

arXiv.org > math > arXiv:1107.2753

Search or Article-id

All papers

(Help | Advanced search) Go! 6

Mathematics > Statistics Theory

Renorming divergent perpetuities

Paweł Hitczenko, Jacek Wesołowski

(Submitted on 14 Jul 2011)

We consider a sequence of random variables \$(R n)\$ defined by the recurrence \$R_n=Q_n+M_nR_{n-1}\$, \$n\ge1\$, where \$R_0\$ is arbitrary and \$(Q_n,M_n)\$, \$n\ge1\$, are i.i.d. copies of a two-dimensional random vector \$(Q,M)\$, and \$(Q_n,M_n)\$ is independent of \$R_{n-1}\$. It is well known that if $E^{\ln}M < 0\$ and $E^{\ln^+}Q < \inf S$, then the sequence (R_n) converges in distribution to a random variable \$R\$ given by \$R\stackrel{d} {=}\sum_{k=1}^{\infty}Q_k\prod_{j=1}^{k-1}M_j\$, and usually referred to as perpetuity. In this paper we consider a situation in which the sequence \$(R_n)\$ itself does not converge. We assume that \$E{\ln}|M|\$ exists but that it is non-negative and we ask if in this situation the sequence \$(R_n)\$, after suitable normalization, converges in distribution to a non-degenerate limit.

Comments:	Published in at this http URL the Bernoulli (this http URL) by the International Statistical Institute/Bernoulli Society (this http URL)
Subjects:	Statistics Theory (math.ST)
Journal reference:	Bernoulli 2011, Vol. 17, No. 3, 880-894
DOI:	10.3150/10-BEJ297
Report number:	IMS-BEJ-BEJ297
Cite as:	arXiv:1107.2753v1 [math.ST]

Submission history

From: Paweł Hitczenko [view email] [v1] Thu, 14 Jul 2011 08:45:02 GMT (36kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

- PDF
- PostScript
- Other formats

Current browse context: math.ST

< prev | next >

new | recent | 1107

Change to browse by:

math stat

References & Citations NASA ADS

