Cornell University

Mathematics > Statistics Theory

Renorming divergent perpetuities

Paweł Hitczenko, Jacek Wesołowski

(Submitted on 14 Jul 2011)
We consider a sequence of random variables $\$\left(R _n\right) \$$ defined by the recurrence $\$ R _n=Q _n+M _n R _\{n-1\} \$$, \$n\ge1\$, where $\$ R _0 \$$ is arbitrary and \$(Q_n,M_n)\$, \$n\ge1\$, are i.i.d. copies of a two-dimensional random vector \$(Q,M)\$, and \$(Q_n,M_n)\$ is independent of \$R_\{n-1\}\$. It is well known that if $\$ E\{\backslash \mathrm{Vn}\}|\mathrm{M}|<0 \$$ and $\$ \mathrm{E}\left\{\backslash \mathrm{n}^{\wedge}+\right\}|\mathrm{Q}|<\operatorname{linfty} \$$, then the sequence $\$\left(\mathrm{R} _n\right) \$$ converges in distribution to a random variable $\$ R \$$ given by $\$ R \backslash$ stackrel\{d\} $\{=\} \backslash$ sum_\{k=1\}^\{linfty\}Q_k|prod_\{j=1\}^\{k-1\}M_j\$, and usually referred to as perpetuity. In this paper we consider a situation in which the sequence $\$\left(R _n\right) \$$ itself does not converge. We assume that $\$ \mathrm{E}\{\backslash \mathrm{In}\}|\mathrm{M}| \$$ exists but that it is non-negative and we ask if in this situation the sequence $\$\left(R _n\right) \$$, after suitable normalization, converges in distribution to a non-degenerate limit.

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.ST
< prev | next >
new | recent | 1107
Change to browse by:
math
stat

References \& Citations

- NASA ADS

Bookmark(what is this?)

Comments: Published in at this http URL the Bernoulli (this http URL) by the International Statistical Institute/Bernoulli Society (this http URL)
Subjects: Statistics Theory (math.ST)
Journal reference: Bernoulli 2011, Vol. 17, No. 3, 880-894
DOI: 10.3150/10-BEJ297
Report number: IMS-BEJ-BEJ297
Cite as: arXiv:1107.2753v1 [math.ST]

Submission history

From: Paweł Hitczenko [view email]
[v1] Thu, 14 Jul 2011 08:45:02 GMT (36kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

