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Abstract

We derive the exact distribution of the largest eigenvalue for finite dimensions real
Wishart matrices and for the Gaussian Orthogonal Ensemble (GOE). We compare the
exact distribution with the Tracy-Widom distribution which arises in many fields as the
limiting distribution of the largest eigenvalue of large random matrices. In this regard
we show that the Tracy-Widom distribution can be approximated by a properly scaled
and shifted Gamma distribution, with great accuracy for thevalues of common interest
in statistical applications.

Keywords: Random Matrix Theory, characteristic roots, largest eigenvalue,
Tracy-Widom distribution, Wishart matrices, Gaussian Orthogonal Ensemble.

1. Introduction

The distribution of the largest eigenvalue of Wishart and Gaussian random matrices
plays an important role in many fields of multivariate analysis, including principal com-
ponent analysis, analysis of large data sets, communication theory and mathematical
physics [1, 2].

The exact distribution of the largest eigenvalue for finite dimension uncorrelated
central complex Wishart matrices is given in [3]. The extension to non-central uncor-
related complex Wishart is derived in [4], while the case of correlated central complex
Wishart matrices with arbitrary one-sided correlation canbe obtained by following the
approach in [5, 6, 7].

In this paper we derive a simple expression for the exact distribution of the largest
eigenvalue for real Wishart matrices and for the GOE, which can be used for arbitrary
dimensions.

Also, we compare the exact distribution with the Tracy-Widom distribution, which
arises in many fields as the limiting distribution of the largest eigenvalue of large ran-
dom matrices, and whose applications include principal component analysis, analysis
of large data sets, communication theory and mathematical physics [8, 9, 10, 11, 12,
13]. In this regard we show that the Tracy-Widom distribution can be approximated by
a properly scaled and shifted Gamma distribution, with great accuracy for the values of
common interest in statistical applications.
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2. Exact distribution of the eigenvalues for finite dimensions Wishart and Gaus-
sian symmetric matrices

We derive the exact distribution of the largest eigenvalue for real Wishart matrices
and for random symmetric Gaussian matrices. For completeness we also summarize
the analogous distributions for the complex case (Wishart and Gaussian Unitary En-
semble).

2.1. Real random matrices: uncorrelated Wishart and the Gaussian Orthogonal En-
semble (GOE)

Assume a Gaussian realp×m matrixX with independent, identically distributed
(i.i.d.) columns, each with zero mean and covarianceΣ = I. Denotingnmin = min{m, p},
nmax = max{m, p}, the distribution of the (real) ordered eigenvaluesλ1 ≥ λ2 . . . ≥
λnmin ≥ 0 of the real Wishart matrixW = XX

T is given by [14, 1]

fλ(x1, . . . , xnmin) = K

nmin
∏

i=1

e−xi/2x
(nmax−nmin−1)/2
i ·

nmin
∏

i<j

(xi − xj) (1)

whereK is a normalizing constant given by

K =
πn2

min/2

2nminnmax/2Γnmin(nmax/2)Γnmin(nmin/2)
(2)

with Γm(a) = πm(m−1)/4
∏m

i=1 Γ(a− (i− 1)/2) .
Denotingx = [x1, x2, . . . , xnmin ], the probability distribution function (p.d.f.) in (1)

can be written alternatively, in terms of the Vandermonde matrix V(x) with elements
{

xi−1
j

}

, as

fλ(x) = K |V(x)|
nmin
∏

i=1

e−xi/2xαi (3)

whereα , (nmax− nmin − 1)/2 and| · | stands for determinant.
Similarly, for the Gaussian Orthogonal Ensemble the interest is in the distribution

of the (real) eigenvalues for realn×n symmetric matrices whose entries are i.i.d. Gaus-
sianN (0, 1/2) on the upper-triangle, and i.i.d.N (0, 1) on the diagonal [13]. Their
joint p.d.f. isfλ(x1, . . . , xnmin) ∝ ∏n

i=1 e
−x2

i
/2 ·∏n

i<j (xi − xj) [15, 13]. Then, by
following the same approach as for Wishart, the joint p.d.f.of the ordered eigenvalues
for these matrices can be written

fλ(x) = KGOE |V(x)|
n
∏

i=1

e−x2
i
/2 (4)

whereKGOE = (2n/2
∏n

i=1 Γ[i/2])
−1 is a normalizing constant. Note that the eigen-

values here are distributed over all the reals.
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Theorem 1. The cumulative distribution function (CDF) of the largest eigenvalue of
the real Wishart matrixW is

Fλ1
(x1) = Pr {λ1 ≤ x1} = K

√

|A(x1)| (5)

where for evennmin the elements of thenmin × nmin skew-symmetric matrixA(x1) are

ai,j(x1) = 22α+i+j
{

γ
(

α+ i,
x1
2

)

γ
(

α+ j,
x1
2

)

+

−2

∫ x1/2

0

tα+i−1e−tγ (α+ j, t) dt

}

(6)

for i, j = 1, . . . , nmin. Note thatai,j(x1) = −aj,i(x1) andai,i(x1) = 0.
Whennmin is odd, the elements of the(nmin+1)×(nmin+1) skew-symmetric matrix

A(x1) are as in(6), with the additional elements

ai,nmin+1(x1) = 2α+iγ
(

α+ i,
x1
2

)

i = 1, . . . , nmin

anmin+1,j(x1) = −aj,nmin+1(x1) j = 1, . . . , nmin

anmin+1,nmin+1(x1) = 0

whereγ(a, x) =
∫ x

0
ta−1e−tdt is the lower incomplete gamma function.

Proof 1. We start by writing

Fλ1
(x1) = Pr {λ1 ≤ x1} =

∫

· · ·
∫

D(x1)

fλ(w1, . . . , wnmin)dw (7)

with D(x1) = {w1, . . . , wnmin : x1 ≥ w1 ≥ w2 . . . ≥ wnmin ≥ 0}.
Then we have

∫

· · ·
∫

D(x1)

fλ(w1, . . . , wnmin)dw = K

∫

· · ·
∫

D(x1)

|V(w)|
nmin
∏

i=1

ξ (wi) dw (8)

whereξ(x) = e−x/2xα. To evaluate this integral we recall that for a genericm ×m
matrixΦ(w) with elements{Φi(wj)} the following identity holds [16, 17]

∫

· · ·
∫

b≥w1≥w2...≥wm≥a

|Φ(w)| dw = Pf(A) (9)

where Pf(A) =
√

|A| is the Pfaffian, and the skew-symmetric matrixA ism×m for
m even, and(m+ 1)× (m+ 1) for m odd, with

ai,j =

∫ b

a

∫ b

a

sgn(y − x)Φi(x)Φj(y)dxdy i, j = 1, . . . ,m. (10)

For m odd the additional elements areai,m+1 = −am+1,i =
∫ b

a
Φi(x)dx, i =

1, . . . ,m, andam+1,m+1 = 0.
Using (9) in (8) with a = 0, b = x1,Φi(x) = xi−1e−x/2xα with some simple

manipulations gives Theorem 1.
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Theorem 2. The CDF of the largest eigenvalue for the Gaussian Orthogonal Ensemble
(GOE) matrices is

Fλ1
(x1) = Pr {λ1 ≤ x1} = KGOE

√

|A(x1)| (11)

where for evenn the elements of then× n skew-symmetric matrixA(x1) are

ai,j(x1) = ψ(i, x1)ψ(j, x1)− 2

∫ x1

−∞
ti−1e−t2/2ψ(j, x)dt (12)

and

ψ(i, x) , 2
i

2
−1

(

sgn(x)iγ

(

i

2
,
x2

2

)

− (−1)iΓ

(

i

2

))

for i, j = 1, . . . , n.
Whenn is odd, the elements of the(n+1)× (n+1) skew-symmetric matrixA(x1)

are as in(12), with the additional elements

ai,n+1(x1) = ψ(i, x1) i = 1, . . . , n

an+1,j(x1) = −aj,n+1(x1) j = 1, . . . , n

an+1,n+1(x1) = 0.

Proof 2. Starting from(4) the proof is similar to that for Theorem 1.

2.2. Complex random matrices: uncorrelated Wishart and theGaussian Unitary En-
semble (GUE)

Assume now a Gaussian complexp ×m matrixX with i.i.d. columns, each with
zero mean and covarianceΣ. The distribution of the (real) ordered eigenvalues of the
complex Wishart matrixW = XX

H is known since many years from [14] in terms of
hypergeometric functions of matrix arguments. Unfortunately, the expressions given in
[14] are not easy to use, due to the difficulties in evaluatingzonal polynomials. The first
expression of practical usage for the joint distribution ofthe eigenvalues of a complex
Wishart matrix with correlation has been given in [5] by expressing the hypergeometric
function of matrix arguments as product of determinants of matrices. More recently,
that approach has been expanded to cover the case whereΣ has eigenvalues of arbitrary
multiplicity, and to find several statistics regarding the marginal eigenvalues distribu-
tion [6, 7, 18]. By using these approaches, the exact statistics of an arbitrary subset of
the ordered eigenvalues can be evaluated easily for finite dimension complex quadratic
forms and Wishart (uncorrelated and correlated) matrices.

Regarding the largest eigenvalue statistic, below we report a known result for the
particular case of uncorrelated complex Wishart matrices (i.e., forΣ = I).

Theorem 3. The CDF of the largest eigenvalue of the uncorrelated complex Wishart
matrixW is [3]

Fλ1
(x1) = Pr {λ1 ≤ x1} = KC |A(x1)| (13)

where the elements of thenmin × nmin matrixA(x1) are

ai,j(x1) =

∫ x1

0

tnmax−nmin+i+j−2e−tdt = γ (nmax− nmin + i+ j − 1, x1) (14)
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andKC is a normalizing constant given by

KC =
πnmin(nmin−1)

Γ̃nmin(nmax)Γ̃nmin(nmin)
(15)

with Γ̃m(n) = πm(m−1)/2
∏m

i=1(n− i)! .

The following is a similar result for complex hermitian random matrices with i.i.d.
CN (0, 1/2) entries on the upper-triangle, andN (0, 1/2) on the diagonal. These ma-
trices constitute the so called Gaussian Unitary Ensemble (GUE) [13].

Theorem 4. The CDF of the largest eigenvalue for the GUE is

Fλ1
(x1) = Pr {λ1 ≤ x1} = KGUE |A(x1)| (16)

where the elements of then× n matrixA(x1) are

ai,j(x1) =

∫ x1

−∞
ti+j−2e−t2dt =

1

2

[

γ

(

i+ j − 1

2
, x21

)

sgn(x1)
i+j−1 + (−1)i+j

]

(17)
andKGUE = 2n(n−1)/2(πn/2

∏n
i=1 Γ[i])

−1 is a normalizing constant.

Proof 3. For the GUE the joint distribution of the ordered eigenvalues can be written
as [13]

fλ(x) = KGUE |V(x)|2
n
∏

i=1

e−x2
i (18)

Then, by using [6, Th. 7] witha = −∞, b = x1,Ψi(xj) = Φi(xj) = xi−1
j , ξ(x) =

e−x2

we get immediately the result.

These thorems can be used for finite dimensional random matrices of limited di-
mensions in the uncorrelated case. For the extension of Theorem 3 to correlated com-
plex Wishart see [18, 6, 7] and references therein.

We remark that the previous theorems can be used to obtain explicit expressions for
the distribution of the largest eigenvalue. In fact,γ(a, x) can be written as combina-
tions of exponentials and powers ofx whena is an integer, and as the combination of
exponentials, powers ofx, and erf(x) whena is a multiple of1/2. Thus, we can write
explicit expressions for the CDF and p.d.f. ofλ1 for all previous theorems.

For example, by expanding (5) we derived the following expressions for the CDF
of the largest eigenvalue for real Wishart matrices.

Fornmin = nmax = 2:

Fλ1
(x1) =

√

x1π

2
e−x1/2erf

√

x1
2

+ e−x1 − 1

(19)
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Fornmin = nmax = 3:

Fλ1
(x1) = e−3x/2

(

ex/2 (ex − x− 1)erf

√

x

2
−
√

2x

π
(ex(x− 1) + 1)

)

(20)

Fornmin = nmax = 4:

Fλ1
(x1) =

e−2x

√
32

(√
2
(

4e2x − ex
(

x3 + 2x2 + 2x+ 8
)

+ 2(x+ 2)
)

+

−√
πxex/2

(

ex
(

x2 − 4x+ 6
)

− 2(x+ 3)
)

erf

√

x

2

)

(21)

Similar expressions can be derived for the p.d.f., for complex Wishart, for GOE
and for GUE. These expressions becomes cumbersome for largematrices.

3. Limiting behavior for large random matrices: the Tracy-W idom distribution

The pioneering works [8, 9] and [11] have shown the importance of the Tracy-
Widom distribution, which arises in many fields as the limiting distribution of the
largest eigenvalue of large random matrices. This distribution, originally derived in
the study of the Gaussian unitary ensemble, has been shown tobe related to many ar-
eas concerned with large random matrices. Applications include principal component
analysis, analysis of large data sets, combinatorics, communication theory, representa-
tion theory, probability, statistics and mathematical physics [10, 11, 19, 12, 13, 20].

For example, it has been shown in [11, 12] for principal component analysis (PCA)
that if X is ann × p matrix whose entries are i.i.d. standard Gaussian andλ1 is the
largest eigenvalue ofXX

H , then forn, p→ ∞
λ1 − µnp

σnp

D−→ T Wβ (22)

whereT Wβ denotes a random variable (r.v.) with Tracy-Widom distribution of order
β, for β = 1, 2, 4. In the previous expressionβ = 1 when the entries ofX are standard
real Gaussian, andβ = 2 when the entries are standard complex Gaussian. We recall
that a random variableZ is said to have a standard complex Gaussian distribution
(denotedCN (0, 1)) if Z = (Z1 + iZ2), whereZ1 andZ2 are i.i.d. real Gaussian
N (0, 1/2). The scaling and centering parameters in (22) are [11, 12]

µnp =
(√
n+ a1 +

√
p+ a2

)2
(23)

σnp =
√
µnp

(

1√
n+ a1

+
1√

p+ a2

)1/3

(24)

where the best adjustment parametersa1, a2 are known to bea1 = a2 = −1/2 for
real Wishart (β = 1) anda1 = a2 = 0 for complex Wishart (β = 2). A similar
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behavior can be proved for more general conditions when the entries ofX are not
Gaussian [19, 21]. Due to the simplicity of this result, the Tracy-Widom distribution is
of extreme usefulness for problems involving PCA with largedimensional matrices.

The Tracy-Widom CDFs are given by [8, 9, 13]

F1(x) = exp

{

−1

2

∫ ∞

x

q(y) + (y − x)q2(y)dy

}

(25)

F2(x) = exp

{

−
∫ ∞

x

(y − x)q2(y)dy

}

(26)

F4

(

x√
2

)

= cosh

{

1

2

∫ ∞

x

q(y)dy

}

√

F2(x) (27)

whereq(y) is the unique solution to the Painvalé II differential equation

q′′(y) = yq′(y) + 2q3(y) (28)

satisfying the condition
q(y) ∼ Ai(y) y → ∞ (29)

andAi(y) denotes the Airy function.
The functionF4(x) can be derived from the other two. In fact, from (25)(26) and

(27) we can write

F4 (x) =
1

2

(

F1(x
√
2) +

F2(x
√
2)

F1(x
√
2)

)

(30)

and

f4(x) =
1√
2

[

f1(x
√
2) +

f2(x
√
2)F1(x

√
2)− F2(x

√
2)f1(x

√
2)

F 2
1 (x

√
2)

]

(31)

wherefβ(x) = dFβ(x)/dx is the p.d.f.. So in the following we will mainly focus on
F1(x) andF2(x).

These distributions can be evaluated numerically by solving the Painlevé II differ-
ential equation (28) or the corresponding Fredholm determinant [8, 11, 12, 22, 13, 23].

In this paper we propose a very simple approximation for the Tracy-Widom dis-
tribution, to avoid the need for numerical solution of differential equations of Fred-
holm determinants. The approximation is shown to be extremely accurate for val-
ues of the CDF or of the complementary complementary cumulative distribution func-
tion (CCDF) of practical uses.

4. A simple approximation of the Tracy-Widom distribution b ased on the gamma
distribution

It is known that the exact distribution of the largest eigenvalue of a complex Wishart
matrix is a mixture of gamma distributions, i.e., its p.d.f.can be expressed as the

7



Table 1: Parameters for ApproximatingT Wβ with Γ[k, θ]− α.

T W1 T W2 T W4

k 46.446 79.6595 146.021
θ 0.186054 0.101037 0.0595445
α 9.84801 9.81961 11.0016

weighted sum of termsxae−bx (see [3] for the uncorrelated case and [6, 18] for one-
sided correlated Wishart matrices). For finite dimensions matrices, it can be shown that
the exact distribution is very well approximated by a (single) gamma distribution, with
proper parameters chosen to match the first moments of the true distribution.

Based on these observations, we propose the approximation

T Wβ ≃ G − α (32)

whereα is a constant, andG ∼ Γ(k, θ) denotes a Gamma r.v. with shape parameterk
and scale parameterθ. Thus the CDF and p.d.f. ofT Wβ are approximated as:

Fβ(x) ≃
1

Γ[k]
γ

(

k,
x+ α

θ

)

, x > −α (33)

fβ(x) ≃
1

Γ[k]θk
(x+ α)

k−1
e−

x+α

θ , x > −α (34)

whereΓ[.] is the Gamma function, andγ (k, x) =
∫ x

0 t
k−1e−tdt is the lower incom-

plete Gamma function.
The parametersk, θ, α should be suitably chosen according to some criterion. For

example, we have chosen to setk, θ, α for matching the first three moments of the
distributionsT Wβ . To this aim we recall that for the Gamma r.v. the meas isE {G} =
kθ, the variance is var{G} = kθ2 and the skewness is Skew{G} = 2√

k
. If µβ , σ

2
β , Sβ

are the mean, variance and skewness of the Tracy-Widom (see e.g. [12]), matching the
first three moments gives:

k =
4

S2
β

(35)

θ = σβ
Sβ

2
(36)

α = kθ − µβ (37)

The parameters for the approximation (33) (34) obtained from these equations are re-
ported in Table 1.

The comparison with pre-calculated p.d.f. values from [22]is shown in Fig. 1.Since
in linear scale the exact and approximated distributions are practically indistinguish-
able, in Fig. 2 we report the CDF and CCDF in logarithmic scalefor Tracy-Widom 2
(similar for the others). It can be seen that the approximation is in general very good
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for all values of the CDF of practical interest. In particular there is an excellent agree-
ment between the exact and approximate distributions for the right tail. The left tail
is less accurate but still of small relative error for valuesof the CDF of practical sta-
tistical uses. Note that, differently from the true distribution which goes to zero only
asymptotically, the left tail is exactly zero forx < −α.

TW1

TW2

-5 0 5
x

0.1

0.2

0.3

0.4

0.5

pdfHxL

Figure 1: Comparison between the exact (continuous line) and approximated (dashed) PDF for the Tracy-
Widom 1 and Tracy-Widom 2. The exact and approximated curvesare practically indistinguishable on this
scale.

-5 0 5
x

10-8

10-6

10-4

0.01

1
CDFHxL, CCDFHxL

Figure 2: Comparison between the exact (continuous line) and approximated (dashed) CDF, CCDF, Tracy-
WidomT W2, log scale. The two CCDF are practically indistinguishable.

Some specific values are given in Table 2 and 3 where it can be noted that, for
values of common use, the relative error is small.
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Table 2: Precision of the approximation: CDF ofT W1 vs.Γ[k, θ]− α for some percentiles.

x Target CDF CDF CDF
CDF [22] approximation rel. error (%)

-4.64 0.001 0.0011 0.0009 -17.40
-3.90 0.010 0.0099 0.0095 -4.02
-3.18 0.050 0.0500 0.0501 0.16
-2.78 0.100 0.1004 0.1010 0.65
-1.91 0.300 0.3001 0.3011 0.32
-1.27 0.500 0.4995 0.4995 -0.01
-0.59 0.700 0.7006 0.6998 -0.12
0.45 0.900 0.9000 0.8996 -0.04
0.98 0.950 0.9500 0.9500 -0.00
2.02 0.990 0.9899 0.9901 0.02
3.24 0.999 0.9989 0.9990 0.01

5. Numerical results

The calculation of the exact distribution of the largest eigenvalue is easy by using
Theorems 1-4 for not too large random matrices. For example,we show in Fig. 3 and
Fig. 4 the distribution of the largest eigenvalue for real and complex Wishart matrices,
with differentnmin, nmax. In the figure we report the exact distributions given by (5),
(13) and the centered and scaled Tracy-Widom distribution (22) (here we can use the
exact Tracy-Widom or the approximations (33) which are non distinguishable in this
scale).

In Fig. 5 and Fig. 6 we report the exact distribution for GOE (eq. (11)) and for GUE
(eq. (16)), forn = 2, 5, 10, 15, 20, 25. In the same figures we report the approximation
based on the Tracy-Widom distribution, which in these casesis [8, 9, 13]:

λ1 − µ′
n

σ′
n

D−→ T Wβ (38)

with µ′
n = 2σ0

√
n− a1 andσ′

n = σ0(n − a2)
−1/6, whereσ2

0 = 1/2 is the variance
of the off-diagonal elements in the ensembles in our normalization. In the previous
expression we must useβ = 1 andβ = 2 for the GOE and GUE, respectively. While
[13] indicatesa1 = a2 = 0, we have observed that the approximations are better
for smalln if we choose the adjusting parametersa1 = a2 = 1/2 for the GOE and
a1 = 0, a2 = 1 for the GUE.

We note that, for large dimension problems, the asymptotic distributions predicted
by the Tracy-Widom laws converge soon to the exact. In particular, for GOE and GUE
the properly scaled and centered Tracy-Widom laws are already very close to the exact
for very small matrices (n = 2). Also, we remark that the simple approximations (33),
(34) can be used instead of the pre-calculated tables for theTracy-Widom distribution
for values of practical interest in statistic.
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Table 3: Precision of the approximation: CDF ofT W2 vs.Γ[k, θ]− α for some percentiles.

x Target CDF CDF CDF
CDF [22] approximation rel. error (%)

-4.29 0.001 0.0010 0.0009 -8.89
-3.72 0.010 0.0102 0.0100 -1.77
-3.19 0.050 0.0505 0.0506 0.16
-2.90 0.100 0.1003 0.1006 0.35
-2.26 0.300 0.3025 0.3029 0.14
-1.80 0.500 0.5022 0.5021 -0.02
-1.32 0.700 0.7018 0.7014 -0.06
-0.59 0.900 0.9012 0.9011 -0.02
-0.23 0.950 0.9503 0.9503 0.00
0.48 0.990 0.9901 0.9901 0.01
1.31 0.999 0.9990 0.9990 0.00
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Figure 3: CDF of the largest eigenvalue, real Wishart matrix, nmin = 5, nmax = 5, 10, 15, 20. Comparison
between the exact distribution (5) (continuous line) and the scaled and centeredT W1 as in (22) (dotted).
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Figure 4: CDF of the largest eigenvalue, complex Wishart matrix, nmin = 5, nmax = 5, 10, 15, 20, 25, 30.
Comparison between the exact distribution (13) (continuous line) and the scaled and centeredT W2 as in
(22) (dotted).
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Figure 5: CDF of the largest eigenvalue, GOE. From left to right: n = 2, 5, 10, 15, 20. Comparison between
the exact distribution (11) (continuous lines) and the scaled and centeredT W1 as in (38) (dotted lines).
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Figure 6: CDF of the largest eigenvalue, GUE. From left to right: n = 2, 5, 10, 15, 20, 25. Comparison
between the exact distribution (16) (continuous lines) andthe scaled and centeredT W2 as in (38) (dotted
lines).
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