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Abstract. We consider the restless Markov bandit problem, in which
the state of each arm evolves according to a Markov process indepen-
dently of the learner’s actions. We suggest an algorithm that after T
steps achieves Õ(

√
T ) regret with respect to the best policy that knows

the distributions of all arms. No assumptions on the Markov chains are
made except that they are irreducible. In addition, we show that index-
based policies are necessarily suboptimal for the considered problem.

1 Introduction

In the bandit problem the learner has to decide at time steps t = 1, 2, . . . which
of the finitely many available arms to pull. Each arm produces a reward in a
stochastic manner. The goal is to maximize the reward accumulated over time.

Following [1], traditionally it is assumed that the rewards produced by each
given arm are independent and identically distributed (i.i.d.). If the probability
distributions of the rewards of each arm are known, the best strategy is to
only pull the arm with the highest expected reward. Thus, in the i.i.d. bandit
setting the regret is measured with respect to the best arm. An extension of this
setting is to assume that the rewards generated by each arm are not i.i.d., but
are governed by some more complex stochastic process. Markov chains suggest
themselves as an interesting and non-trivial model. In this setting it is often
natural to assume that the stochastic process (Markov chain) governing each
arm does not depend on the actions of the learner. That is, the chain takes
transitions independently of whether the learner pulls that arm or not (giving
the name restless bandit to the problem). The latter property makes the problem
rather challenging: since we are not observing the state of each arm, the problem
becomes a partially observable Markov decision process (POMDP), rather than
being a (special case of) a fully observable MDP, as in the traditional i.i.d.
setting. One of the applications that motivate the restless bandit problem is the
so-called cognitive radio problem (e.g., [2]): Each arm of the bandit is a radio
channel that can be busy or available. The learner (an appliance) can only sense
a certain number of channels (in the basic case only a single one) at a time,
which is equivalent to pulling an arm. It is natural to assume that whether the
channel is busy or not at a given time step depends on the past — so a Markov
chain is the simplest realistic model — but does not depend on which channel

http://arxiv.org/abs/1209.2693v1


the appliance is sensing. (See also Example 1 in Section 3 for an illustration of
a simple instance of this problem.)

What makes the restless Markov bandit problem particularly interesting is
that one can do much better than pulling the best arm. This can be seen al-
ready on simple examples with two-state Markov chains (see Section 3 below).
Remarkably, this feature is often overlooked, notably by some early work on
restless bandits, e.g. [3], where the regret is measured with respect to the mean
reward of the best arm. This feature also makes the problem more difficult and
in some sense more general than the non-stochastic bandit problem, in which the
regret usually is measured with respect to the best arm in hindsight [4]. Finally,
it is also this feature that makes the problem principally different from the so-
called rested bandit problem, in which each Markov chain only takes transitions
when the corresponding arm is pulled.

Thus, in the restless Markov bandit problem that we study, the regret should
be measured not with respect to the best arm, but with respect to the best policy
knowing the distribution of all arms. To understand what kind of regret bounds
can be obtained in this setting, it is useful to compare it to the i.i.d. bandit prob-
lem and to the problem of learning an MDP. In the i.i.d. bandit problem, the
minimax regret expressed in terms of the horizon T and the number of arms only
is O(

√
T ), cf. [5]. If we allow problem-dependent constants into consideration,

then the regret becomes of order logT but depends also on the gap between the
expected reward of the best and the second-best arm. In the problem of learning
to behave optimally in an MDP, nontrivial problem-independent finite-time re-
gret guarantees (that is, regret depending only on T and the number of states and
actions) are not possible to achieve. It is possible to obtain O(

√
T ) regret bounds

that also depend on the diameter of the MDP [6] or similar related constants,
such as the span of the optimal bias vector [7]. Regret bounds of order log T are
only possible if one additionally allows into consideration constants expressed
in terms of policies, such as the gap between the average reward obtained by
the best and the second-best policy [6]. The difference between these constants
and constants such as the diameter of an MDP is that one can try to estimate
the latter, while estimating the former is at least as difficult as solving the orig-
inal problem — finding the best policy. Turning to our restless Markov bandit
problem, so far, to the best of our knowledge no regret bounds are available
for the general problem. However, several special cases have been considered.
Specifically, O(log T ) bounds have been obtained in [8] and [9]. While the latter
considers the two-armed restless bandit case, the results of [8] are constrained
by some ad hoc assumptions on the transition probabilities and on the struc-
ture of the optimal policy of the problem. Also the dependence of the regret
bound on the problem parameters is unclear, while computational aspects of the
algorithm (which alternates exploration and exploitation steps) are neglected.
Finally, while regret bounds for the Exp3.S algorithm [4] could be applied, these
depend on the “hardness” of the reward sequences, which in the case of reward
sequences generated by a Markov chain can be arbitrarily high.



Here we present an algorithm for which we derive Õ(
√
T ) regret bounds,

making no assumptions on the distribution of the Markov chains. The algorithm
is based on constructing an approximate MDP representation of the POMDP
problem, and then using a modification of the Ucrl2 algorithm of [6] to learn
this approximate MDP. In addition to the horizon T and the number of arms
and states, the regret bound also depends on the diameter and the mixing time
(which can be eliminated however) of the Markov chains of the arms. If the
regret has to be expressed only in these terms, then our lower bound shows that
the dependence on T cannot be significantly improved.

2 Preliminaries

Given are K arms, where underlying each arm j there is an irreducible Markov
chain with state space Sj and transition matrix Pj . For each state s in Sj there
are mean rewards rj(s), which we assume to be bounded in [0, 1]. For the time
being, we will assume that the learner knows the number of states for each
arm and that all Markov chains are aperiodic. In Section 7, we discuss periodic
chains, while in Section 8 we indicate how to deal with unknown state spaces.
In any case, the learner knows neither the transition probabilities nor the mean
rewards.

For each time step t = 1, 2, . . . the learner chooses one of the arms, observes
the current state s of the chosen arm i and receives a random reward with
mean ri(s). After this, the state of each arm j changes according to the transition
matrices Pj . The learner however is not able to observe the current state of the
individual arms. We are interested in competing with the optimal policy π∗ which
knows the mean rewards and transition matrices, yet observes as the learner only
the current state of the chosen arm. Thus, we are looking for algorithms which
after any T steps have small regret with respect to π∗, i.e. minimize

T · ρ∗ −
∑T

t=1 rt,

where rt denotes the (random) reward earned at step t and ρ∗ is the average
reward of the optimal policy π∗. (It will be seen in Section 5 that π∗ and ρ∗ are
indeed well-defined.)

Mixing Times and Diameter If an arm j is not selected for a large number
of time steps, the distribution over states when selecting j will be close to the
stationary distribution µj of the Markov chain underlying arm j. Let µt

s be the
distribution after t steps when starting in state s ∈ Sj . Then setting

dj(t) := max
s∈Sj

‖µt
s − µj‖1 := max

s∈Sj

∑

s′∈Sj

|µt
s(s

′)− µj(s
′)|,

we define the ε-mixing time of the Markov chain as

T j
mix(ε) := min{t ∈ N | dj(t) ≤ ε}.



Setting somewhat arbitrarily the mixing time of the chain to T j
mix := T j

mix(
1
4 ),

one can show (cf. eq. 4.36 in [10]) that

T j
mix(ε) ≤

⌈

log2
1
ε

⌉

· T j
mix. (1)

Finally, let Tj(s, s
′) be the expected time it takes in arm j to reach s′ when

starting in s. We set the diameter of arm j to be Dj := maxs,s′∈Sj Tj(s, s
′).

3 Examples

Next we present a few examples that give insight into the nature of the problem
and the difficulties in finding solutions. In particular, the examples demonstrate
that (i) the optimal reward can be (much) bigger than the average reward of the
best arm, (ii) the optimal policy does not maximize the immediate reward, (iii)
the optimal policy cannot always be expressed in terms of arm indexes.

Example 1. In this example the average reward of each of the two arms of a
bandit is 1

2 , but the reward of the optimal policy is close to 3
4 . Consider a two-

armed bandit. Each arm has two possible states, 0 and 1, which are also the
rewards. Underlying each of the two arms is a (two-state) Markov chain with

transition matrix

(

1− ǫ ǫ
ǫ 1− ǫ

)

, where ǫ is small. Thus, a typical trajectory of

each arm looks like this: 000000000001111111111111111000000000 . . . , and the
average reward for each arm is 1

2 . It is easy to see that the optimal policy starts
with any arm, and then switches the arm whenever the reward is 0, and otherwise
sticks to the same arm. The average reward is close to 3

4 — much larger than
the reward of each arm.

This example has a natural interpretation in terms of cognitive radio: two
radio channels are available, each of which can be either busy (0) or available (1).
A device can only sense (and use) one channel at a time, and one wants to
maximize the amount of time the channel it tries to use is available.

Example 2. Consider the previous example, but with ǫ close to 1. Thus, a typical
trajectory of each arm is now 01010101001010110 . . . , and the optimal policy
switches arms if the previous reward was 1 and stays otherwise.

Example 3. In this example the optimal policy does not maximize the immediate
reward. Again, consider a two-armed bandit. Arm 1 is as in Example 1, and
arm 2 provides Bernoulli i.i.d. rewards with probability 1

2 of getting reward 1.
The optimal policy (which knows the distributions) will sample arm 1 until it
obtains reward 0, when it switches to arm 2. However, it will sample arm 1 again
after some time t (depending on ǫ), and only switch back to arm 2 when the
reward on arm 1 is 0. Note that whatever t is, the expected reward for choosing
arm 1 will be strictly smaller than 1

2 , since the last observed reward was 0 and
the limiting probability of observing reward 1 (when t → ∞) is 1

2 . At the same
time, the expected reward of the second arm is always 1

2 . Thus, the optimal
policy will sometimes “explore” by pulling the arm with the smaller expected
reward.
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Fig. 1. Example 4. Dashed transitions are with probability 1
2
, others are deterministic

with probability 1. Numbers are rewards in the respective state.

An intuitively appealing idea is to look for an optimal policy in an index
form. That is, for each arm the policy maintains an index which is a function of
time, states, and rewards of this arm only. At each time step, the policy samples
the arm that has maximal index. This seems promising for at least two reasons:
First, the distributions of the arms are assumed independent, so it may seem
reasonable to evaluate them independently as well; second, this works in the
i.i.d. case (e.g., the Gittins index [11] or UCB [12]). This idea also motivates
the setting when just one out of two arms is Markov and the other is i.i.d.,
see e.g. [9]. Index policies for restless Markov bandits were also studied in [13].
Despite their intuitive appeal, in general, index policies are suboptimal.

Theorem 1. For each index-based policy π there is a restless Markov bandit
problem in which π behaves suboptimally.

Proof. Consider the three bandits L (left), C (center), and R (right) in Figure 1,
where C and R start in the 1 reward state. (Arms C and R can easily be made
aperiodic by adding further sufficiently small transition probabilities.) Assume
that C has been observed in the 1

2 reward state one step before, while R has been
observed in the 1 reward state three steps ago. The optimal policy will choose
arm L which gives reward 1

2 with certainty (C gives reward 0 with certainty,
while R gives reward 7

8 with probability 1
2 ) and subsequently arms C and R.

However, if arm C was missing, in the same situation, the optimal policy would
choose R: Although the immediate expected reward is smaller than when choos-
ing L, sampling R gives also information about the current state, which can earn
reward 3

4 a step later. Clearly, no index based policy will behave optimally in
both settings. ⊓⊔

4 Main Results

Theorem 2. Consider a restless bandit with K aperiodic arms having state
spaces Sj, diameters Dj, and mixing times T j

mix (j = 1, . . . ,K). Then with
probability at least 1− δ the regret of Algorithm 2 (presented in Section 5 below)
after T steps is upper bounded by

const · S · T 3/2
mix ·∏K

j=1(4Dj) ·max
i

log(Di) · log2
(

T
δ

)

·
√
T ,



where S :=
∑K

j=1 |Sj | is the total number of states and Tmix := maxj T
j
mix the

maximal mixing time. Further, the dependence on Tmix can be eliminated to show
that with probability at least 1− δ the regret is bounded by

O
(

S ·∏K
j=1(4Dj) ·max

i
log(Di) · log7/2

(

T
δ

)

·
√
T
)

.

Remark 1. For periodic chains the bound of Theorem 2 has worse dependence
on the state space, for details see Remark 5 in Section 7.

Theorem 3. For any algorithm, any K > 1 and any m ≥ 1 there is a K-armed
restless bandit problem with a total number of S := Km states, such that the
regret after T steps is lower bounded by Ω(

√
ST ).

Remark 2. While it is easy to see that lower bounds depend on the total number
of states over all arms, the dependence on other parameters in our upper bound
is not clear. For example, intuitively, while in the general MDP case one wrong
step may cost up to D — the MDP’s diameter [6] — steps to compensate for,
here the Markov chains evolve independently of the learner’s actions, and the
upper bound’s dependence on the diameter may be just an artefact of the proof.

5 Constructing the Algorithm

MDP Representation We represent the setting as an MDP by recalling for
each arm the last observed state and the number of time steps which have gone
by since this last observation. Thus, each state of the MDP representation is
of the form (sj , nj)

K
j=1 := (s1, n1, s2, n2, . . . , sK , nK) with sj ∈ Sj and nj ∈

N, meaning that each arm j has not been chosen for nj steps when it was in
state sj . More precisely, (sj , nj)

K
j=1 is a state of the considered MDP if and

only if (i) all nj are distinct and (ii) there is a j with nj = 1.3 The action
space of the MDP is {1, 2, . . . ,K}, and the transition probabilities from a state

(sj , nj)
K
j=1 are given by the nj-step transition probabilities p

(nj)
j (s, s′) of the

Markov chain underlying the chosen arm j (these are defined by the matrix
power of the single step transition probability matrix, i.e. P

nj

j ). That is, the

probability for a transition from state (sj , nj)
K
j=1 to (s′j , n

′
j)

K
j=1 under action j is

given by p
(nj)
j (sj , s

′
j) iff (i) n′

j = 1, (ii) n′
ℓ = nℓ + 1 and sℓ = s′ℓ for all ℓ 6= j. All

other transition probabilities are 0. Finally, the mean reward for choosing arm j

in state (sj , nj)
K
j=1 is given by

∑

s∈Sj
p
(nj)
j (sj , s)·rj(s). This MDP representation

has already been considered in [8].
Obviously, within T steps any policy can reach only states with nj ≤ T .

Correspondingly, if we are interested in the regret within T steps, it will be
sufficient to consider the finite sub-MDP consisting of states with nj ≤ T . We call
this the T -step representation of the problem, and the regret will be measured
with respect to the optimal policy in this T -step representation.

3 Actually, one would need to add for each arm j with |Sj | > 1 a special state for not
having sampled j so far. However, for the sake of simplicity we assume that in the
beginning each arm is sampled once. The respective regret is negligible.



Algorithm 1 The colored Ucrl2 algorithm

Input: Confidence parameter δ > 0, aggregation parameter ε > 0, state space S,
action space A, coloring and translation functions, a bound B on the size of the
support of transition probability distributions.

Initialization: Set t := 1, and observe the initial state s1.

for episodes k = 1, 2, . . . do
Initialize episode k:
Set the start time of episode k, tk := t. Let Nk (c) be the number of times a state-
action pair of color c has been visited prior to episode k, and vk(c) the number
of times a state-action pair of color c has been visited in episode k. Compute
estimates r̂k(s, a) and p̂k(s

′|s, a) for rewards and transition probabilities, using all
samples from state-action pairs of the same color c(s, a), respectively.

Compute policy π̃k:
Let Mk be the set of plausible MDPs with rewards r̃(s, a) and transition proba-
bilities p̃(·|s, a) satisfying

∣

∣r̃(s, a)− r̂k(s, a)
∣

∣ ≤ ε+
√

7 log(2Ctk/δ)
2max{1,Nk(c(s,a))}

, (2)
∥

∥

∥
p̃(·|s, a)− p̂k(·|s, a)

∥

∥

∥

1
≤ ε+

√

56B log(4Ctk/δ)
max{1,Nk(c(s,a))}

, (3)

where C is the number of distinct colors. Let ρ(π,M) be the average reward of
a policy π : S → A on an MDP M ∈ Mk. Choose (e.g. by extended value
iteration [6]) an optimal policy π̃k and an optimistic M̃k ∈ Mk such that

ρ(π̃k, M̃k) = max{ρ(π,M) |π : S → A, M ∈ Mk}. (4)

Execute policy π̃k:
while vk(c(st, π̃k(st))) < max{1, Nk(c(st, π̃k(st)))} do

⊲ Choose action at = π̃k(st), obtain reward rt, and observe next state st+1.
⊲ Set t := t+ 1.
end while

end for

Structure of the MDP Representation The MDP representation of our
problem has some special structural properties. In particular, rewards and tran-
sition probabilities for choosing arm j only depend on the state of arm j, i.e.
sj and nj. Moreover, the support for each transition probability distribution is

bounded, and for nj ≥ T j
mix(ε) the transition probability distribution will be

close to the stationary distribution of arm j. Thus, one could reduce the T -step
representation further by aggregating states 4 (sj , nj)

K
j=1, (s

′
j , n

′
j)

K
j=1 whenever

nj , n
′
j ≥ T j

mix(ε) and sℓ = s′ℓ, nℓ = n′
ℓ for ℓ 6= j. The rewards and transition

probability distributions of aggregated states are ε-close, so that the error by

4 Aggregation of states s1, . . . , sn means that these states are replaced by a new
state sagg inheriting rewards and transition probabilities from an arbitrary si (or
averaging over all sj). Transitions to this state are set to p(sagg|s, a) :=

∑

j p(sj |s, a).



Algorithm 2 The restless bandits algorithm

Input: Confidence parameter δ > 0, the number of states Sj and mixing time T j
mix

of each arm j, horizon T .

⊲ Choose ε = 1/
√
T and execute colored Ucrl2 (with confidence parameter δ) on

the ε-structured MDP described in the “coloring” paragraph at the end of Section 5.

aggregation can be bounded by results given in [14]. While this is helpful for
approximating the problem when all parameters are known, it cannot be used
directly when learning, since the observations in the aggregated states do not
correspond to an MDP anymore. Thus, while standard reinforcement learning
algorithms are still applicable, there are no theoretical guarantees for them.

ε-structured MDPs and Colored UCRL2 In the following, we exploit the
special structure of the MDP representation. We generalize some of its structural
properties in the following definition.

Definition 1. An ε-structured MDP is an MDP with finite state space S, fi-
nite action space A, transition probability distributions p(·|s, a), mean rewards
r(s, a) ∈ [0, 1], and a coloring function c : S × A → C, where C is a set
of colors. Further, for each two pairs (s, a), (s′, a′) ∈ S × A with c(s, a) =
c(s′, a′) there is a bijective translation function φs,a,s′,a′ : S → S such that
∑

s′′

∣

∣p(s′′|s, a)− p(φs,a,s′,a′(s′′)|s′, a′)
∣

∣ < ε and |r(s, a) − r(s′, a′)| < ε.

If there are states s, s′ in an ε-structured MDP such that c(s, a) = c(s′, a)
for all actions a and the associated translation function φs,a,s′,a is the identity,
we may aggregate the states (cf. footnote 4). We call the MDP in which all such
states are aggregated the aggregated ε-structured MDP.

For learning in ε-structured MDPs we consider a modification of the Ucrl2

algorithm of [6]. The colored Ucrl2 algorithm is shown in Figure 1. As the origi-
nal Ucrl2 algorithm it maintains confidence intervals for rewards and transition
probabilities which define a set of plausible MDPs Mk. In each episode k, the
algorithm chooses an optimistic MDP M̃k ∈ Mk and an optimal policy which
maximize the average reward, cf. (4). Colored Ucrl2 calculates estimates from
all samples of state-action pairs of the same color, and works with respectively
adapted confidence intervals and a corresponding adapted episode termination
criterion. Basically, an episode ends when for some color c the number of visits
in state-action pairs of color c has doubled.

Coloring the T -step representation Now, we can turn the T -step repre-
sentation into an ε-structured MDP, assigning the same color to state-action
pairs where the chosen arm is in the same state, that is, c((si, ni)

K
i=1, j) =

c((s′i, n
′
i)

K
i=1, j

′) iff j = j′, sj = s′j , and either nj = n′
j or nj , n

′
j ≥ T j

mix(ε).
The translation functions are chosen accordingly. This ε-structured MDP can
be learned with colored Ucrl2, see Algorithm 2, our restless bandits algorithm.



(The dependence on the horizon T and the mixing times T j
mix as input parame-

ters can be eliminated, cf. the proof of Theorem 2 in Section 7.)

6 Regret Bounds for Colored UCRL2

The following is a generalization of the regret bounds for Ucrl2 to ε-structured
MDPs. The theorem gives improved (with respect to Ucrl2) bounds if there
are only a few parameters to estimate in the MDP to learn. Recall that the
diameter of an MDP is the maximal expected transition time between any two
states (choosing an appropriate policy), cf. [6].

Theorem 4. Let M be an ε-structured MDP with finite state space S, finite ac-
tion space A, transition probability distributions p(·|s, a), mean rewards r(s, a) ∈
[0, 1], coloring function c and associate translation functions. Assume the learner
has complete knowledge of state-action pairs ΨK ⊆ S×A, while the state-action
pairs in ΨU := S × A \ ΨK are unknown and have to be learned. However,
the learner knows c and all associate translation functions as well as an upper
bound B on the size of the support of each transition probability distribution
in ΨU . Then with probability at least 1 − δ, after any T steps colored Ucrl2

5

gives regret upper bounded by

42Dε

√

BCUT log
(

T
δ

)

+ ε(Dε + 2)T,

where CU is the total number of colors for states in ΨU , and Dε is the diameter
of the aggregated ε-structured MDP.

The proof of this theorem is given in the appendix.

Remark 3. For ε = 0, one can also obtain logarithmic bounds analogously to
Theorem 4 of [6]. With no additional information for the learner one gets the
original Ucrl2 bounds (with a slightly larger constant), trivially choosing B to
be the number of states and assigning each state-action pair an individual color.

7 Proofs

We start with bounding the diameter in the aggregated ε-structured MDP.

Lemma 1. For ε ≤ 1/4, the diameter Dε in the aggregated ε-structured MDP

can be upper bounded by 2
⌈

log2(4maxj Dj)
⌉

·Tmix(ε) ·
∏K

j=1(4Dj), where we set

Tmix(ε) := maxj T
j
mix(ε).

5 For the sake of simplicity the algorithm was given for the case ΨK = ∅. It is obvious
how to extend the algorithm when some parameters are known.



Proof. Let µj be the stationary distribution of arm j. It is well-known that
the expected first return time τj(s) in state s satisfies µj(s) = 1/τj(s). Set
τj := maxs τj(s), and τ := maxj τj . Then, τj ≤ 2Dj .

Now consider the following scheme to reach a given state (sj , nj)
K
j=1: First,

order the states (sj , nj) descendingly with respect to nj . Thus, assume that
nj1 > nj2 > . . . > njK = 1. Take Tmix(ε) samples from arm j1. (Then each arm
will be ε-close to the stationary distribution, and the probability of reaching the
right state sji when sampling arm ji afterwards is at least µji(sji) − ε.) Then
sample each arm j2, j3, . . . exactly nji−1 − nji times.

We first show the lemma for ε ≤ µ0 := minj,s µj(s)/2. As observed be-
fore, for each arm ji the probability of reaching the right state sji is at least
µji(sji) − ε ≥ µji(sji)/2. Consequently, the expected number of restarts of
the scheme necessary to reach a particular state (sj , nj)

K
j=1 is upper bounded

by
∏K

j=1 2/µj(sj). As each trial takes at most 2Tmix(ε) steps, recalling that
1/µj(s) = τj(s) ≤ 2Dj proves the bound for ε ≤ µ0.

Now assume that ε > µ0. Since Dε ≤ Dε′ for ε > ε′ we obtain a bound
of 2Tmix(ε

′)
∏K

j=1(4Dj) with ε′ := µ0 = 1/2τ . By (1), we have Tmix(ε
′) ≤

⌈log2(1/ε′)⌉Tmix(1/4) ≤ ⌈log2(4τ)⌉Tmix(ε), which proves the lemma. ⊓⊔

Proof of Theorem 2. Note that in each arm j the support of the transi-
tion probability distribution is upper bounded by |Sj |. Hence, Theorem 4 with

CU =
∑K

j=1 |Sj |T j
mix(ε) and B = maxj |Sj | shows that the regret is bounded

by 42Dε

√

maxi |Si| ·
∑K

j=1|Sj | · T j
mix(ε) · T log

(

T
δ

)

+ ε(Dε + 2)T with probabil-

ity ≥ 1 − δ. Since ε = 1/
√
T , this proves the first bound by Lemma 1 and

recalling (1).
If the horizon T is not known, guessing T using the doubling trick (i.e.,

executing the algorithm for T = 2i with confidence parameter δ/2i in rounds
i = 1, 2, . . .) achieves the bound given in Theorem 2 with worse constants.

Similarly, if Tmix is unknown, one can perform the algorithm in rounds
i = 1, 2, . . . of length 2i with confidence parameter δ/2i, choosing an increas-
ing function a(t) to guess an upper bound on Tmix at the beginning t of each
round. This gives a bound of order a(T )3/2

√
T with a corresponding addi-

tive constant. In particular, choosing a(t) = log t the regret is bounded by

O
(

S ·∏K
j=1(4Dj) ·maxi log(Di) · log7/2(T/δ) ·

√
T
)

with probability ≥ 1− δ. ⊓⊔

Remark 4. Whereas it is not easy to obtain upper bounds on the mixing time
in general, for reversible Markov chains Tmix can be linearly upper bounded by
the diameter, cf. Lemma 15 in Chapter 4 of [15]. While it is possible to compute
an upper bound on the diameter of a Markov chain from samples of the chain,
we did not succeed in deriving any useful results on the quality of such bounds.

Remark 5. Periodic Markov chains do not converge to a stationary distribution.
However taking into account the period of the arms, one can generalize our
results to the periodic case. Considering in an m-periodic Markov chain the m-
step transition probabilities given by the matrix Pm, one obtains m distinct



aperiodic chains (depending on the initial state) each of which converges to a
stationary distribution with respective mixing times. The maximum over these
mixing times can be considered to be the mixing time of the chain.

Thus, instead of aggregating states (sj , nj), (s
′
j , n

′
j) with nj , n

′
j ≥ T j

mix(ε) as
in the case of aperiodic chains, one aggregates them only if additionally nj ≡ n′

j

mod mj . If the periods mj are not known to the learner, one can use the least
common denominator of 1, 2, . . . , |Sj | as period. Since by the prime number the-
orem the latter is exponential in |Sj |, the obtained results for periodic arms show
worse dependence on the number of states. (Concerning the proof of Lemma 1
the sampling scheme has to be slightly adapted so that one samples in the right
period when trying to reach a particular state.)

Proof of Theorem 3. Consider K arms all of which are deterministic cycles
of length m and hence m-periodic. Then the learner faces m distinct learning
problems with K arms, each of which can be made to force regret of order
Ω(

√

KT/m) in the T/m steps the learner deals with the problem [4]. Overall,

this gives the claimed bound of Ω(
√
mKT ) = Ω(

√
ST ). Adding a sufficiently

small probability (with respect to the horizon T ) of staying in some state of each
arm, one obtains the same bounds for aperiodic arms. ⊓⊔

8 Extensions and Outlook

Unknown state space. If (the size of) the state space of the individual arms is
unknown, some additional exploration of each arm will sooner or later determine
the state space. Thus, we may execute our algorithm on the known state space
where between two episodes we sample each arm until all known states have been
sampled at least once. The additional exploration is upper bounded by O(log T ),
as there are only O(log T ) many episodes, and the time of each exploration phase
can be bounded with known results. That is, the expected number of exploration
steps needed until all states of an arm j have been observed is upper bounded by
Dj log(3|Sj |) (cf. Theorem 11.2 of [10]), while the deviation from the expectation
can be dealt with by Markov inequality or results from [16]. That way, one
obtains bounds as in Theorem 2 for the case of unknown state space.

Improving the bounds. All parameters considered, there is still a large gap
between the lower and the upper bound on the regret. As a first step, it would
be interesting to find out whether the dependence on the diameter of the arms
is necessary. Also, the current regret bounds do not make use of the interdepen-
dency of the transition probabilities in the Markov chains and treat n-step and
n′-step transition probabilities independently. Finally, a related open question is
how to obtain estimates and upper bounds on mixing times.

More general models. After considering bandits with i.i.d. and Markov arms,
the next natural step is to consider more general time-series distributions. Gen-
eralizations are not straightforward: already for the case of Markov chains of
order (or memory) 2 the MDP representation of the problem (Section 5) breaks
down, and so the approach taken here cannot be easily extended. Stationary



ergodic distributions are an interesting more general case, for which the first
question is whether it is possible to obtain asymptotically sublinear regret.
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A Proof of Theorem 4

Splitting into Episodes We follow the proof of Theorem 2 in [6]. First, as
shown in Section 4.1 of [6], setting ∆k :=

∑

s,a vk(s, a)(ρ
∗ − r(s, a)) with prob-

ability at least 1− δ
12T 5/4 the regret after T steps can be upper bounded by

∑m
k=1 ∆k +

√

5
8T log

(

8T
δ

)

. (5)

Failing Confidence Intervals Concerning the regret with respect to the true
MDPM being not contained in the set of plausible MDPsMk, we cannot use the
same argument (that is, Lemma 17 in Appendix C.1) as in [6], since the random
variables we consider for rewards and transition probabilities are independent,
yet not identically distributed.

Instead, fix a state-action pair (s, a), let S(s, a) be the set of states s′ with
p(s′|s, a) > 0 and recall that r̂(s, a) and p̂(·|s, a) are the estimates for rewards
and transition probabilities calculated from all samples of state-action pairs of
the same color c(s, a). Now assume that at step t there have been n > 0 samples
of state-action pairs of color c(s, a) and that in the i-th sample action ai has been
chosen in state si and a transition to state s′i has been observed (i = 1, . . . , n).
Then
∥

∥

∥
p̂(·|s, a)− E[p̂(·|s, a)]

∥

∥

∥

1
=

∑

s′∈S(s,a)

∣

∣

∣
p̂(s′|s, a)− E[p̂(s′|s, a)]

∣

∣

∣

≤ sup
x∈{0,1}|S(s,a)|

∑

s′∈S(s,a)

(

p̂(s′|s, a)− E[p̂(s′|s, a)]
)

x(s′)

= sup
x∈{0,1}|S(s,a)|

1
n

n
∑

i=1

(

x(φsi,ai,s,a(s
′
i))−

∑

s′

p(s′|si, ai) · x(φsi,ai,s,a(s
′))

)

. (6)

For fixed x ∈ {0, 1}|S(s,a)|,Xi := x(φsi,ai,s,a(s
′
i))−

∑

s′ p(s
′|si, ai)·x(φsi,ai,s,a(s

′))
is a martingale difference sequence with |Xi| ≤ 2, so that by Azuma-Hoeffding
inequality (e.g., Lemma 10 in [6]), Pr{∑n

i=1 Xi ≥ θ} ≤ exp(−θ2/8n) and in
particular

Pr
{

∑n
i=1 Xi ≥

√

56Bn log
(

4tCU

δ

)

}

≤
(

δ
4tCU

)7B

< δ
2B20t7CU

.

Recalling that by assumption |S(s, a)| ≤ B, a union bound over all sequences
x ∈ {0, 1}|S(s,a)| then shows from (6) that

Pr
{
∥

∥

∥
p̂(·|s, a)− E[p̂(·|s, a)]

∥

∥

∥

1
≥

√

56B
n log (4CU t/δ)

}

≤ δ
20t7CU

. (7)

Concerning the rewards, as in the proof of Lemma 17 in Appendix C.1 of [6]
— but now using Hoeffding for independent and not necessarily identically dis-
tributed random variables — we have that

Pr
{

∣

∣r̂(s, a)− E[r̂(s, a)]
∣

∣ ≥
√

7
2n log (2CU t/δ)

}

≤ δ
60t7CU

. (8)



A union bound over all t possible values for n and all CU colors of states in ΨU

shows that the confidence intervals in (7) and (8) hold with probability at least
1 − δ

15t6 for the actual counts N(c(s, a)) and all state-action pairs (s, a). (Note
that equations (7) and (8) are the same for state-action pairs of the same color.)

By linearity of expectation, E[r̂(s, a)] can be written as 1
n

∑n
i=1 r(si, ai) for

the sampled state-action pairs (si, ai). Since the (si, ai) are assumed to have the
same color c(s, a), it holds that |r(si, ai) − r(s, a)| < ε and hence |E[r̂(s, a)] −
r(s, a)| < ε. Similarly,

∥

∥E[p̂(·|s, a)] − p(·|s, a)
∥

∥

1
< ε. Together with (7) and (8)

this shows that with probability at least 1− δ
15t6 for all state-action pairs (s, a)

∣

∣r̂(s, a)− r(s, a)
∣

∣ < ε+
√

7
2n log (2CU t/δ), (9)

∥

∥

∥
p̂(·|s, a)− p(·|s, a)

∥

∥

∥

1
< ε+

√

56B
n log (4CU t/δ). (10)

Thus, the true MDP is contained in the set of plausible MDPs M(t) at step t
with probability at least 1− δ

15t6 , just as in Lemma 17 of [6]. The argument that

∑m
k=1 ∆k1M 6∈Mk

≤
√
T (11)

with probability at least 1− δ
12T 5/4 then can be taken without any changes from

Section 4.2 of [6].

Episodes with M ∈ Mk Now assuming that the true MDP M is in Mk, we
first reconsider extended value iteration. In Section 4.3.1 of [6] it is shown that for
the state values ui(s) in the i-th iteration it holds that maxs ui(s)−mins ui(s) ≤
D, where D is the diameter of the MDP. Now we want to replace D with the
diameter Dε of the aggregated MDP. For this, first note that for any two states
s, s′ which are aggregated we have by definition of the aggregated MDP that
ui(s) = ui(s

′). As it takes at most Dε steps on average to reach any aggregated
state, repeating the argument of Section 4.3.1 of [6] shows that

maxs ui(s)−mins ui(s) ≤ Dε. (12)

Let P̃k :=
(

p̃k(s
′|s, π̃k(s))

)

s,s′
be the transition matrix of π̃k on M̃k, and

vk :=
(

vk
(

s, π̃k(s)
))

s
the row vector of visit counts in episode k for each state

and the corresponding action chosen by π̃k. Then as shown in Sect. 4.3.1 of [6]6

∆k ≤ vk

(

P̃k − I
)

wk +
∑

s,a

vk(s, a)
(

r̃k(s, a)− r(s, a)
)

,

where wk is the normalized state value vector with wk(s) := u(s)− (mins u(s)−
maxs u(s))/2, so that ‖wk‖ ≤ Dε

2 . Now for (s, a) ∈ ΨK we have r̃k(s, a) = r(s, a),
while for (s, a) ∈ ΨU the term r̃k(s, a)− r(s, a) ≤ |r̃k(s, a)− r̂k(s, a)|+ |r(s, a)−
6 Here we neglect the error by value iteration explicitly considered in Sect. 4.3.1 of [6].



r̂k(s, a)| is bounded according to (2) and (9), as we assume that M̃k,M ∈ Mk.
Summarizing state-action pairs of the same color we get

∆k ≤ vk

(

P̃k − I
)

wk + 2
∑

c∈C(ΨU)

vk(c) ·
(

ε+
√

7 log(2CU tk/δ)
2max{1,Nk(c)}

)

,

where C(ΨU ) is the set of colors of state-action pairs in ΨU . Let Tk be the length
of episode k. Then noting that N ′

k(c) := max{1, Nk(c)} ≤ tk ≤ T we get

∆k ≤ vk

(

P̃k − I
)

wk + 2εTk +
√

14 log
(

2CUT
δ

)

∑

c∈C(ΨU )

vk(c)
√

N ′
k(c)

. (13)

The True Transition Matrix Let Pk :=
(

p(s′|s, π̃k(s))
)

s,s′
be the transition

matrix of π̃k in the true MDP M . We split

vk

(

P̃k − I
)

wk = vk

(

P̃k − Pk

)

wk + vk

(

Pk − I
)

wk. (14)

By assumption M̃k,M ∈ Mk, so that using (3) and (10) the first term in (14)
can be bounded by (cf. Section 4.3.2 of [6])

vk

(

P̃k − Pk

)

wk ≤
∑

s,a

vk
(

s, a
)

·
∥

∥p̃k(·|s, a)− p(·|s, a)
∥

∥

1
· ‖wk‖∞

≤ 2
∑

c∈C(ΨU)

vk
(

c) ·
(

ε+
√

56B log(4CUT/δ)
N ′

k(c)

)

· Dε

2

≤ εDε Tk +Dε

√

56B log
(

2CUT
δ

)

∑

c∈C(ΨU )

vk(c)
√

N ′
k(c)

, (15)

since — as for the rewards — the contribution of state-action pairs in ΨK is 0.
Concerning the second term in (14), as shown in Section 4.3.2 of [6] one has

with probability at least 1− δ
12T 5/4

m
∑

k=1

vk (Pk − I)wk1M∈Mk
≤ Dε

√

5
2T log

(

8T
δ

)

+Dε CU log2
(

8T
CU

)

, (16)

where m is the number of episodes, and the bound m ≤ CU log2 (8T/CU ) used
to obtain (16) is derived analogously to Appendix C.2 of [6].

Summing over Episodes with M ∈ Mk To conclude, we sum (13) over
all episodes with M ∈ Mk, using (14), (15), and (16), which yields that with
probability at least 1− δ

12T 5/4

m
∑

k=1

∆k1M∈Mk
≤ Dε

√

5
2T log

(

8T
δ

)

+Dε CU log2
(

8T
CU

)

+ ε(Dε + 2)T

+

(

Dε

√

56B log
(

2CUBT
δ

)

+
√

14 log
(

2CUT
δ

)

) m
∑

k=1

∑

c∈C(ΨU )

vk(c)
√

N ′
k(c)

. (17)



As in Sect. 4.3.3 and Appendix C.3 of [6], one obtains
∑

c∈C(ΨU)

∑

k
vk(c)√
N ′

k(c)
≤

(√
2 + 1

)√
CUT . Thus, evaluating (5) by summing ∆k over all episodes, by (11)

and (17) the regret is upper bounded with probability ≥ 1− δ
4T 5/4 by

m
∑

k=1

∆k1M/∈Mk
+

m
∑

k=1

∆k1M∈Mk
+
√

5
8T log

(

8T
δ

)

≤
√

5
8T log

(

8T
δ

)

+
√
T +Dε

√

5
2T log

(

8T
δ

)

+Dε CU log2

(

8T
CU

)

+ε(Dε + 2)T + 3
(
√
2 + 1

)

Dε

√

14BCUT log
(

2CUBT
δ

)

.

Further simplifications as in Appendix C.4 of [6] finish the proof. ⊓⊔
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