On asymptotic properties of the rank of a special random adjacency matrix

Arup Bose, Indian Statistical Institute
Arnab Sen, University of California, Berkeley

Abstract

Consider the matrix $\Delta_{n}=\left(\left(I\left(X_{i}+X_{j}>0\right)\right)\right)_{i, j=1,2, \ldots, n}$ where X_{i} are i.i.d. and their distribution is continuous and symmetric around 0 . We show that the rank r_{n} of this matrix is equal in distribution to $2 \Sigma_{i=1}{ }^{n-1} I\left(\xi_{i}=1, \xi_{i+1}=0\right)+I\left(\xi_{n}=1\right)$ where ξ_{i} are i.i.d. $\operatorname{Ber}(1,1 / 2)$.

As a consequence $n^{-1 / 2}\left(r_{n} / n-1 / 2\right)$ is asymptotically normal with mean zero and variance $1 / 4$. We also show that $\mathrm{n}^{-1} \mathrm{r}_{\mathrm{n}}$ converges to $1 / 2$ almost surely.

Full text: PDF | PostScript

Pages: 200-205
Published on: June 3, 2007

Bibliography

1. Caldarelli, G., Capocci, A., Rios, P. De Los, and Munoz, M.A. (2002). Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters , 89, 258702.
2. Costello, Kevin P., Tao, Terence and Vu, Van. (2006) Random symmetric matrices are almost surely non-singular. Duke Math J. Volume 135, Number 2, 395-413 MR2267289
3. Costello, Kevin P. and Vu, Van. (2006). The rank of random graphs. arXiv: math: PR/0606414 v1.
4. Brockwell, Peter J. and Davis, Richard A. (1991). Time series: theory and methods, Second edition. Springer Series in Statistics. Springer Verlag, New York. MR1093459
5. Masuda, Naoki, Miwa, Hiroyoshi, and Konno, Norio (2005). Geographical threshold graphs with small-world and scale-free properties, Physical Review E, 71, 036108.
6. S " $\{0\}$ derberg, Bo (2002). General formalism for inhomogeneous random graphs, Physical Review E, 66 066121. MR1953933

Home | Contents | Submissions, editors, etc.| Login | Search | EJP
Electronic Communications in Probability. ISSN: 1083-589X

