .

(h) Simulation results of average convergence time
on quantized consensus of lollipop graphs in setting
1. The solid line indicate 0.15N3.

(i) Simulation results of average convergence time
on quantized consensus of lollipop graphs in setting
2. The solid line indicate 0.3N3.

(j) Simulation results of average convergence time
on binary consensus algorithm of Erdös-Rényi ran-
dom graphs. The solid line indicates 2N2 logN ,
and the dash line indicates 2.3N2 logN .

(k) Simulation results of average convergence time
on quantized consensus of Erdös-Rényi random
graphs in setting 1. The solid line indicates 0.5N2,
and the dash line indicates 0.7N2.

(l) Simulation results of average convergence time
on quantized consensus of Erdös-Rényi random
graphs in setting 2. The solid line indicates 1.1N2.

Fig. 5: Simulation results on average convergence time (squares) of binary consensus and quantized consensus versus the size
of networks.
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